Recent Advances of Artificial Intelligence Methods in PMSM Condition Monitoring and Fault Diagnosis in Elevator Systems
Abstract
1. Introduction
2. PMSM in Elevator Systems and Fault Types
2.1. Bearing Faults
2.2. Stator Winding Inter-Turn Short Circuits
2.3. Rotor Demagnetization
2.4. Static and Dynamic Eccentricity
3. Smart Sensors and Signal Processing
3.1. Sensor Specifications, Placement and Integration
- Current and Voltage Sensors.
- Vibration and Acoustic Sensors.
- Temperature Sensors.
- Magnetic Field and Flux Sensors.
- Encoder: Position and Speed Sensors.
- Installation and wiring considerations.
3.2. Signal Acquisition and Transmission
- Synchronized Sampling and analog-to-digital conversion (ADC).
- Edge Processing and Local Buffering.
- Analog filtering (anti-aliasing)
- Signal scaling and normalization
- Threshold-based event detection
- Data compression using techniques like delta encoding or lossless Huffman
- Communication Protocols and Data Transmission.
- Cloud Integration and Remote Monitoring.
- Data preprocessing at edge;
- Secure data encryption and transmission;
- Temporary cloud buffering and storage;
- Server-side analytics and visualization dashboards.
- Cybersecurity and Data Integrity
- Role-based access control;
- Device authentication using certificates;
- End-to-end encryption (e.g., TLS 1.2+);
- Audit logging and firmware integrity checks.
3.3. Data Processing
3.3.1. Preprocessing
- Step 1: Filtering
- Bandpass Filters: These isolate a narrow frequency range where fault-related signatures, such as bearing defect harmonics or rotor imbalance tones, are expected to occur. The filter’s center frequency and bandwidth must be tuned according to motor speed and the specific mechanical resonance frequencies [154].
- Notch Filters: Used to eliminate dominant spectral components, especially the 50/60 Hz power supply fundamental and its harmonics. Removing these frequencies improves the visibility of low-energy fault modulations often buried beneath power line noise [155].
- Butterworth Filters: A widely used IIR filter known for its maximally flat frequency response in the passband. It is particularly suitable when signal fidelity and smooth transition between passband and stopband are important, such as in current signature analysis. Low-pass Butterworth filters are commonly used to isolate slow-varying trends, while high-pass versions help reveal impulsive fault transients [156].
- Gaussian Filters: These FIR filters are used for smoothing and noise reduction, especially when preserving the general shape of a signal is critical. Gaussian filters are highly effective in pre-filtering vibration or temperature signals prior to applying spectral or time–frequency transforms [157].
- Kalman Filters: Kalman filtering provides optimal recursive estimation of the true signal in the presence of Gaussian noise, based on a predictive model. It is particularly effective in real-time systems, such as when tracking slowly varying trends in temperature or shaft speed data during elevator duty cycles. Kalman filters can track changes even when direct measurements are incomplete or corrupted by noise [158,159].
- Extended Kalman Filter (EKF): A nonlinear extension of the Kalman filter, the EKF is often used for estimating system states such as rotor position or flux linkage in sensorless PMSM control. In condition monitoring, it can assist in reconstructing fault-relevant states that are not directly measurable, enabling advanced diagnostics under dynamic conditions [160,161].
- Median Filters: Particularly useful for removing impulse-like noise from vibration signals, median filters replace each sample with the median of neighboring values, preserving edges while eliminating spikes.
- Savitzky–Golay Filters: Polynomial smoothing filters that preserve peak shape and width, ideal for preprocessing signals prior to envelope extraction or demodulation [164].
- Adaptive Filters: Implemented using LMS (Least Mean Squares) or RLS (Recursive Least Squares) algorithms, these filters dynamically adjust their coefficients to track and suppress time-varying noise patterns. They are valuable in elevator environments where inverter switching patterns or load profiles fluctuate unpredictably [165].
- Hybrid Filtering Schemes: In practical implementations, a combination of the above filters is often used. For example: A Gaussian low-pass filter followed by a wavelet-based denoiser can reduce high-frequency switching noise and retain transient impulses. A Butterworth notch filter may be used in cascade with an adaptive RLS filter to eliminate both power-line interference and inverter harmonics. Kalman filters may run in parallel with static filters for trend estimation and real-time correction [4,25,166].
- Step 2: Normalization and Denoising
- Step 3: Synchronization and Resampling
3.3.2. Frequency–Domain Analysis
3.3.3. Time–Domain Analysis
3.3.4. Advanced Time–Frequency Decomposition
3.3.5. Feature Extraction
4. Advanced Machine Learning Techniques for PMSM Fault Detection
4.1. Supervised Learning
4.1.1. Classical ML Approaches
4.1.2. Deep Learning Models
4.1.3. Hybrid Architectures
4.1.4. Advantages and Limitations
4.2. Unsupervised Learning
4.3. Semi-Supervised and Hybrid Learning
4.4. Comparative Insights and Future Directions
- Current/Voltage Signal Analysis (CSA Path).
- Vibration/Acoustic Emission Path
5. Bibliometric Analysis of Recent References
6. Discussion
- integrate digital twins capable of simulating real-time motor and drive behavior under varying passenger loads;
- leverage federated learning to enable knowledge transfer across fleets of elevators without compromising data privacy;
- address cybersecurity threats inherent in IoT-enabled predictive maintenance systems;
- ensure scalable and explainable AI models that can be trusted by manufacturers, service providers, and regulatory authorities alike.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AE | Autoencoder |
| AI | Artificial Intelligence |
| ANN | Artificial Neural Network |
| API | Application Programming Interface |
| CNN | Convolutional Neural Network |
| CBM | Condition-Based Maintenance |
| CRC | Cyclic Redundancy Check |
| CSA | Current Signature Analysis |
| CySA | Cyclostationary Analysis |
| DNN | Deep Neural Network |
| DL | Deep Learning |
| EKF | Extended Kalman Filter |
| EMI | Electromagnetic Interference |
| EMF | Electromotive Force |
| EN | European Norm |
| EV | Electric Vehicle |
| FGB | Fiber Bragg Grating |
| FFT | Fast Fourier Transform |
| FMEA | Failure Modes and Effects Analysis |
| FSA | Flux Signature Analysis |
| GAN | Generative Adversarial Network |
| HTTPS | Hypertext Transfer Protocol Secure |
| IEC | International Electrotechnical Commission |
| IGBT | Insulated Gate Bipolar Transistor |
| IM | Induction Motor |
| IoT | Internet of Things |
| ISO | International Organization for Standardization |
| KPI | Key Performance Indicator |
| LTE | Long Term Evolution |
| LSTM | Long Short-Term Memory |
| PWM | Pulse Width Modulation |
| ML | Machine Learning |
| MCSA | Motor Current Signature Analysis |
| MQTT | Message Queuing Telemetry Transport |
| NIOSH | National Institute for Occupational Safety and Health |
| OLE | Object Linking and Embedding |
| OPC | OLE for Process Control |
| PAC | Protection, Automation and Control |
| PCA | Principal Component Analysis |
| PLC | Programmable Logic Controller |
| PMSM | Permanent Magnet Synchronous Motor |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| PROFINET | Process Field Net |
| REST | Representational State Transfer |
| RMS | Root Mean Square |
| RMSE | Root Mean Square Error |
| RUL | Remaining Useful Life |
| SCADA | Supervisory Control and Data Acquisition |
| SMO | Sliding Mode Observer |
| SVM | Support Vector Machine |
| TCP | Transmission Control Protocol |
| TLS | Transport Layer Security |
| TSN | Time-Sensitive Networking |
| UA | Unified Architecture |
| VFD | Variable Frequency Drive |
| WPT | Wavelet Packet Transform |
References
- Soyaslan, M.; Eldogan, O.; Fenercioglu, A.; Avsar, Y.; Ceylan, N.; Sarıkaya, M.S. Efficiency Optimization of PMSM-Type Elevator Machine: An Industrial Comparison. Machines 2025, 13, 173. [Google Scholar] [CrossRef]
- Avsar, Y.; Fenercioglu, A.; Soyaslan, M. Design Optimization of PM Synchronous Motor: Rail Mounted Belt Drive Elevator Systems. IEEE Trans. Ind. Appl. 2024, 60, 301–311. [Google Scholar] [CrossRef]
- Koenen, C.; Reuss, H.-C. Sustainability Optimization of the NdFeB Magnet System of PMSMs by Linking Electromagnetic Calculation and Life Cycle Assessment. In Proceedings of the Elektromechanische Antriebssysteme 2023-9. Fachtagung (VDE OVE), Wien, Austria, 8–9 November 2023; VDE Verlag: Wien, Austria, 2023; pp. 31–37, ISBN 978-3-8007-6152-4. [Google Scholar]
- Vlachou, V.I.; Karakatsanis, T.S.; Efstathiou, D.E.; Vlachou, E.I.; Vologiannidis, S.D.; Balaska, V.E.; Gasteratos, A.C. Condition Monitoring and Fault Prediction in PMSM Drives Using Machine Learning for Elevator Applications. Machines 2025, 13, 549. [Google Scholar] [CrossRef]
- Sergakis, A.; Salinas, M.; Gkiolekas, N.; Gyftakis, K.N. A Review of Condition Monitoring of Permanent Magnet Synchronous Machines: Techniques, Challenges and Future Directions. Energies 2025, 18, 1177. [Google Scholar] [CrossRef]
- Orlowska-Kowalska, T.; Wolkiewicz, M.; Pietrzak, P.; Skowron, M.; Ewert, P.; Tarchala, G.; Krzysztofiak, M.; Kowalski, C.T. Fault Diagnosis and Fault-Tolerant Control of PMSM Drives—State-of-the-Art and Future Challenges. IEEE Access 2022, 10, 60120–60142. [Google Scholar] [CrossRef]
- Choi, S.; Haque, M.S.; Tarek, M.T.B.; Mulpuri, V.; Duan, Y.; Das, S. Fault Diagnosis Techniques for Permanent Magnet AC Machine and Drives—A Review of Current State of the Art. IEEE Trans. Transp. Electrif. 2018, 4, 444–463. [Google Scholar] [CrossRef]
- Yoon, Y.; Orviz Zapico, M.; Tiemblo, J.G.; Lee, H.; Lee, K.; Reigosa, D.D.; Lim, C.; Lee, S.B. Detection of Trailing Edge Demagnetization in Surface PM Synchronous Machines Based on High Frequency Equivalent Impedance. In Proceedings of the 2024 IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, 20–24 October 2024; pp. 5782–5787. [Google Scholar] [CrossRef]
- Ben Hadj, N.; Krichen, M.; Neji, R. Finite Elements and Signal Processing Analysis of Eccentricity and Demagnetization Faults in PMSM Drivetrains: Approach for Diagnosis. arXiv 2020, arXiv:2011.04353. [Google Scholar] [CrossRef]
- Vlachou, V.I.; Karakatsanis, T.S.; Kladas, A.G. Current trends in elevator systems protection including fault tolerance and condition monitoring techniques implemented in emerging synchronous motor drives. In Proceedings of the Protection, Automation & Control World Conference (Pac World 2024), Athens, Greece, 17–21 June 2024; pp. 1–22. Available online: https://www.researchgate.net/publication/381800209 (accessed on 3 August 2025).
- Molęda, M.; Małysiak-Mrozek, B.; Ding, W.; Sunderam, V.; Mrozek, D. From Corrective to Predictive Maintenance—A Review of Maintenance Approaches for the Power Industry. Sensors 2023, 23, 5970. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Q.; Zhang, C.; Yang, K.; Cheng, L.; Li, Z. ECNN: Intelligent Fault Diagnosis Method Using Efficient Convolutional Neural Network. Actuators 2022, 11, 275. [Google Scholar] [CrossRef]
- Martins, A.; Fonseca, I.; Farinha, J.T.; Reis, J.; Cardoso, A.J.M. Prediction Maintenance Based on Vibration Analysis and Deep Learning—A Case Study of a Drying Press Supported on a Hidden Markov Model. Appl. Soft Comput. 2024, 163, 111885. [Google Scholar] [CrossRef]
- Laamari, Y.; Allaoui, S.; Bendaikha, A.; Saad, S. Fault Detection Between Stator Windings Turns of Permanent Magnet Synchronous Motor Based on Torque and Stator-Current Analysis Using FFT and Discrete Wavelet Transform. Math. Model. Eng. Probl. 2021, 8, 315–322. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, J.; Ahn, G.; Youn, M.; Youn, B.D. Fault Detection of PMSM under Non-Stationary Conditions Based on Wavelet Transformation Combined with Distance Approach. In Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August 2019; pp. 1–6. [Google Scholar] [CrossRef]
- El-Dalahmeh, M.; Dinde, A.; Benbouzid, M.E.H.; Dolgui, A.; Favreau, F. Autonomous Fault Detection and Diagnosis for Permanent Magnet Synchronous Motors Using Combined Variational Mode Decomposition, the Hilbert–Huang Transform, and a Convolutional Neural Network. Comput. Electr. Eng. 2023, 110, 108894. [Google Scholar] [CrossRef]
- Wang, H.; Ji, Y. A Revised Hilbert–Huang Transform and Its Application to Fault Diagnosis in a Rotor System. Sensors 2018, 18, 4329. [Google Scholar] [CrossRef] [PubMed]
- Kiakojouri, A.; Lu, Z.; Mirring, P.; Powrie, H.; Wang, L. A Generalised Intelligent Bearing Fault Diagnosis Model Based on a Two-Stage Approach. Machines 2024, 12, 77. [Google Scholar] [CrossRef]
- Ruiz-Sarrio, J.E.; Antonino-Daviu, J.A.; Martis, C. Comprehensive Diagnosis of Localized Rolling Bearing Faults during Rotating Machine Start-Up via Vibration Envelope Analysis. Electronics 2024, 13, 375. [Google Scholar] [CrossRef]
- Zhou, T.; Bian, J.; Wu, J.; Wang, Y.; Zhang, Z. Detection of Rotor Eccentricity Faults in PMSM Based on Motor Current Signature Analysis. Energies 2022, 15, 1793. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M. Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms. Sensors 2023, 23, 1757. [Google Scholar] [CrossRef]
- Yu, Y.; Gao, H.; Chen, Q.; Liu, P.; Niu, S. Demagnetization Fault Detection and Location in PMSM Based on Correlation Coefficient of Branch Current Signals. Energies 2022, 15, 2952. [Google Scholar] [CrossRef]
- Vlachou, V.I.; Karakatsanis, T.S.; Kladas, A.G. Fault Tolerant Real Time Monitored Elevator System Development. In Proceedings of the 14th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2024), Athens, Greece, 3–6 November 2024. [Google Scholar]
- Wang, H.; Wang, L.; Wu, Q.; Pei, H.; Diao, L. A Data-Driven Intelligent Fault Diagnosis Framework for Permanent Magnet in PMSM. Alex. Eng. J. 2025, 113, 331–346. [Google Scholar] [CrossRef]
- Siddique, M.F.; Saleem, F.; Umar, M.; Kim, C.H.; Kim, J.-M. A Hybrid Deep Learning Approach for Bearing Fault Diagnosis Using Continuous Wavelet Transform and Attention-Enhanced Spatiotemporal Feature Extraction. Sensors 2025, 25, 2712. [Google Scholar] [CrossRef]
- Sacerdoti, D.; Strozzi, M.; Secchi, C. A Comparison of Signal Analysis Techniques for the Diagnostics of the IMS Rolling Element Bearing Dataset. Appl. Sci. 2023, 13, 5977. [Google Scholar] [CrossRef]
- Quiroz, J.C.; Mariun, N.; Rezazadeh-Mehrjou, M.; Izadi, M.; Misron, N.; Mohd Radzi, M.A. Fault Detection of Broken Rotor Bar in LS-PMSM Using Random Forests. arXiv 2017, arXiv:1711.02510. [Google Scholar] [CrossRef]
- Shen, W.; Xiao, M.; Wang, Z.; Song, X. Rolling Bearing Fault Diagnosis Based on Support Vector Machine Optimized by Improved Grey Wolf Algorithm. Sensors 2023, 23, 6645. [Google Scholar] [CrossRef]
- Kumar, R.; Anand, R.S. Bearing Fault Diagnosis Using Multiple Feature Selection Algorithms with SVM. Prog. Artif. Intell. 2024, 13, 119–133. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M. Fault Diagnosis of PMSM Stator Winding Based on Continuous Wavelet Transform Analysis of Stator Phase Current Signal and Selected Artificial Intelligence Techniques. Electronics 2023, 12, 1543. [Google Scholar] [CrossRef]
- Hu, R.; Wang, J.; Mills, A.R.; Chong, E.; Sun, Z. Current-Residual-Based Stator Interturn Fault Detection in Permanent Magnet Machines. IEEE Trans. Ind. Electron. 2021, 68, 59–69. [Google Scholar] [CrossRef]
- Jiao, J.; Zhao, M.; Lin, J.; Liang, K. A Comprehensive Review on Convolutional Neural Network in Machine Fault Diagnosis. Neurocomputing 2020, 417, 36–63. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Meng, D.; Zhao, X.; Liu, Q.; Xu, K.; Zhang, K. Diagnosis of Inter-Turn Short Circuit Fault in IPMSMs Based on the Combined Use of Greedy Tracking and Random Forest. Bull. Pol. Acad. Sci. Tech. Sci. 2024, 72, e148943. [Google Scholar] [CrossRef]
- Li, D.; Zhu, M.; Zhao, Y.; Lin, S. Detection and Location of Inter-Turn Short Circuit Fault in PMSM Based on Reconstructed Negative Sequence Current and Phase Angle. J. Electr. Eng. Technol. 2025, 20, 4243–4255. [Google Scholar] [CrossRef]
- Fu, G.; Wei, Q.; Yang, Y. Bearing Fault Diagnosis with Parallel CNN and LSTM Network. Math. Biosci. Eng. 2024, 21, 2385–2406. [Google Scholar] [CrossRef]
- Borré, A.; Seman, L.O.; Camponogara, E.; Stefenon, S.F.; Mariani, V.C.; Coelho, L.d.S. Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model. Sensors 2023, 23, 4512. [Google Scholar] [CrossRef]
- Shao, L.; Zhao, B.; Kang, X. Rolling Bearing Fault Diagnosis Based on VMD-DWT and HADS-CNN-BiLSTM Hybrid Model. Machines 2025, 13, 423. [Google Scholar] [CrossRef]
- Dogan, Z.; Selçuk, R. A Diagnosis of Stator Winding Fault Based on Empirical Mode Decomposition in PMSMs. Balk. J. Electr. Comput. Eng. 2020, 8, 73–80. [Google Scholar] [CrossRef]
- Kwon, W.; Lee, J.; Choi, S.; Kim, N. Empirical Mode Decomposition and Hilbert–Huang Transform-Based Eccentricity Fault Detection and Classification with Demagnetization in 120 kW Interior Permanent Magnet Synchronous Motors. Expert Syst. Appl. 2024, 241, 122515. [Google Scholar] [CrossRef]
- de las Morenas, J.; Moya-Fernández, F.; López-Gómez, J.A. The Edge Application of Machine Learning Techniques for Fault Diagnosis in Electrical Machines. Sensors 2023, 23, 2649. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Song, Q.; Lai, W. On Model-Based Transfer Learning Method for the Detection of Inter-Turn Short Circuit Faults in PMSM. Sensors 2023, 23, 9145. [Google Scholar] [CrossRef]
- Wang, Q.; Michau, G.; Fink, O. Domain Adaptive Transfer Learning for Fault Diagnosis. arXiv 2019, arXiv:1905.06004. [Google Scholar] [CrossRef]
- Brito, L.C.; Susto, G.A.; Brito, J.N.B.; Duarte, M.A.V. Fault Diagnosis Using eXplainable AI: A Transfer Learning-Based Approach for Rotating Machinery Exploiting Augmented Synthetic Data. arXiv 2022, arXiv:2210.02974. [Google Scholar] [CrossRef]
- Vlachou, E.I.; Vlachou, V.I.; Efstathiou, D.E.; Karakatsanis, T.S. Overview of IoT Security Challenges and Sensors Specifications in PMSM for Elevator Applications. Machines 2024, 12, 839. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, K.; Liu, H. An Elevator Monitoring System Based on Internet of Things (IoT). Procedia Comput. Sci. 2018, 131, 541–544. [Google Scholar] [CrossRef]
- Vlachou, V.I.; Efstathiou, D.E.; Karakatsanis, T.S. Design, Analysis and Application of Control Techniques for Driving a Permanent Magnet Synchronous Motor in an Elevator System. Machines 2024, 12, 560. [Google Scholar] [CrossRef]
- Vlachou, V.I.; Karakatsanis, T.S.; Kladas, A.G. Energy Savings in Elevators by Using a Particular Permanent-Magnet Motor Drive. Energies 2023, 16, 4716. [Google Scholar] [CrossRef]
- Bakhtiarzadeh, H.; Polat, A.; Ergene, L.T. The Analysis of Different Stator Designs of a PMSM for Elevator Application. In Proceedings of the 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25–27 October 2018; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Nicola, M.; Nicola, C.-I.; Selișteanu, D.; Ionete, C.; Șendrescu, D. Improved Performance of the Permanent Magnet Synchronous Motor Sensorless Control System Based on Direct Torque Control Strategy and Sliding Mode Control Using Fractional Order and Fractal Dimension Calculus. Appl. Sci. 2024, 14, 8816. [Google Scholar] [CrossRef]
- Anh, A.T.H.T.; Duc, L.H. A Regenerative Braking Energy Recuperation from Elevator Operation in Building by Active Rectifier. Int. J. Power Electron. Drive Syst. 2021, 12, 811–821. [Google Scholar] [CrossRef]
- Arrasate, X.; Kaczmarczyk, S.; Almandoz, G.; Abete, J.M.; Isasa, I. The modelling, simulation and experimental testing of the dynamic responses of an elevator system. Mech. Syst. Signal Process. 2014, 42, 258–282. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, A.; Maiti, J. A Critical Review on System Architecture, Techniques, Trends and Challenges in Intelligent Predictive Maintenance. Safety 2024, 177, 106590. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, S.; Li, W.; Liang, H.; Wang, C. Faults and Diagnosis Methods of Permanent Magnet Synchronous Motors: A Review. Appl. Sci. 2019, 9, 2116. [Google Scholar] [CrossRef]
- Niu, D.; Song, D. Model-Based Robust Fault Diagnosis of Incipient ITSC for PMSM in Elevator Traction System. IEEE Trans. Instrum. Meas. 2023, 72, 3533512. [Google Scholar] [CrossRef]
- Qin, Y.; Li, G.-J.; Jia, C.; McKeever, P. Investigation of Inter-Turn Short-Circuit Fault of PM Machines Using PWM Voltage-Based Modeling. IEEE Trans. Transp. Electrif. 2023, 10, 1324–1334. [Google Scholar] [CrossRef]
- Vancini, L.; Mengoni, M.; Rizzoli, G.; Zarri, L.; Tani, A. Local Demagnetization Detection in Six-Phase Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2023, 71, 5508–5518. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, P.; He, S.; Huang, J. A Review of Modeling and Diagnostic Techniques for Eccentricity Fault in Electric Machines. Energies 2021, 14, 4296. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Z.-Q.; Azar, Z.; Clark, R.; Wu, Z. Fault Detection of Permanent Magnet Synchronous Machines: An Overview. Energies 2025, 18, 534. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, L.; Xiao, G.; Wang, P.; Gu, Y.; Lu, J. Elevator Fault Diagnosis Based on Digital Twin and PINNs-e-RGCN. Sci. Rep. 2024, 14, 30713. [Google Scholar] [CrossRef]
- de las Morenas, J.; Belmonte, L.M.; Morales, R. Streamlined Bearing Fault Detection Using Artificial Intelligence in Permanent Magnet Synchronous Motors. Machines 2025, 13, 357. [Google Scholar] [CrossRef]
- Wang, M.; Yu, J.; Leng, H.; Du, X.; Liu, Y. Bearing Fault Detection by Using Graph Autoencoder and Ensemble Learning. Sci. Rep. 2024, 14, 5206. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.I.; Kirkland, D.W. The Bearing Analysis Handbook: A Practical Guide for Solving Vibration Problems in Bearings; Vibration Consultants: San Diego, CA, USA, 2004; 291p, ISBN 978-0964051737. [Google Scholar]
- Tse, P.W.; Peng, Y.H.; Yam, R. Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis—Their Effectiveness and Flexibilities. J. Vib. Acoust. 2001, 123, 303–310. [Google Scholar] [CrossRef]
- Moysidis, D.A.; Karatzinis, G.D.; Boutalis, Y.S.; Karnavas, Y.L. A Study of Noise Effect in Electrical Machines Bearing Fault Detection and Diagnosis Considering Different Representative Feature Models. Machines 2023, 11, 1029. [Google Scholar] [CrossRef]
- Santer, P.; Reinhard, J.; Schindler, A.; Graichen, K. Detection of Localized Bearing Faults in PMSMs by Means of Envelope Analysis and Wavelet Packet Transform Using Motor Speed and Current Signals. Mechatronics 2025, 106, 103294. [Google Scholar] [CrossRef]
- Liu, M.-K.; Tran, M.-Q.; Weng, P.-Y. Fusion of Vibration and Current Signatures for the Fault Diagnosis of Induction Machines. Shock Vib. 2019, 2019, 7176482. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, K.; Peng, T.; Wang, Y. Multi-Condition PMSM Fault Diagnosis Based on Convolutional Neural Network Phase Tracker. Symmetry 2022, 14, 295. [Google Scholar] [CrossRef]
- Xu, M.; Gao, J.; Zhang, Z.; Wang, H. Bearing-Fault Diagnosis with Signal-to-RGB Image Mapping and Multichannel Multiscale Convolutional Neural Network. Entropy 2022, 24, 1569. [Google Scholar] [CrossRef]
- Umar, M.; Siddique, M.F.; Ullah, N.; Kim, J.-M. Milling Machine Fault Diagnosis Using Acoustic Emission and Hybrid Deep Learning with Feature Optimization. Appl. Sci. 2024, 14, 10404. [Google Scholar] [CrossRef]
- Falekas, G.; Karlis, A. Digital Twin in Electrical Machine Control and Predictive Maintenance: State-of-the-Art and Future Prospects. Energies 2021, 14, 5933. [Google Scholar] [CrossRef]
- Szamel, L.; Oloo, J. Monitoring of Stator Winding Insulation Degradation through Estimation of Stator Winding Temperature and Leakage Current. Machines 2024, 12, 220. [Google Scholar] [CrossRef]
- Siddiqui, K.M.; Bakhsh, F.I.; Ahmad, R.; Solanki, V. Advanced Signal Processing Based Condition Monitoring of PMSM for Stator-inter Turn Fault. In Proceedings of the 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Dehradun, India, 11–13 November 2021; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M. On-line Detection and Classification of PMSM Stator Winding Faults Based on Stator Current Symmetrical Components Analysis and the KNN Algorithm. Electronics 2021, 10, 1786. [Google Scholar] [CrossRef]
- Ye, M.; Gong, R.; Wu, W.; Peng, Z.; Jia, K. Fault Diagnosis of Permanent Magnet Synchronous Motor Based on Wavelet Packet Transform and Genetic Algorithm-Optimized Back Propagation Neural Network. World Electr. Veh. J. 2025, 16, 238. [Google Scholar] [CrossRef]
- Qin, Y.; Li, G.J.; Zhu, Z.Q.; Foster, M.P.; Stone, D.A.; Jia, C.J. Model-Based Luenberger State Observer for Detecting Interturn Short Circuits in PM Machines. IEEE Trans. Transp. Electrific. 2025, 11, 5302–5311. [Google Scholar] [CrossRef]
- Ortega, R.; Bobtsov, A.; Fang, L.; Texis-Loaiza, O.; Schiffer, J. Interturn Fault Detection in IPMSMs: Two Adaptive Observer-based Solutions. arXiv 2025, arXiv:2505.23125. [Google Scholar] [CrossRef]
- Zeng, C.; Huang, S.; Yang, Y.; Wu, D. Inter-turn fault diagnosis of permanent magnet synchronous machine based on tooth magnetic flux analysis. IET Electr. Power Appl. 2018, 12, 837–844. [Google Scholar] [CrossRef]
- Aubert, B.; Rognier, J.; Caux, S.; Alejo, D. Stator winding fault diagnosis in permanent magnet synchronous generators based on short-circuited turns identification using Extended Kalman Filter. Acta IMEKO 2014, 3, 4–9. [Google Scholar] [CrossRef]
- Lee, J.; Moon, S.; Jeong, H.; Kim, S.W. Robust Diagnosis Method Based on Parameter Estimation for an Interturn Short-Circuit Fault in Multipole PMSM under High-Speed Operation. Sensors 2015, 15, 29452–29466. [Google Scholar] [CrossRef]
- Li, L.; Liao, S.; Zou, B.; Liu, J. Mechanism-Based Fault Diagnosis Deep Learning Method for Permanent Magnet Synchronous Motor. Sensors 2024, 24, 6349. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Xie, L.; Halick, M.S.M.; Vaiyapuri, V. Stator End-Winding Thermal and Magnetic Sensor Arrays for Online Stator Inter-Turn Fault Detection. IEEE Sens. J. 2021, 21, 5312–5321. [Google Scholar] [CrossRef]
- Azom, M.A.; Hossain, S.; Ali Khan, Y. Review of Electrical and Thermal Modeling Techniques for Three-Phase PMSM Drives. Control Syst. Optim. Lett. 2025, 3, 75–83. [Google Scholar] [CrossRef]
- Ali, A.; Wu, J.; Yang, Y.; Li, X.; Zhu, H. Health Evaluation Techniques Towards Rotating Machinery: A Systematic Literature Review and Implementation Guideline. Reliab. Eng. Syst. Saf. 2025, 260, 110924. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.; He, L.; Restrepo, J.A.; Habetler, T.G. Rotor Thermal Monitoring Scheme for Direct-Torque-Controlled Interior Permanent Magnet Synchronous Machines via High-Frequency Rotating Flux or Torque Injection. arXiv 2021, arXiv:2106.02116. [Google Scholar] [CrossRef]
- Reigosa, D.; Fernández, D.; Martínez, M.; Park, Y.; Lee, S.B.; Briz, F. Permanent Magnet Synchronous Machine Non-Uniform Demagnetization Detection Using Zero-Sequence Magnetic Field Density. IEEE Trans. Ind. Appl. 2019, 55, 3823–3833. [Google Scholar] [CrossRef]
- Reigosa, D.; Fernández, D.; Park, Y.; Diez, A.B.; Lee, S.B.; Briz, F. Detection of Demagnetization in Permanent Magnet Synchronous Machines Using Hall-Effect Sensors. IEEE Trans. Ind. Appl. 2018, 54, 3338–3349. [Google Scholar] [CrossRef]
- Ko, Y.; Lee, Y.; Oh, J.; Park, J.; Chang, H.; Kim, N. Current Signature Identification and Analysis for Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors. Mech. Syst. Signal Process. 2024, 214, 111377. [Google Scholar] [CrossRef]
- Park, Y.; Fernandez, D.; Lee, S.B.; Hyun, D.; Jeong, M.; Kommuri, S.K. Online Detection of Rotor Eccentricity and Demagnetization Faults in PMSMs Based on Hall-Effect Field Sensor Measurements. IEEE Trans. Ind. Appl. 2019, 55, 2499–2509. [Google Scholar] [CrossRef]
- Xiong, Z.; Lv, M.; Liu, Z. Multi-Source Data Fusion for Demagnetization Fault Diagnosis of PMSM Based on SDP and CNN. In Proceedings of the 2025 IEEE 14th Data Driven Control and Learning Systems (DDCLS), Wuxi, China, 9–11 May 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Tian, X.; Li, C.; Hua, W.; Wang, K. Demagnetization Fault Diagnosis of Vernier Permanent-Magnet Motor Based on Wavelet Packet Analysis and MSCNN. In Proceedings of the 2024 IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, 20–24 October 2024. [Google Scholar] [CrossRef]
- Verkroost, L.; Druant, J.; Vansompel, H.; De Belie, F.; Sergeant, P. Performance Degradation of Surface PMSMs with Demagnetization Defect under Predictive Current Control. Energies 2019, 12, 782. [Google Scholar] [CrossRef]
- Forstner, G.; Kugi, A.; Kemmetmüller, W. A Magnetic Equivalent Circuit Based Modeling Framework for Electric Motors Applied to a PMSM with Winding Short Circuit. IEEE Trans. Power Electron. 2020, 35, 12285–12295. [Google Scholar] [CrossRef]
- Yu, Y.; Pei, Y.; Chai, F.; Doppelbauer, M. Analysis of Back-EMF Harmonics Influenced by Slot-Pole Combinations in Permanent Magnet Vernier In-Wheel Motors. IEEE Trans. Ind. Electron. 2023, 70, 4461–4471. [Google Scholar] [CrossRef]
- Ebrahimi, B.M.; Faiz, J.; Roshtkhari, M.J. Static-, Dynamic-, and Mixed-Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 2009, 56, 4727–4739. [Google Scholar] [CrossRef]
- Pérez, R.; Cros, J.; Picard, M. Real-Time Modeling of Static, Dynamic and Mixed Eccentricity in Permanent Magnet Synchronous Machines. Machines 2025, 13, 120. [Google Scholar] [CrossRef]
- Hooshmandi Safa, H.; Ebrahimi, M.; Abootorabi Zarchi, H.; Abshari, M. Eccentricity fault detection in permanent magnet synchronous generators using stator voltage signature analysis. Int. J. Precis. Eng. Manuf. 2017, 18, 1731–1737. [Google Scholar] [CrossRef]
- Torabi, M.; Alinejad-Beromi, Y. An Effective Hilbert–Huang Transform-Based Approach for Dynamic Eccentricity Fault Diagnosis in Double-Rotor Double-Sided Stator Structure Axial Flux Permanent Magnet Generator under Load and Speed Variations. Turk. J. Electr. Eng. Comput. Sci. 2023, 31, 53–76. [Google Scholar] [CrossRef]
- Roshtkhari, M.J.; Faiz, J.; Ebrahimi, B.M.; Khatami, S.V. Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis. IEEE Trans. Ind. Electron. 2014, 61, 2041–2052. [Google Scholar] [CrossRef]
- Zhan, H.; Wu, L.; Lyu, Z.; Du, Y.; Duan, R. Detecting eccentricity fault in permanent magnet synchronous machines by means of zero-sequence voltage component. IEEE Trans. Ind. Appl. 2024, 60, 6761–6774. [Google Scholar] [CrossRef]
- Kan, C.; Zeng, J.; Rv, H.; Yin, R.; Yu, Y. Dynamic Eccentric Fault Diagnosis Method of Permanent Magnet Synchronous Motor Based on VMD. In Proceedings of the 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China, 12–14 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, Q. Visualization for Explanation of Deep Learning-Based Fault Diagnosis Model Using Class Activation Map. Comput. Mater. Contin. 2023, 77, 1489–1514. [Google Scholar] [CrossRef]
- Miron, S.; Flamant, J.; Le Bihan, N.; Chainais, P.; Brie, D. Quaternions in Signal and Image Processing: A Comprehensive and Objective Overview. IEEE Signal Process. Mag. 2023, 40, 26–40. [Google Scholar] [CrossRef]
- Contreras-Hernandez, J.L.; Almanza-Ojeda, D.L.; Castro-Sanchez, R.; Ibarra-Manzano, M.A. Quaternion Signal Analysis for Detection of Broken Rotor Fault Degrees in Induction Motors. Appl. Sci. 2025, 15, 1787. [Google Scholar] [CrossRef]
- ISO 10816-3:2009; Mechanical Vibration—Evaluation of Machine Vibration by Measurements on Non-Rotating Parts—Part 3: Industrial Machines. ISO: Geneva, Switzerland, 2009.
- ISO 20816-1:2016; Mechanical Vibration—Measurement and Evaluation of Machine Vibration—Part 1: General Guidelines. ISO: Geneva, Switzerland, 2016.
- ISO 13373-3:2015; Condition Monitoring and Diagnostics of Machines—Vibration Condition Monitoring—Part 3: Guidelines for Vibration Diagnosis. ISO: Geneva, Switzerland, 2015.
- IEC 60034-1:2022; Rotating Electrical Machines—Part 1: Rating and Performance. IEC: Geneva, Switzerland, 2022.
- IEC 60034-25:2014; Rotating Electrical Machines—Part 25: Guidance for the Design and Performance of A.C. Motors Specifically Designed for Converter Supply. IEC: Geneva, Switzerland, 2014.
- Jankowska, K.; Dybkowski, M. Design and Analysis of Current Sensor Fault Detection Mechanisms for PMSM Drives Based on Neural Networks. Designs 2022, 6, 18. [Google Scholar] [CrossRef]
- Hrbac, R.; Kolar, V.; Bartłomiejczyk, M. A Development of a Capacitive Voltage Divider for High Voltage Measurement as Part of a Combined Current and Voltage Sensor. Elektron. Ir Elektrotechnika 2020, 26, 25–31. [Google Scholar] [CrossRef]
- IEC 61869-10:2018; Instrument Transformers—Part 10: Additional Requirements for Low-Power Passive Current Transformers. IEC: Geneva, Switzerland, 2018.
- Xiao, Y.; Jiao, H.; Huo, F.; Shen, Z. Lightning Current Measurement Method Using Rogowski Coil Based on Integral Circuit with Low-Frequency Attenuation Feedback. Sensors 2024, 24, 4980. [Google Scholar] [CrossRef]
- Jankowska, K.; Dybkowski, M. Experimental Analysis of the Current Sensor Fault Detection Mechanism Based on Neural Networks in the PMSM Drive System. Electronics 2023, 12, 1170. [Google Scholar] [CrossRef]
- Ruzimov, S.; Zhang, J.; Huang, X.; Aziz, M.S. Detection of Inter-Turn Short-Circuit Faults for Inverter-Fed Induction Motors Based on Negative-Sequence Current Analysis. Sensors 2025, 25, 4844. [Google Scholar] [CrossRef]
- Turzyński, M.; Musznicki, P. A Review of Reduction Methods of Impact of Common-Mode Voltage on Electric Drives. Energies 2021, 14, 4003. [Google Scholar] [CrossRef]
- Ivanov, S.; Oliinyk, P. MEMS-Based Wireless Vibration Transducer for Condition Monitoring. Inf. Telecommun. Sci. 2022, 13, 56–65. [Google Scholar] [CrossRef]
- Hassan, I.U.; Panduru, K.; Walsh, J. An In-Depth Study of Vibration Sensors for Condition Monitoring. Sensors 2024, 24, 740. [Google Scholar] [CrossRef] [PubMed]
- Cornel, D.; Gutiérrez Guzmán, F.; Jacobs, G.; Neumann, S. Condition monitoring of roller bearings using acoustic emission. Wind Energy Sci. 2021, 6, 367–376. [Google Scholar] [CrossRef]
- Mey, O.; Schneider, A.; Enge-Rosenblatt, O.; Mayer, D.; Schmidt, C.; Klein, S.; Herrmann, H.-G. Condition Monitoring of Drive Trains by Data Fusion of Acoustic Emission and Vibration Sensors. Processes 2021, 9, 1108. [Google Scholar] [CrossRef]
- Mohammed, A.; Djurović, S. FBG Thermal Sensing Ring Scheme for Stator Winding Condition Monitoring in PMSMs. IEEE Trans. Transp. Electrif. 2019, 5, 1370–1382. [Google Scholar] [CrossRef]
- Arjun, A.; Binoj Kumar, A.C. Optimal Solution for PMSM Rotor Magnet Demagnetization Based on Temperature Estimation for EV Application. In Proceedings of the 2021 International Conference on Communication, Control and Information Sciences (ICCISc), Idukki, India, 16–18 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- ISO 18436-7:2014; Condition Monitoring and Diagnostics of Machines—Requirements for Qualification and Assessment of Personnel—Part 7: Thermography. ISO: Geneva, Switzerland, 2014.
- Ma, S.; Xu, Y.; Pang, Y.; Zhao, X.; Li, Y.; Qin, Z.; Liu, Z.; Lu, P.; Bao, X. Optical Fiber Sensors for High-Temperature Monitoring: A Review. Sensors 2022, 22, 5722. [Google Scholar] [CrossRef] [PubMed]
- Zamudio-Ramirez, I.; Osornio-Rios, R.A.; Antonino-Daviu, J.A.; Razik, H.; Romero-Troncoso, R.d.J. Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review. IEEE Trans. Ind. Inform. 2022, 18, 2895–2908. [Google Scholar] [CrossRef]
- Diversi, R.; Lenzi, A.; Speciale, N.; Barbieri, M. An Autoregressive-Based Motor Current Signature Analysis Approach for Fault Diagnosis of Electric Motor-Driven Mechanisms. Sensors 2025, 25, 1130. [Google Scholar] [CrossRef]
- Vilhekar, T.G.; Ballal, M.S. Detection of Stator and Rotor Winding Faults by Monitoring Air-Gap Flux Spectrum of Slip-Ring Induction Motor. In Proceedings of the 2024 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Mangalore, India, 18–21 December 2024. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, H.; Orviz, M.; Lee, S.B.; Reigosa, D.; Briz, F. Detection of Trailing Edge PM Demagnetization in Surface PM Synchronous Motors. IEEE Trans. Ind. Appl. 2023, 59, 3390–3399. [Google Scholar] [CrossRef]
- Shen, D.; Gao, H.; Qin, H.; Zhai, L. Research and Analysis of Electromagnetic Interference in Motor Drive System. In Proceedings of the 2020 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 20–23 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Chen, C. Review of sensorless control techniques for PMSM drives. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 1543–1552. [Google Scholar] [CrossRef]
- Li, Y.; Hu, H.; Shi, P. A Review of Position Sensorless Compound Control for PMSM Drives. World Electr. Veh. J. 2023, 14, 34. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.; Wang, M.; Cao, C. PMSM Rotor Position Detection Based on Hybrid Optical Encoder and R-Signal Zero-Setting Scheme. Math. Probl. Eng. 2016, 2016, 2712643. [Google Scholar] [CrossRef]
- Kang, J.; Hao, B.; Su, Y.; Zhao, Y.; Yan, X.; Hao, S. Improving the Accuracy of Multipole Magnetic Encoder by Three-Phase Hall. IEEE Sens. J. 2023, 23, 13987–14001. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Zhang, Z. Optimization Design of Variable Reluctance Resolver Based on Three-phase Symmetrical Winding. World Electr. Veh. J. 2024, 15, 201. [Google Scholar] [CrossRef]
- Xu, W.; Qu, S.; Zhao, J.; Zhang, H.; Du, X. An Improved Full-Order Sliding-Mode Observer for Rotor Position and Speed Estimation of SPMSM. IEEE Access 2021, 9, 15099–15109. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, X.; Sun, L.; An, Q. A Complex Coefficient Low Pass Filter Based Sliding Mode Observer for SPMSM Sensorless Control. In Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Chengdu, China, 17–20 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- IEC 60034-8:2018; Rotating Electrical Machines—Terminal Markings and Direction of Rotation. IEC: Geneva, Switzerland, 2018.
- IEC 61800-5-2:2016; Adjustable Speed Electrical Power Drive Systems—Part 5-2: Safety Requirements—Functional. IEC: Geneva, Switzerland, 2016.
- IEC 60204-1:2016; Safety of Machinery—Electrical Equipment of Machines—Part 1: General Requirements. IEC: Geneva, Switzerland, 2016.
- IEC 61000-6-2:2005; Electromagnetic Compatibility—Part 6: Generic Standards—Immunity Standard for Industrial Environments. IEC: Geneva, Switzerland, 2005.
- IEC 61000-6-4:2007; Electromagnetic Compatibility—Part 6: Generic Standards—Emission Standard for Industrial Environments. IEC: Geneva, Switzerland, 2007.
- IEEE. IEEE Recommended Practice for Powering and Grounding Electronic Equipment (Green Book); IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Ihlenfeld, W.G.K.; Seckelmann, M. Simple Algorithm for Sampling Synchronization of ADCs. IEEE Trans. Instrum. Meas. 2009, 58, 781–785. [Google Scholar] [CrossRef]
- IEEE 1588-2019; Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. IEEE: Piscataway, NJ, USA, 2020.
- Verma, A.; Goyal, A.; Kumara, S.; Kurfess, T. Edge-Cloud Computing Performance Benchmarking for IoT Based Machinery Vibration Monitoring. Manuf. Lett. 2021, 27, 39–41. [Google Scholar] [CrossRef]
- Halenar, I.; Halenarova, L.; Tanuska, P.; Vazan, P. Machine Condition Monitoring System Based on Edge Computing Technology. Sensors 2025, 25, 180. [Google Scholar] [CrossRef] [PubMed]
- Nichols, K.M.; Roembke, R.A.; Adamczyk, P.G. Real-Time Motor Control Using a Raspberry Pi, ROS, and CANopen over EtherCAT, with Application to a Semi-Active Prosthetic Ankle. Actuators 2025, 14, 84. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Zhao, L.; Liang, R.; Wang, P. Comparative Evaluation of the Performance of ZigBee and LoRa Wireless Networks in Building Environment. Electronics 2022, 11, 3560. [Google Scholar] [CrossRef]
- Andrioaia, D.A. Predictive Maintenance System to RUL Prediction of Li-Ion Batteries and Identify the Fault Type of Brushless DC Electric Motor from UAVs. Sensors 2025, 25, 4782. [Google Scholar] [CrossRef]
- Pham, D.-M.; Tran, V.T.; Roopun, V.V.; Zhou, J.; Long, F. Cloud-Based Data Analytics Framework for Real-Time Lift Monitoring and Diagnostic System, Proceedings of the 9th International Conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN 2022), Singapore, 15–18 November 2022; Sharon, N.M.L., Kumar, A.S., Eds.; Springer: Singapore, 2022; pp. 267–272. [Google Scholar]
- Wang, X.; Lu, S.; Huang, W.; Wang, Q.; Zhang, S.; Xia, M. Efficient Data Reduction at the Edge of Industrial Internet of Things for PMSM Bearing Fault Diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 3508612. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, X.; Qu, Y.; Shao, H.; Qin, G. An Adaptive Quantization Method for Edge Computing-Based Fault Diagnosis. IEEE Sens. J. 2025, 25, 33277–33287. [Google Scholar] [CrossRef]
- IEC 62443:2018; Industrial Communication Networks—Network and System Security. IEC: Geneva, Switzerland, 2018.
- Kasprzyczak, L.; Manowska, A.; Dźwiarek, M. Cybersecurity Requirements for Industrial Machine Control Systems. Appl. Sci. 2025, 15, 1267. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, G.; Chen, Q.; Liu, Z.; Zhu, X.; Lee, C.H.T. Effective Position Error Compensation in Sensorless Control Based on Unified Model of SPMSM and IPMSM. IEEE Trans. Ind. Inf. 2023, 19, 6750–6761. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, R.; Yang, H.; Liu, G.; Shen, J. Standing-Wave Notch Filters with Improved Signal-Processing Response Considering Misalignment-Induced Harmonics in PMSM. IEEE Trans. Ind. Electron. 2025, 72, 2413–2423. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, J.; Liu, H.; Zhang, F. Double Vibration Suppression of PMSM Servo System Based on Strong Tracking of Reference Trajectory. J. Vib. Eng. Technol. 2023, 12, 3373–3383. [Google Scholar] [CrossRef]
- Gao, F.; Yin, Z.; Li, L.; Li, T.; Liu, J. Gaussian Noise Suppression in Deadbeat Predictive Current Control of Permanent Magnet Synchronous Motors Based on Augmented Fading Kalman Filter. IEEE Trans. Energy Convers. 2023, 38, 1410–1420. [Google Scholar] [CrossRef]
- Trinh, N.-T.; Zein, I.; Obeid, N.H.; Vidal-Naquet, F. Real Time Stator and Magnet Fluxes Estimation Based on Kalman Filters of PMSynRel Motor. In Proceedings of the 2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, W.; Lv, X.; Yang, H.; Gao, L. Set-Membership Estimation for Permanent Magnet Synchronous Motor via Ellipsoid Bundle-Based Kalman Filter. In Proceedings of the 2025 IEEE 14th Data Driven Control and Learning Systems (DDCLS), Wuxi, China, 9–11 May 2025; pp. 1–6. [Google Scholar] [CrossRef]
- El Sayed, W.; Aboelhassan, A.; Madi, A.; Hebala, A.; Galea, M. Comparative Analysis Between Unscented and Extended Kalman Filters for PMSG Inter-Turn Fault Detection. In Proceedings of the 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Modena, Italy, 8–9 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Zhang, X.; Chen, M.; Liu, J. An extended inverse potential observer based on adaptive Kalman filtering for PMSM full-order state estimation. Sci. Rep. 2025, 15, 85787. [Google Scholar] [CrossRef]
- Maliuk, A.S.; Ahmad, Z.; Kim, J.-M. A Technique for Bearing Fault Diagnosis Using Novel Wavelet Packet Transform-Based Signal Representation and Informative Factor LDA. Machines 2023, 11, 1080. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, Z.; Li, Y.; Xu, F. Elevator Running Fault Monitoring Based on Vibration Signal Preprocessing Using SVD and Wavelet. Math. Probl. Eng. 2021, 2021, 4547030. [Google Scholar] [CrossRef]
- Rawash, Y.Z.; Al-Naami, B.; Alfraihat, A.; Abu Owida, H. Advanced Low-Pass Filters for Signal Processing: A Comparative Study on Gaussian, Mittag-Leffler, and Savitzky-Golay Filters. Mech. Mater. Eng. Proc. 2024, 11, 1841–1850. [Google Scholar] [CrossRef]
- Wang, C.; Liu, J.; Hong, Y.; Pan, J. Design of a Fuzzy-Based Adaptive Gain Filter for PMSM Servo Systems with Maneuverability. IEEE Trans. Ind. Inform. 2023, 19, 9394–9403. [Google Scholar] [CrossRef]
- Yu, L.; Wang, D. A Hybrid Filtering Stage-Based Rotor Position Estimation Method of PMSM with Adaptive Parameter. Sensors 2021, 21, 4667. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liang, D.; Jia, S.; Yang, S. Model-Based Data Normalization for Data-Driven PMSM Fault Diagnosis. IEEE Trans. Power Electron. 2024, 39, 11596–11612. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, X.; Deng, X.; Qin, G.; Xie, J. Denoising Universal Domain Adaptation Method for PMSM Fault Diagnosis Under Category Inconsistency. IEEE Sens. J. 2025, 25, 15642–15652. [Google Scholar] [CrossRef]
- Mishra, I.; Tripathi, R.N.; Hanamoto, T. Synchronization and Sampling Time Analysis of Feedback Loop for FPGA-Based PMSM Drive System. Electronics 2020, 9, 1906. [Google Scholar] [CrossRef]
- Sawalhi, N.; Wang, W.; Becker, A. Vibration Signal Processing for Spall Size Estimation in Rolling Element Bearings Using Autoregressive Inverse Filtration Combined with Bearing Signal Synchronous Averaging. Adv. Mech. Eng. 2017, 9, 1687814017703007. [Google Scholar] [CrossRef]
- Allouche, A.; Etien, E.; Rambault, L.; Doget, T.; Cauet, S.; Sakout, A. Mechanical Fault Diagnostic in PMSM from Only One Current Measurement: A Tacholess Order Tracking Approach. Sensors 2020, 20, 5011. [Google Scholar] [CrossRef]
- Lee, J.S.; Yoon, T.M.; Lee, K.B. Bearing Fault Detection of IPMSMs Using Zoom FFT. J. Electr. Eng. Technol. 2016, 11, 1235–1241. [Google Scholar] [CrossRef]
- Yang, M.; Chai, N.; Liu, Z.; Ren, B.; Xu, D. Motor Speed Signature Analysis for Local Bearing Fault Detection with Noise Cancellation Based on Improved Drive Algorithm. IEEE Trans. Ind. Electron. 2020, 67, 4172–4182. [Google Scholar] [CrossRef]
- Asad, B.; Raja, H.A.; Vaimann, T.; Kallaste, A.; Pomarnacki, R.; Hyunh, V.K. A Current Spectrum-Based Algorithm for Fault Detection of Electrical Machines Using Low-Power Data Acquisition Devices. Electronics 2023, 12, 1746. [Google Scholar] [CrossRef]
- Henao, H.; Capolino, G.-A.; Fernandez-Cabanas, M.; Filippetti, F.; Bruzzese, C.; Strangas, E. Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques. IEEE Ind. Electron. Mag. 2014, 8, 31–42. [Google Scholar] [CrossRef]
- Hartono, D.; Halim, D.; Roberts, G.W.; Liu, Q. Vibration-Based Fault Diagnostic of a Spur Gearbox. MATEC Web Conf. 2016, 70, 02004. [Google Scholar] [CrossRef]
- Randall, R.B.; Antoni, J.; Smith, W.A. A Survey of the Application of the Cepstrum to Structural Modal Analysis. Mech. Syst. Signal Process. 2019, 118, 716–741. [Google Scholar] [CrossRef]
- Bacha, A.; El Idrissi, R.; Janati Idrissi, K.; Lmai, F. Comprehensive dataset for fault detection and diagnosis in inverter-driven permanent magnet synchronous motor systems. Data Brief 2025, 58, 111286. [Google Scholar] [CrossRef]
- Chen, L.; Wen, S.; Wang, H.; Li, J.; Zhang, Y.; Liu, X. Fault mechanism analysis and diagnosis for closed-loop drive system of industrial robot based on nonlinear spectrum. Sci. Rep. 2022, 12, 18350. [Google Scholar] [CrossRef]
- Zhang, B.; Li, H.; Kong, W.; Fu, M.; Ma, J. Early-Stage Fault Diagnosis of Motor Bearing Based on Kurtosis Weighting and Fusion of Current–Vibration Signals. Sensors 2024, 24, 3373. [Google Scholar] [CrossRef] [PubMed]
- Alameh, K.; Cité, N.; Hoblos, G.; Barakat, G. Fault Detection and Isolation Approach for Permanent Magnet Synchronous Machines. In Proceedings of the 22nd International Congress on Sound and Vibration (ICSV22), Florence, Italy, 12–16 July 2015; Volum 5; pp. 3531–3538. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, W.; Kar, N.C. Multi-Sensor Fusion-Based Permanent Magnet Demagnetization Detection in Permanent Magnet Synchronous Machines. IEEE Trans. Magn. 2018, 54, 8110106. [Google Scholar] [CrossRef]
- Akin, V.; Mete, M. Identification of Optimal Time Domain Features for Machine Learning Based Fault Classification. In Proceedings of the 2024 IEEE 17th Dallas Circuits and Systems Conference (DCAS), Richardson, TX, USA, 19–21 April 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Li, Y.; Sun, Q. Open-Circuit Fault Diagnosis of Six-Phase Permanent Magnet Synchronous Motor Drive System Based on Empirical Mode Decomposition Energy Entropy. IEEE Access 2021, 9, 91137–91147. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, Y.; Li, Z. Fault Diagnosis of Three-Phase Inverter Based on CEEMDAN and GWO-SVM. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; IEEE: New York, NY, USA, 2020; pp. 2362–2368. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Xia, Y.-K.; Wang, W.-T.; Li, X.-Y. Adaptive Parameter Selection Variational Mode Decomposition Based on Bayesian Optimization and Its Application to the Detection of ITSC in PMSM. IEEE Access 2024, 12, 38594–38614. [Google Scholar] [CrossRef]
- Fei, C.; Shen, J. PMSM Interturn Short Fault Diagnosis Based on WPT and GWO-PNN. In Proceedings of the 2023 6th International Symposium on Autonomous Systems (ISAS), Nanjing, China, 23–25 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Guo, S.; Song, J.; Zhang, S. Prediction of Transient Parameters of PM Synchronous Machines Based on Hilbert-Huang Transform. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Republic of Korea, 7–10 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1424–1429. [Google Scholar] [CrossRef]
- Moosakunju, S.; Mini, V.P.; Ushakumari, S.; Mayadevi, N.; Harikumar, R. A Hybrid Fault Detection and Diagnosis Algorithm for Five-Phase PMSM Drive. Arab. J. Sci. Eng. 2023, 48, 6507–6519, Correction in Arab. J. Sci. Eng. 2025, 48, 6507–6519. https://doi.org/10.1007/s13369-025-10275-x. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Li, Y.; Xu, J. Hybrid Multimodal Feature Fusion with Multi-Sensor for Bearing Fault Diagnosis. Sensors 2024, 24, 1792. [Google Scholar] [CrossRef] [PubMed]
- Skowron, M.; Krzysztofiak, M. Permanent Magnet Synchronous Motor Stator and Rotor Fault Detection Using Transfer Learning and Field-Circuit Model. IEEE Access 2025, 13, 74555–74566. [Google Scholar] [CrossRef]
- Mujaahid, F.; Hsieh, M.F.; Huda, T. Audio-Based Machine Learning for Electric Motor Fault and Performance Analysis. In Proceedings of the 2025 IEEE Industry Applications Society Annual Meeting (IAS), Taipei, Taiwan, 15–20 June 2025; pp. 1–7. [Google Scholar] [CrossRef]
- Rokocakau, S.; Tresca, G.; Shamsazad, F.; Zanchetta, P.; Cirrincione, G.; Cirrincione, M. An Optimized Rotational Position Encoding for 1-D Convolutional Transformer Hybrid Neural Network Fault Diagnosis on Power Converters. In Proceedings of the 2025 IEEE Industry Applications Society Annual Meeting (IAS), Taipei, Taiwan, 15–20 June 2025; pp. 1–8. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Zeng, D.; Hu, Y.; Yang, J. Permanent Magnet Synchronous Motor Demagnetization Fault Diagnosis and Localization. IEEE Sens. J. 2025, 25, 19993–20014. [Google Scholar] [CrossRef]
- Attaianese, C.; D’Arpino, M.; Di Monaco, M.; Di Noia, L.P. Diagnostics and Compensation of Phase Current Sensor Faults in PMSM: A Review. In Proceedings of the 2025 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Valletta, Malta, 9–10 April 2025; pp. 1–7. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, H. Fault Diagnosis of Multiswitches and Current Sensors in Dual-Three-Phase PMSM Drives Using Current Mirror Techniques. IEEE Sens. J. 2025, 25, 25227–25240. [Google Scholar] [CrossRef]
- Jankowska, K.; Dybkowski, M. Current Sensor Fault Classification in PMSM Drive System Using Convolutional Neural Network. In Proceedings of the IEEE EUROCON 2025—21st International Conference on Smart Technologies, Gdynia, Poland, 4–6 June 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, B.; Shi, T.; Zhang, G.; Wang, Z.; Yan, Y.; Xia, C. A Simultaneous Diagnosis Method for Current Sensor and Power Switch Faults in Three-Phase VSI-Based PMSM Drives. IEEE Trans. Instrum. Meas. 2025, 74, 9529416. [Google Scholar] [CrossRef]
- Zhang, W.; Lian, C.; Wang, H.; Xu, G. Research on Current Sensor Fault Diagnosis Strategy for PMSM Drive Systems. In Proceedings of the 2025 11th International Symposium on Sensors, Mechatronics and Automation System (ISSMAS), Zhuhai, China, 13–15 June 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, L.; Zhang, X.; Huang, S.; Du, X.; Chen, X. Diagnosis and Locating Method for PMSM Interturn Fault Using Less Search Coils. IEEE Trans. Instrum. Meas. 2025, 74, 3549812. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, W.; Pan, T.; Xu, D. Inter-Turn Short-Circuit Fault Diagnosis and Severity Estimation for Five-Phase PMSM. CES Trans. Electr. Mach. Syst. 2025, 9, 224–233. [Google Scholar] [CrossRef]
- Lv, W.; Xu, S.; Xie, H.; Chen, L.; Wu, S.; Zhu, T. Detection and Discrimination of Interturn Short and High-Resistance Connection Faults in PMSM Based on Multi-Channel CNN. In Proceedings of the 2025 IEEE 8th International Electrical and Energy Conference (CIEEC), Changsha, China, 16–18 May 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Salhi, O.; Ben Mabrouk, W.; Amgha, B.; Ben Njima, C. Advanced Detection of Inter-Turn Short-Circuit Faults in PMSMs Using FFT and AI Methods. In Proceedings of the 2025 International Conference on Control, Automation and Diagnosis (ICCAD), Barcelona, Spain, 1–3 July 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Manala, S.; Seshadrinath, J. Interturn Fault Diagnosis in Sensorless PMSM Drive Based on Negative-Sequence Reactive Power Distortions. IEEE Can. J. Electr. Comput. Eng. 2025, 48, 216–225. [Google Scholar] [CrossRef]
- Bilal, H.; Nguyen, N.K.; Semail, E. Neural Networks for Detection and Classification of Open Circuit Faults in Electrical Multiphase Drives. In Proceedings of the 2025 17th International Conference on Computer and Automation Engineering (ICCAE), Perth, Australia, 20–22 March 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Tang, H.; Dong, Z.; Li, W.; Han, G.; Cheng, H.; Li, W. Open-Circuit Fault Diagnosis Method for the Dual Three-Phase Permanent Magnet Synchronous Motor Drive in the Fault-Tolerant Mode. IEEE Trans. Instrum. Meas. 2025, 74, 3549615. [Google Scholar] [CrossRef]
- Gu, M.; Wang, Z.; Li, Z.; Shen, Y. Diagnosis-Free Self-Tolerant Scheme for Four-Leg Inverter Fed PMSM Drives with Open-Circuit Faults. IEEE Trans. Power Electron. 2025, 40, 16080–16084. [Google Scholar] [CrossRef]
- Xu, X.; Hang, J.; Cao, K.; Ding, S.; Wang, W. Unified Open Phase Fault Diagnosis of Five-Phase PMSM System in Normal Operation and Fault-Tolerant Operation Modes. IEEE Trans. Transp. Electrif. 2025, 11, 12063–12075. [Google Scholar] [CrossRef]
- Zhao, K.-H.; Chen, T.-F.; Zhang, C.-F.; He, J.; Huang, G. Online Fault Detection of Permanent Magnet Demagnetization for IPMSMs by Nonsingular Fast Terminal-Sliding-Mode Observer. Sensors 2014, 14, 23119–23136. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Meng, D.; Zhao, X.; Zhang, K. Fault Diagnosis of PMSMs Based on Image Features of Multi-Sensor Fusion. Sensors 2023, 23, 8592. [Google Scholar] [CrossRef]
- Feng, S.; Niu, K.; Liang, Y.; Ju, Y. Research on Elevator Intelligent Monitoring and Grading Warning System. In Proceedings of the 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), Fuzhou, China, 24–26 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Liao, P.; Zhou, J.; Zhu, P. Virtual Instrument Technology for Elevator Safety Monitoring and Alarm System. In Proceedings of the 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 28–30 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Wu, H.; Tang, Q.; Zhang, W. Fault diagnosis of elevator systems based on multidomain feature extraction and SHAP feature selection. Build. Serv. Eng. Res. Technol. 2024, 46, 3. [Google Scholar] [CrossRef]
- Chae, H.; Lee, J.E.; Oh, K.-Y. Fault Diagnosis of Elevator Doors Using Control State Information. IEEE Access 2022, 10, 7207–7222. [Google Scholar] [CrossRef]
- Yan, X.; Yan, W.-J.; Xu, Y.; Yuen, K.-V. Machinery multi-sensor fault diagnosis based on adaptive multivariate feature mode decomposition and multi-attention fusion residual convolutional neural network. Mech. Syst. Signal Process. 2023, 202, 110664. [Google Scholar] [CrossRef]
- Makrouf, I.; Zegrari, M.; Dahi, K.; Ouachtouk, I. A novel framework for multi-sensor data fusion in bearing fault diagnosis using continuous wavelet transform and transfer learning. e-Prime Adv. Electr. Eng. Electron. Energy 2025, 13, 101025. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, S.; Chen, Z.; Li, W. Enhanced Generative Adversarial Network for Extremely Imbalanced Fault Diagnosis of Rotating Machine. Measurement 2021, 180, 109467. [Google Scholar] [CrossRef]
- Peng, T.; Ye, C.; Yang, C.; Chen, Z.; Liang, K.; Fan, X. A novel fault diagnosis method for early faults of PMSMs under multiple operating conditions. ISA Trans. 2022, 130, 463–476. [Google Scholar] [CrossRef]
- Riba Ruiz, J.-R.; Rosero, J.A.; Espinosa, A.G.; Romeral, L. Detection of Demagnetization Faults in Permanent-Magnet Synchronous Motors Under Nonstationary Conditions. IEEE Trans. Magn. 2009, 45, 2961–2969. [Google Scholar] [CrossRef]
- Pusca, R.; Lefevre, E.; Mercier, D.; Romary, R.; Irhoumah, M. Diagnosis of Electrical Machines by External Field Measurement. In Diagnosis and Prognosis of Engineering Systems; Soualhi, A., Razik, H., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 1–36. [Google Scholar] [CrossRef]
- Hsieh, M.-F.; Lin, L.-H.; Huynh, T.-A.; Dorrell, D. Development of Machine Learning-Based Design Platform for Permanent Magnet Synchronous Motor Toward Simulation Free. IEEE Trans. Magn. 2023, 59, 8205705. [Google Scholar] [CrossRef]
- Velarde-Gomez, S.; Giraldo, E. Nonlinear Control of a Permanent Magnet Synchronous Motor Based on State Space Neural Network Model Identification and State Estimation by Using a Robust Unscented Kalman Filter. Eng. 2025, 6, 30. [Google Scholar] [CrossRef]
- Wang, F.; Sun, Y.; Liu, Z.; Kong, W. Multi-Parameter Identification of PMSM Servo Systems Under Nonstationary Conditions Based on Dynamic Average Model. In Proceedings of the 2025 IEEE 8th International Electrical and Energy Conference (CIEEC), Changsha, China, 16–18 May 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Hsiao, C.-Y.; Htet, S.M.; Tran, A.D.; Nguyen, H.N.K.; Doan, K.M. Comparative Study of Fault Detection Systems Using Multi-Sensor Data for Inverter-Driven Permanent Magnet Synchronous Motor. In Proceedings of the 2025 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 28–30 May 2025; IEEE: Piscataway, NJ, USA, 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, G.; Guan, P.; Huang, F.; Long, Z.; He, J.; Sun, M. Robust Speed-Stator Flux Tolerant Predictive Control for PMSM Drives with Parameters Disturbance Faults Diagnosis. IEEE Sens. J. 2025, 25, 34840–34849. [Google Scholar] [CrossRef]
- Zhang, W.; Lian, C.; Zhang, X.; Xu, G. Research on Current Optimal Control of PMSM Drive System. In Proceedings of the 2025 4th International Symposium on New Energy Technology Innovation and Low Carbon Development (NET-LC), Hangzhou, China, 9–11 May 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Zhang, Z.; Tang, M.; Vakil, G.; Yang, T. Review of Fault-Tolerant Permanent Magnet Synchronous Machine Design and Control for Future Aircraft Application. Chin. J. Electr. Eng. 2025, 11, 165–187. [Google Scholar] [CrossRef]
- Yu, H.; Li, S.; Xu, Y.; Zhang, Z.; Mu, H.; Han, W. Time-Frequency Domain Lightweight Dual-Branch MSCFormer for PMSM ITSC Fault Diagnosis. IEEE Trans. Ind. Electron. 2025, 1–12, early access. [Google Scholar] [CrossRef]
- Baharvand, A.H.; Beigi Fard, S.H.; Poursaeed, A.H.; Rezaeealam, B.; Doostizadeh, M. Thermal Behavior-Informed Inter-Turn Fault Detection of PMSMs Using Explainable AI in an Attention-Based Deep Learning Framework. In Proceedings of the 2024 4th International Conference on Electrical Machines and Drives (ICEMD), Tehran, Iran, 24–25 December 2024; IEEE: Piscataway, NJ, USA, 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Khalesidoost, S.; Faiz, J.; Mazaheri-Tehrani, E. An overview of thermal modelling techniques for permanent magnet machines. IET Sci. Meas. Technol. 2022, 16, e12099. [Google Scholar] [CrossRef]
- Liu, X.; Liu, S.; Fu, Z.; Ge, L. A Critical Review of Fault-Tolerant Control for Multiphase PMSM Drive Systems. IEEE Trans. Transp. Electrif. 2025, 1, early access. [Google Scholar] [CrossRef]
- Sung, Y.-C.; Yi, C.-P.; Lin, Y.-J.; Ho, P.-R.; Yang, S.-C. Online Bearing Fault Diagnosis for Permanent Magnet Motors Based on Current Signature Analysis. In Proceedings of the 2025 IEEE Industry Applications Society Annual Meeting (IAS), Taipei, Taiwan, 15–20 June 2025; pp. 1–7. [Google Scholar] [CrossRef]
- Laursen, M.; Huynh, V.-V.; Ha, D.-H.; Mahmoud, M.S.; Huynh, V.K. Robust Fault Classification in Permanent Magnet Syn-chronous Machines Under Dynamic and Noisy Conditions. IEEE Access 2025, 13, 115217–115225. [Google Scholar] [CrossRef]
- Jouin, M.; Gouriveau, R.; Hissel, D.; Péra, M.-C.; Zerhouni, N. Particle filter-based prognostics: Review, discussion and perspectives. Mech. Syst. Signal Process. 2016, 72–73, 2–31. [Google Scholar] [CrossRef]
- Qi, J.; Chen, Z.; Kong, Y.; Qin, W.; Qin, Y. Attention-guided graph isomorphism learning: A multi-task framework for fault diagnosis and remaining useful life prediction. Reliab. Eng. Syst. Saf. 2025, 253, 111209. [Google Scholar] [CrossRef]
- Gherghina, I.-S.; Bizon, N.; Iana, G.-V.; Vasilică, B.-V. Recent Advances in Fault Detection and Analysis of Synchronous Motors: A Review. Machines 2025, 13, 815. [Google Scholar] [CrossRef]
- Ozdemir, S.; Neamah, O.; Bayir, R. Enhanced Safety and Efficiency in Traction Elevators: A Real-Time Monitoring System with Anomaly Detection. Artif. Intell. Auton. Syst. 2025, 2, 0001. [Google Scholar] [CrossRef]
- Cui, T.; Wu, L.; Wang, L.; Luo, Z.; Dong, Y.; Wang, Q. On-Demand Maintenance Method Using Fault Prediction to Reduce Elevator Entrapment. Appl. Sci. 2025, 15, 8644. [Google Scholar] [CrossRef]
- Dong, X.S.; Katz, R.; Wang, X.W. Deaths and Injuries Involving Elevators or Escalators in Construction and the General Population. CPWR—The Center for Construction Research and Training; NIOSH/CDC 2018. Available online: https://stacks.cdc.gov/view/cdc/158534 (accessed on 15 September 2025).
- EN 81-20: Safety Rules for the Construction and Installation of Lifts—Part 20: Passenger and Goods Passenger Lifts. European Committee for Standardization (CEN). Available online: https://standards.cen.eu (accessed on 15 September 2025).
- EN 81-50: Safety Rules for the Construction and Installation of Lifts—Part 50: Design Rules, Calculations and Tests of Lift Components. European Committee for Standardization (CEN). Available online: https://standards.cen.eu (accessed on 15 September 2025).
- IEC 61508; Functional Safety of Electrical, Electronic, and Programmable Electronic Safety-Related Systems. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2010.




| Fault Category | Fault Type | Root Causes | Common Symptoms | Impact on Elevator Operation | Characteristic Diagnostic Method and Techniques |
|---|---|---|---|---|---|
| Electrical | Stator winding short circuit | Insulation degradation, thermal overload | Current imbalance, overheating | Sudden stop, increased energy loss | CSA, Thermal Imaging, Insulation Resistance Testing |
| Electrical | Open phase | Connector failure, wire breakage | Voltage drop, torque ripple | Reduced torque, Vibrations | Voltage and Current Monitoring, FSA, FFT |
| Electrical | Inverter fault | IGBT failure, gate driver malfunction | Irregular switching, noise | Motor stalling, control loss | PWM Signal Analysis, Oscilloscope Waveform Inspection, Harmonic Analysis |
| Mechanical | Bearing wear | Poor lubrication, contamination, fatigue | Vibration, noise, temperature rise | Vibration, potential motor seizure | Vibration Analysis (FFT, Time Waveform), Acoustic Emission Sensors, Thermography |
| Mechanical | Shaft misalignment | Improper installation, wear | Periodic vibration, load oscillations | Premature wear, loss of efficiency | Vibration Analysis, Shaft Position and Angular Displacement Sensors |
| Magnetic | Rotor demagnetization | Thermal stress, short-circuit Currents | Loss of torque, unsteady Operation | Reduced performance, control loss | CSA, Harmonic Analysis of Stator Currents, Magnetic Flux Sensors |
| Magnetic | Eccentricity (dynamic/static) | Manufacturing defects, bearing faults | Sideband frequencies in spectra | Vibration, rotor–stator contact | Spectral Analysis of Current and Voltage (FFT, Wavelet Transform), Observer-Based Models (EKF, SMO) |
| Thermal | Overheating | Overloading, cooling failure | Temperature rise, insulation degradation | Accelerated aging, risk of sudden motor shutdown | Infrared Thermography, Embedded Temperature Sensors, Thermal Cameras |
| Sensor/ Control | Encoder failure | Connector looseness, magnetic interference | Speed mismatch, erratic motion | Speed deviation, unsafe operation | Encoder Signal Monitoring, Redundant Sensor Cross-Checking, Signal Quality Analysis |
| Sensor/ Control | Signal noise/ interruption | EMC interference, cable degradation | Unstable speed or torque Readings | Control instability, fault triggering | DSP Filtering, Shielded Cable Inspection, Noise Analysis and Mitigation Techniques |
| Operating Regime | Typical Faults | Signal Signatures | Sensors/Input Features | Recommended ML/DL Techniques |
|---|---|---|---|---|
| Frequent start–stop cycles | Torque ripple, partial demagnetization | Torque oscillations, phase current distortion | Current, magnetic flux | CNN, LSTM, 1D-CNN+attention |
| Low-speed operation | Eccentricity, shaft misalignment | Air-gap flux harmonics, radial vibration peaks | Vibration, acoustic | SVM, RF, Decision Trees |
| Regenerative braking | Thermal stress, insulation degradation | Temperature rise, negative torque spikes | Thermal sensors, current | RNN, GRU, hybrid CNN-LSTM |
| High-load peak operation | Bearing defects, stator inter-turn faults | High-frequency AE, current envelope modulation | Acoustic emission, current | GAN, Autoencoders, Spectral clustering |
| Long idle periods | Moisture ingress, corrosion | Drift in impedance, insulation degradation patterns | Impedance, partial discharge | Bayesian networks, Anomaly detection (AE-based) |
| Filter Type | Application Area | Strengths | Limitations |
|---|---|---|---|
| Bandpass | Bearing faults, rotor Imbalance | Isolates fault-specific frequency bands | Requires precise tuning for motor speed and fault harmonics |
| Notch | 50/60 Hz suppression, inverter noise | Removes dominant interference tones | May also suppress nearby fault-related content |
| Butterworth | Current signal smoothing, envelope analysis | Flat response, stable behavior in passband | Slower roll-off outside cutoff frequencies |
| Gaussian | Vibration and thermal signals | Smooths noise while preserving waveform shape | Not ideal for sharp transients or impulsive features |
| Kalman | Speed, temperature, flux trend estimation | Optimal estimation under Gaussian noise; real-time capable | Requires accurate system model, assumes noise statistics |
| Extended Kalman (EKF) | Rotor position, flux in sensorless PMSM | Handles nonlinear system dynamics | Computationally demanding; complex tuning |
| Wavelet | Transient and modulated signals | Excellent time–frequency localization; multiscale analysis | Requires selection of appropriate mother wavelet |
| Adaptive (LMS/RLS) | Inverter switching noise, variable loads | Adapts to dynamic noise environments | High computational demand, risk of misadaptation |
| Hybrid Filtering | Mixed or complex signal environments | Combines advantages of multiple methods | Increased design and parameter complexity |
| Method | Handles Nonstationarity | Time Resolution | Frequency Resolution | Computational Cost | Suitable for Real-Time | Best Use Case in Elevators |
|---|---|---|---|---|---|---|
| FFT | No | None | High | Low | Yes | Steady state harmonics |
| STFT | Yes | Fixed | Fixed | Medium | Yes | Transient fault Tracking |
| DWT/CWT | Yes | Adaptive | Adaptive | Medium–High | Sometimes | Impulsive event detection |
| Order Tracking | Yes | N/A | Very High (rotational) | Medium–High | Sometimes | Speed-dependent fault isolation |
| Cepstrum | Yes | Low | N/A | Medium | Sometimes | Modulation analysis |
| Time-Domain Features | Yes | High | Low | Very Low | Yes | Fast cycle monitoring |
| EMD | Yes | High | Medium | Medium | Limited | General fault mode isolation |
| Ensemble EMD | Yes | High | Medium | High | No | Robust IMF separation |
| VMD | Yes | High | High | High | Sometimes | Noise-robust decomposition |
| WPT | Yes | High | High | High | Sometimes | Subband energy tracking |
| HHT | Yes | High | Medium | High | Limited | Instantaneous frequency mapping |
| Combined Multi-Domain | Yes | Composite | Composite | High | Sometimes | Comprehensive fault characterization |
| Method | Learning Type | Elevator PMSM Application | Advantages | Limitations |
|---|---|---|---|---|
| SVM | Supervised | Rotor bar faults, demagnetization, inter-turn faults | High accuracy, works with small, labeled datasets | Feature sensitive scaling, low interpretability |
| RF | Supervised | Bearing faults, mixed faults, demagnetization | Noise robust, handles mixed features, variable conditions | Less interpretable, memory demanding |
| kNN | Supervised | Inter-turn faults, bearing classification | Simple implementation, works with small data | Slow on large sets, noise sensitive |
| LDA/QDA | Supervised | Embedded fault diagnosis, low-complexity systems | Fast, interpretable, low computational cost | Limited to linear/ quadratic data |
| GMM | Unsupervised | Anomaly detection, fault clustering | Probabilistic clustering, handles unlabeled data | Assumes Gaussian distribution, less effective for nonlinearity |
| Autoencoder (AE) | Unsupervised Hybrid | Early fault detection | Learns nonlinear features, Unsupervised | Requires tuning, risk of underfitting |
| VAE | Unsupervised Hybrid | Anomaly detection under variable load | Models’ data distribution, robust to noise | Complex training, latent sensitivity |
| GANs | Unsupervised | Novel fault detection, anomaly detection | Generates realistic signals, detects rare faults | Training instability, high computational cost |
| Deep SVDD | Unsupervised | Rare anomaly detection | Effective hypersphere mapping | Sensitive to hyperparameters |
| PU Learning | Semi-supervised Hybrid | Rare fault detection, partial labeling | Uses unlabeled datasets, improves detection | Risk of misclassification, needs careful initialization |
| CNN (1D, 2D) | Supervised | Automatic feature extraction current/vibration signals | High accuracy, no manual features | Requires large labeled datasets, high computational cost |
| RNN/LSTM/GRU | Supervised | Time-series monitoring, load-variation | Captures temporal dependencies, suitable for variable-speed drives | Long training time, gradient issues |
| Attention/Transformers | Supervised | Transient events detection (start–stop, acceleration) | Focuses on key signals, improves sensitivity | Complex architecture, High computational cost |
| Contrastive Learning | Semi-supervised Hybrid | Latent space separation, healthy vs. fault signals | Improves representation learning, enhances anomaly detection | Requires careful negative/positive pair selection |
| Few-Shot Learning | Semi-supervised Hybrid | Rare fault recognition, minimal labeled data | Effective for rare events, small data requirement | Sensitive to similarity metric, needs representative support set |
| GNNs | Hybrid | Multi-sensor interaction | Captures spatial relations | Complex, heavy computation |
| RL | Unsupervised Hybrid | Adaptive thresholding, maintenance policy | Learns dynamic optimization policies | Requires careful reward design, long training times |
| XGBoost/AdaBoost | Supervised Ensemble | Fault classification with tabular features | High performance, robust | Risk of overfitting, less interpretable |
| Encoder- Decoder | Unsupervised Hybrid | Reconstruction, temporal feature extraction | Suitable for multivariate data | Requires careful design, sensitive to input noise |
| Method Technique Category | Signal Input Type | Dataset Type | Operating Conditions | Reported Metrics | Sampling Rate Window | Edge/Real Time Feasibility | Main Limitation |
|---|---|---|---|---|---|---|---|
| DL-based classification (CNN, hybrid DL) | Current, vibration, thermal | Laboratory (controlled) | Variable load and speed | Accuracy 95–98%, F1 ≈ 0.95 | 10–20 kHz/512–1024 Samples | Requires GPU; often offline inference | Needs large labeled dataset; limited interpretability |
| Flux-based demagnetization detection | Magnetic flux, back-EMF | Lab test bench | Nonstationary transients | Accuracy ≈ 90–93% | 1–2 kHz/ 256 samples | Lightweight, real-time capable | Sensitive to noise; targets only specific faults |
| Model-based parameter identification (dynamic models) | Current, control loop signals | Industrial servo rigs | Transient and variable conditions | RMSE 2–4%, R2 0.90–0.94 | 20 kHz/128-sample window | Real-time feasible on embedded MCUs | Complex tuning; not a direct classifier |
| Noise-robust ML classifiers | Current with noise augmentation | Laboratory (dynamic) | Dynamic with injected noise | Accuracy ≈ 94–96% | 5–10 kHz/ 256–512 samples | Moderate compute (edge deployable) | Needs realistic noise modeling |
| Hybrid signal-based statistical feature methods | Acoustic, vibration, current | Lab and field (mixed) | Variable duty cycles and loads | Accuracy 88–93%, F1 ≈ 0.90 | 2–5 kHz/ 512 samples | Low compute (suitable for edge MCUs) | Requires manual feature engineering |
| Graph-based remaining useful life (RUL) prediction | Multisensor graph features | Public Benchmark + simulated | Progressive degradation cycles | MAE ≈ 3–5%, RUL accuracy 85–90% | 10 kHz/ Variable windows | High compute, suitable for server-side training | Needs large datasets, complex graph construction |
| Particle filter-based prognostics | Vibration, current degradation indicators | Simulated + lab | Nonlinear and non-Gaussian degradation | RMSE ≈ 5–7% (remaining life) | 5–10 kHz/ sliding window | Moderate (depends on particle count) | Computational cost; requires state space modeling |
| Comprehensive meta-analysis of methods (review synthesis) | Mixed signals (current, flux, acoustic) | Mixed (lab + field) | Stationary and dynamic operation | Accuracy range 82–99% (meta-summary) | 1–50 kHz (reported range) | Mixed feasibility (method-dependent) | Provides generalized results, not directly implementable |
| Fault Type | Key Indicators | Alarm (Warn/Crit) | Auto Action | Maintenance Task | Standards Tests | Sampling Latency | Edge Feasible * |
|---|---|---|---|---|---|---|---|
| Bearing defect | HF vib, sidebands, AE↑, anomaly score | 0.7–0.9/>0.9 | Slow down reduce load | Vib and envelope analysis, grease, alignment | IEC 60034 vib, EN 81-20 insp. | 2–5 kHz/min | ✓ |
| Stator short | Curr. imbalance, neg-seq, harm.↑ | Harm.↑ > X dB/abrupt ** | Safe mode inhibit start | IR, PD, winding check | IEC 60034, EN 81-50 elec. | 10–20 kHz/s | △ |
| Rotor demagnetization | Torque drop, DC flux offset, high I | 5–15%/>15% | Degraded lockout | Magnetization, rotor polarity, replacement. | IEC 60034, EN 81-50 func. | 1–5 kHz/s–min | △ |
| Encoder fault | Miss pulses, jitter, pos. mismatch | >N lost/>ms latency | Safe stop | Replace encoder, wiring | IEC 61800-5-2; EN 81-20 level. | real-time/ms | ✗ |
| Thermal overload | Temp rise rate, thermal score↑ | 80%/100% | Throttle, reduce load | Cooling, clean fan, insulation | IEC 60034, EN 81-20 thermal | 1 Hz/min | ✓ |
| Inverter fault | DC-bus instab., sw. irregular, harm. | Trip limit | Trip, isolate drive | IGBT module checks | IEC 61800 fam., EN 81-50 | 10–20 kHz/ms | △ |
| Guide wear | LF vib, acoustic, comfort↓ | RMS↑/out of spec | Log & schedule | Guide roller inspection, lubrication, leveling test | EN 81-20 ride/leveling | 1–5 kHz/h | ✓ |
| Brake anomaly | Brake torque var., temp↑, ctrl instab. | <limit/interlock | Hold & block restart | Brake pad, piston insp., brake test | EN 81-20 brake; EN 81-50 | 1 Hz/ms–s | △ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachou, V.I.; Karakatsanis, T.S.; Efstathiou, D.E. Recent Advances of Artificial Intelligence Methods in PMSM Condition Monitoring and Fault Diagnosis in Elevator Systems. Appl. Syst. Innov. 2025, 8, 154. https://doi.org/10.3390/asi8050154
Vlachou VI, Karakatsanis TS, Efstathiou DE. Recent Advances of Artificial Intelligence Methods in PMSM Condition Monitoring and Fault Diagnosis in Elevator Systems. Applied System Innovation. 2025; 8(5):154. https://doi.org/10.3390/asi8050154
Chicago/Turabian StyleVlachou, Vasileios I., Theoklitos S. Karakatsanis, and Dimitrios E. Efstathiou. 2025. "Recent Advances of Artificial Intelligence Methods in PMSM Condition Monitoring and Fault Diagnosis in Elevator Systems" Applied System Innovation 8, no. 5: 154. https://doi.org/10.3390/asi8050154
APA StyleVlachou, V. I., Karakatsanis, T. S., & Efstathiou, D. E. (2025). Recent Advances of Artificial Intelligence Methods in PMSM Condition Monitoring and Fault Diagnosis in Elevator Systems. Applied System Innovation, 8(5), 154. https://doi.org/10.3390/asi8050154

