On Smartphone Power Consumption in Acoustic Environment Monitoring Applications
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Power Consumption in Background Audio Recording with and without Digital Signal Processing
3.2. Impact of Audio Sampling Rate
3.3. Power Consumption in Wakelock Mode vs. Audio Recording Mode
3.4. Power Consumption vs. Release Year and the OS Version
4. Power Optimization Techniques
5. Limitations of the Study
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Roberts, B.; Kardous, C.; Neitzel, R. Improving the accuracy of smart devices to measure noise exposure. J. Occup. Environ. Hyg. 2016, 13, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Kardous, C.A.; Shaw, P.B. Evaluation of smartphone sound measurement applications. J. Acoust. Soc. Am. 2014, 135, EL186. [Google Scholar] [CrossRef] [PubMed]
- Zamora, W.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Accurate Ambient Noise Assessment Using Smartphones. Sensors 2017, 17, 917. [Google Scholar] [CrossRef] [PubMed]
- Ibekwe, T.S.; Folorunsho, D.O.; Dahilo, E.A.; Gbujie, I.O.; Nwegbu, M.M.; Nwaorgu, O.G. Evaluation of mobile smartphones app as a screening tool for environmental noise monitoring. J. Occup. Environ. Hyg. 2016, 13, D31–D36. [Google Scholar] [CrossRef] [PubMed]
- Aumond, P.; Lavandier, C.; Ribeiro, C.; Boix, E.G.; Kambona, K.; D’Hondt, E.; Delaitre, P. A study of the accuracy of mobile technology for measuring urban noise pollution in large scale participatory sensing campaigns. Appl. Acoust. 2017, 117, 219–226. [Google Scholar] [CrossRef]
- Ong, A.A.; Gillespie, M.B. Overview of smartphone applications for sleep analysis. World J. Otorhinolaryngol.-Head Neck Surg. 2016, 2, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.; Reyes, B.A.; Chon, K.H. Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset. IEEE J. Biomed. Health Inform. 2016, 20, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Al-Mardini, M.; Aloul, F.; Sagahyroon, A.; Al-Husseini, L. Classifying obstructive sleep apnea using smartphones. J. Biomed. Inform. 2014, 52, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Bisio, I.; Delfino, A.; Luzzati, G.; Lavagetto, F.; Marchese, M.; Fra, C.; Valla, M. Opportunistic estimation of television audience through smartphones. In Proceedings of the 2012 International Symposium on Performance Evaluation of Computer & Telecommunication Systems (SPECTS), Genoa, Italy, 8–11 July 2012; pp. 1–5. [Google Scholar]
- Ibrahim, M.; Gruteser, M.; Harras, K.A.; Youssef, M. Over-The-Air TV Detection Using Mobile Devices. In Proceedings of the 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC, Canada, 31 July–3 August 2017; pp. 1–9. [Google Scholar]
- Liu, K.; Liu, X.; Li, X. Guoguo: Enabling Fine-Grained Smartphone Localization via Acoustic Anchors. IEEE Trans. Mobile Comput. 2016, 15, 1144–1156. [Google Scholar] [CrossRef]
- Aguilera, T.; Paredes, J.A.; Álvarez, F.J.; Suárez, J.I.; Hernandez, A. Acoustic local positioning system using an iOS device. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–8. [Google Scholar]
- Greenemeier, L. People Love Their Smartphones but Hate the Batteries [Survey Results]. Scientific American, 28 November 2014. Available online: https://www.scientificamerican.com/article/people-love-their-smartphones-but-hate-the-batteries-survey-results/ (accessed on 7 March 2018).
- Chen, X.; Nixon, K.W.; Chen, Y. Practical power consumption analysis with current smartphones. In Proceedings of the 29th IEEE International System-on-Chip Conference (SOCC), Seattle, WA, USA, 6–9 September 2016; pp. 333–337. [Google Scholar]
- Bai, G.; Mou, H.; Hou, Y.; Lyu, Y.; Yang, W. Android Power Management and Analyses of Power Consumption in an Android Smartphone. In Proceedings of the IEEE 10th International Conference on High Performance Computing and Communications & IEEE International Conference on Embedded and Ubiquitous Computing, Zhangjiajie, China, 13–15 November 2013; pp. 2347–2353. [Google Scholar]
- Datta, S.K.; Bonnet, C.; Nikaein, N. Android power management: Current and future trends. In Proceedings of the First IEEE Workshop on Enabling Technologies for Smartphone and Internet of Things (ETSIoT), Seoul, Korea, 18 June 2012; pp. 48–53. [Google Scholar]
- Zhang, L.; Tiwana, B.; Qian, Z.; Wang, Z.; Dick, R.P.; Mao, Z.M.; Yang, L. Accurate online power estimation and automatic battery behavior based power model generation for smartphones. In Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Newport Beach, CA, USA, 1–3 October 2010; ACM: New York, NY, USA, 2010; pp. 105–114. [Google Scholar]
- Chen, X.; Chen, Y.; Ma, Z.; Fernandes, F.C. How is energy consumed in smartphone display applications? In Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, Jekyll Island, Georgia, 26–27 February 2013; ACM: New York, NY, USA, 2013; p. 3. [Google Scholar]
- Lee, S.; Lee, J.; Lee, K. VehicleSense: A reliable sound-based transportation mode recognition system for smartphones. In Proceedings of the IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macao, China, 12–15 June 2017; pp. 1–9. [Google Scholar]
- Rigol DP832A Digital Programmable Linear DC Power Supply Datasheet and Specifications. Available online: https://www.rigolna.com/products/dc-power-loads/dp800/ (accessed on 17 December 2017).
- Android Developers Portal: android.media.AudioRecord Class Documentation. Available online: https://developer.android.com/reference/android/media/AudioRecord.html (accessed on 17 December 2017).
- Android Developers Portal: Android Native Development Kit (NDK) Documentation. Available online: https://developer.android.com/ndk/index.html (accessed on 17 December 2017).
- Lu, L.; Zhang, H.J.; Jiang, H. Content analysis for audio classification and segmentation. IEEE Trans. Speech Audio Process. 2002, 10, 504–516. [Google Scholar] [CrossRef]
- Haitsma, J.; Kalker, T. A Highly Robust Audio Fingerprinting System with an Efficient Search Strategy. J. New Music Res. 2003, 32, 211–221. [Google Scholar] [CrossRef]
- TMS320C6748 Fixed- and Floating-Point DSP Datasheet. Available online: http://www.ti.com/product/TMS320C6748 (accessed on 17 January 2018).
- Xu, B.; Oudalov, A.; Ulbig, A.; Andersson, G.; Kirschen, D. Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment. IEEE Trans. Smart Grid 2018, 9, 1131–1140. [Google Scholar] [CrossRef]
- Android Developers Portal: PowerManager Class Documentation. Available online: https://developer.android.com/reference/android/os/PowerManager.html (accessed on 17 December 2017).
- Pathak, A.; Jindal, A.; Hu, Y.C.; Midkiff, S.P. What is keeping my phone awake? characterizing and detecting no-sleep energy bugs in smartphone apps. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys’12), Windermere, UK, 25–29 June 2012; ACM: New York, NY, USA, 2012; pp. 267–280. [Google Scholar]
Smartphone Model | OS | SoC/Processor | CPU Core | Battery |
---|---|---|---|---|
Lenovo A1000 | 5.0 | SC7731 | 4×1.3 GHz Cortex-A7 | 2000 mAh |
Fly FS510 | 6.0 | MT6580 | 4×1.3 GHz Cortex-A7 | 4000 mAh |
Samsung Galaxy S4 | 4.2 | Exynos 5410 | 4×1.2 GHz Cortex-A7 | 2600 mAh |
Prestigio PAP4055Duo | 4.1 | MT6577T | 2×1.2 GHz Cortex-A9 | 2500 mAh |
LG G2 mini | 5.0 | MSM8226 | 4×1.2 GHz Cortex-A7 | 2440 mAh |
LG Optimus L3 | 2.3 | MSM7225A | 800 MHz Cortex-A5 | 1500 mAh |
Alcatel Pixi 4 (5) | 6.0 | MT6735M | 4×1.0 GHz Cortex-A53 | 2000 mAh |
LG L50 | 4.4 | MT6572 | 2×1.3 GHz Cortex-A7 | 1900 mAh |
Micromax Juice (Q3551) | 6.0 | SC8830 | 4×1.2 GHz Cortex-A7 | 3000 mAh |
Samsung Ace 2 | 4.1 | DB8500 | 2×800 MHz Cortex-A9 | 1500 mAh |
Samsung Galaxy S2 | 4.1 | Exynos 4210 | 2×1.2 GHz Cortex-A9 | 1650 mAh |
Meizu M3 | 5.1 | MT6750 | 8×1.5 GHz Cortex-A53 | 2870 mAh |
Samsung Galaxy S4 mini | 4.2 | MSM8930AB | 2×1.7 GHz Cortex-A7 | 1900 mAh |
Lenovo S890 | 4.1 | MT6577 | 2×1.2 GHz Cortex-A9 | 2250 mAh |
Philips S386 | 7.0 | MT6580 | 4×1.3 GHz Cortex-A7 | 5000 mAh |
Samsung Galaxy Tab 2 | 4.1 | OMAP4430 | 2×1.2 GHz Cortex-A9 | 4000 mAh |
Leagoo Z1 | 5.1 | MT6580 | 4×1.3 GHz Cortex-A7 | 1300 mAh |
ZTE Blade L5 | 5.1 | MT6572 | 2×1.3 GHz Cortex-A7 | 2150 mAh |
Algorithm No. | Description | Algorithm Complexity Measure 1 |
---|---|---|
Algorithm #1 | A-weighting, sound pressure level estimation, simple audio feature extraction in time-domain [3,23] | 0.9 |
Algorithm #2 | Algorithm #1 + calculation of audio fingerprints (audio hashes) [24] | 7 |
Algorithm #3 | Detection and decoding of near-ultrasound communication signal (greedy synchronization algorithm, OFDM demodulator, Viterbi decoder) | 88 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhidkov, S.; Sychev, A.; Zhidkov, A.; Petrov, A. On Smartphone Power Consumption in Acoustic Environment Monitoring Applications. Appl. Syst. Innov. 2018, 1, 8. https://doi.org/10.3390/asi1010008
Zhidkov S, Sychev A, Zhidkov A, Petrov A. On Smartphone Power Consumption in Acoustic Environment Monitoring Applications. Applied System Innovation. 2018; 1(1):8. https://doi.org/10.3390/asi1010008
Chicago/Turabian StyleZhidkov, Sergey, Andrey Sychev, Alexander Zhidkov, and Alexander Petrov. 2018. "On Smartphone Power Consumption in Acoustic Environment Monitoring Applications" Applied System Innovation 1, no. 1: 8. https://doi.org/10.3390/asi1010008
APA StyleZhidkov, S., Sychev, A., Zhidkov, A., & Petrov, A. (2018). On Smartphone Power Consumption in Acoustic Environment Monitoring Applications. Applied System Innovation, 1(1), 8. https://doi.org/10.3390/asi1010008