Examination of Age-Depth Models Through Loess-Paleosol Sections in the Carpathian Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Dating
2.2. Sequences
2.2.1. Tokaj
2.2.2. Pécel
2.2.3. Ságvár
2.2.4. Máza
2.2.5. Dunaszekcső
2.2.6. Madaras
2.2.7. Katymár
2.2.8. Szeged-Öthalom
2.2.9. Surduk
2.2.10. Zmajevac
2.2.11. Šarengrad II
2.2.12. Črvenka
3. Results
3.1. Age-Depth Models from Radiocarbon Ages
3.1.1. Tokaj
3.1.2. Pécel
3.1.3. Ságvár
3.1.4. Máza
3.1.5. Dunaszekcső
3.1.6. Madaras
3.1.7. Katymár
3.1.8. Szeged-Öthalom
3.1.9. Surduk—Radiocarbon
3.1.10. Summary of the Age-Depth Models Derived from Radiocarbon Ages
3.2. Age-Depth Models from IRSL Ages
3.2.1. Surduk—IRSL
3.2.2. Zmajevac
3.2.3. Šarengrad II
3.2.4. Črvenka
3.2.5. Summary of the Age-Depth Models Derived from OSL/IRSL Ages
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Lab Code | Location | Depth (cm) | Data Type | Material | Uncal. BP yr | σ |
---|---|---|---|---|---|---|
Deb-4364 | Tokaj, Patkó-mine | 200–225 | 14C | A. arbustorum | 16,300 | 150 |
Deb-4332 | Tokaj, Patkó-mine | 250–275 | 14C | A. arbustorum | 17,750 | 150 |
Deb-2661 | Tokaj, Patkó-mine | 300–325 | 14C | A. arbustorum | 18,500 | 300 |
Deb-4349 | Tokaj, Patkó-mine | 400–425 | 14C | Charcoal | 23,500 | 500 |
Deb-3043 | Tokaj, Patkó-mine | 525–550 | 14C | Charcoal | 27,500 | 350 |
DeA-34288 | Pécel | 12–24 | 14C | G. frumentum | 1297 | 21 |
DeA-34278 | Pécel | 108–120 | 14C | T. hispidus | 18,105 | 58 |
DeA-34289 | Pécel | 132–144 | 14C | H. striata | 19,698 | 63 |
DeA-34279 | Pécel | 264–276 | 14C | T. hispidus | 20,135 | 68 |
DeA-34290 | Pécel | 276–288 | 14C | H. striata | 20,361 | 69 |
DeA-34280 | Pécel | 300–312 | 14C | T. hispidus | 20,004 | 67 |
DeA-34291 | Pécel | 336–348 | 14C | H. striata | 20,556 | 66 |
DeA-34281 | Pécel | 360–372 | 14C | T. hispidus | 20,634 | 71 |
DeA-34282 | Pécel | 408–420 | 14C | T. hispidus | 20,775 | 72 |
DeA-34292 | Pécel | 432–444 | 14C | H. striata | 20902 | 70 |
DeA-34283 | Pécel | 468–480 | 14C | T. hispidus | 21113 | 70 |
DeA-34293 | Pécel | 480–492 | 14C | T. hispidus | 20541 | 67 |
DeA-34284 | Pécel | 516–528 | 14C | T. hispidus | 34640 | 206 |
DeA-34294 | Pécel | 540–552 | 14C | T. hispidus | 21266 | 73 |
DeA-34285 | Pécel | 552–564 | 14C | T. hispidus | 21008 | 73 |
DeA-34295 | Pécel | 576–588 | 14C | T. hispidus | 20141 | 66 |
DeA-34296 | Pécel | 624–636 | 14C | H. striata | 35214 | 214 |
DeA-34286 | Pécel | 648–660 | 14C | T. hispidus | 38904 | 325 |
DeA-34287 | Pécel | 744–756 | 14C | T. hispidus | 39385 | 334 |
DeA-34297 | Pécel | 756–768 | 14C | H. striata | 38639 | 290 |
DeA-11788 | Ságvár | 20–24 | 14C | T. hispidus | 18,350 | 65 |
DeA-11789 | Ságvár | 56–60 | 14C | T. hispidus | 20,333 | 75 |
DeA-11793 | Ságvár | 116–120 | 14C | T. hispidus | 22,156 | 102 |
DeA-20934 | Máza | 90 | 14C | shell | 12,432 | 49 |
DeA-20935 | Máza | 318 | 14C | shell | 24,278 | 123 |
D-AMS 002121 | Máza | 414 | 14C | shell | 19,361 | 98 |
DeA-20936 | Máza | 486 | 14C | shell | 26,379 | 148 |
D-AMS 002122 | Máza | 510 | 14C | shell | 35,156 | 224 |
DeA-20937 | Máza | 570 | 14C | shell | 35,632 | 292 |
DeA-4700 | Dunaszekcső | 250 | 14C | shell (V. crystallina) | 19,515 | 81 |
DeA-4699 | Dunaszekcső | 280 | 14C | shell (V. crystallina) | 20,409 | 86 |
DeA-4698 | Dunaszekcső | 280 | 14C | shell (T. hispidus) | 20,995 | 76 |
DeA-4696 | Dunaszekcső | 310 | 14C | shell (O. dolium) | 21,182 | 67 |
DeA-4693 | Dunaszekcső | 340 | 14C | shell (O. dolium) | 20,457 | 67 |
DeA-4694 | Dunaszekcső | 340 | 14C | shell (P. muscorum) | 20,555 | 116 |
DeA-4695 | Dunaszekcső | 340 | 14C | shell (V. crystallina) | 21,066 | 112 |
DeA-4689 | Dunaszekcső | 370 | 14C | shell (E. fulvus) | 19,813 | 96 |
DeA-4691 | Dunaszekcső | 370 | 14C | shell (V. costata) | 20,283 | 76 |
DeA-4692 | Dunaszekcső | 370 | 14C | shell (V. crystallina) | 20,457 | 78 |
DeA-4690 | Dunaszekcső | 370 | 14C | shell (N. hammonis) | 22,086 | 102 |
DeA-2068 | Dunaszekcső | 400 | 14C | shell (T. hispidus) | 18,678 | 68 |
DeA-2067 | Dunaszekcső | 400 | 14C | shell (A. arbustorum) | 20,585 | 75 |
DeA-4688 | Dunaszekcső | 400 | 14C | shell (V. costata) | 20,851 | 133 |
DeA-4687 | Dunaszekcső | 400 | 14C | shell (V. crystallina) | 20,946 | 76 |
DeA-4635 | Dunaszekcső | 425 | 14C | shell (V. crystallina) | 20,889 | 80 |
DeA-4634 | Dunaszekcső | 425 | 14C | shell (D. ruderatus) | 21,328 | 72 |
DeA-4631 | Dunaszekcső | 455 | 14C | shell (E. fulvus) | 21,271 | 97 |
DeA-4632 | Dunaszekcső | 455 | 14C | shell (P. muscorum) | 21,695 | 147 |
DeA-4633 | Dunaszekcső | 455 | 14C | shell (V. costata) | 22,137 | 261 |
DeA-4629 | Dunaszekcső | 485 | 14C | shell (N. hammonis) | 20,828 | 73 |
DeA-4628 | Dunaszekcső | 485 | 14C | shell (E. fulvus) | 21,075 | 233 |
DeA-4627 | Dunaszekcső | 485 | 14C | shell (O. dolium) | 21,469 | 72 |
DeA-4630 | Dunaszekcső | 485 | 14C | shell (V. costata) | 21,540 | 150 |
DeA-8739 | Dunaszekcső | 490 | 14C | shell (T. hispidus) | 21,425 | 75 |
DeA-8740 | Dunaszekcső | 495 | 14C | shell (T. hispidus) | 20,652 | 64 |
DeA-2071 | Dunaszekcső | 500 | 14C | shell (T. hispidus) | 19,656 | 76 |
DeA-2070 | Dunaszekcső | 500 | 14C | shell (A. arbustorum) | 20,504 | 79 |
DeA-8741 | Dunaszekcső | 505 | 14C | shell (T. hispidus) | 26,018 | 91 |
DeA-8742 | Dunaszekcső | 510 | 14C | shell (C. cf dubia) | 22,094 | 83 |
DeA-4626 | Dunaszekcső | 515 | 14C | shell (N. hammonis) | 21,719 | 95 |
DeA-4625 | Dunaszekcső | 515 | 14C | shell (E. fulvus) | 22,191 | 176 |
DeA-4624 | Dunaszekcső | 515 | 14C | shell (O. dolium) | 22,272 | 65 |
DeA-8743 | Dunaszekcső | 520 | 14C | shell (Clausiliidae sp.) | 22,115 | 76 |
DeA-8744 | Dunaszekcső | 525 | 14C | shell (T. hispidus) | 21,561 | 72 |
DeA-8745 | Dunaszekcső | 530 | 14C | shell (Clausiliidae sp.) | 21,540 | 80 |
DeA-8746 | Dunaszekcső | 540 | 14C | shell (S. oblonga) | 21,954 | 71 |
DeA-3743 | Dunaszekcső | 545 | 14C | shell (S. oblonga) | 22,280 | 104 |
DeA-8747 | Dunaszekcső | 550 | 14C | shell (S. oblonga) | 22,090 | 71 |
DeA-8748 | Dunaszekcső | 555 | 14C | shell (S. oblonga) | 21,649 | 73 |
DeA-8749 | Dunaszekcső | 560 | 14C | shell (S. oblonga) | 21,799 | 70 |
DeA-8750 | Dunaszekcső | 565 | 14C | shell (S. oblonga) | 21,765 | 75 |
DeA-8751 | Dunaszekcső | 570 | 14C | shell (S. oblonga) | 22,167 | 74 |
DeA-3745 | Dunaszekcső | 575 | 14C | shell (O. dolium) | 22,708 | 101 |
DeA-3744 | Dunaszekcső | 575 | 14C | shell (S. oblonga) | 22,841 | 112 |
DeA-8826 | Dunaszekcső | 580 | 14C | shell (S. oblonga) | 21,828 | 68 |
DeA-8827 | Dunaszekcső | 585 | 14C | shell (S. oblonga) | 20,385 | 60 |
DeA-8828 | Dunaszekcső | 595 | 14C | shell (S. oblonga) | 18,153 | 55 |
DeA-2930 | Dunaszekcső | 600 | 14C | shell (T. hispidus) | 22,332 | 80 |
DeA-2931 | Dunaszekcső | 600 | 14C | shell (S. oblonga) | 23,036 | 88 |
DeA-8829 | Dunaszekcső | 605 | 14C | shell (S. oblonga) | 22,426 | 95 |
DeA-8830 | Dunaszekcső | 610 | 14C | shell (C. cf dubia) | 21,308 | 62 |
DeA-8831 | Dunaszekcső | 615 | 14C | shell (S. oblonga) | 22,501 | 72 |
DeA-8832 | Dunaszekcső | 615 | 14C | shell (Clausiliidae sp.) | 23,051 | 77 |
DeA-8833 | Dunaszekcső | 620 | 14C | shell (S. oblonga) | 22,158 | 71 |
DeA-3746 | Dunaszekcső | 625 | 14C | shell (S. oblonga) | 22,848 | 110 |
DeA-3747 | Dunaszekcső | 625 | 14C | shell (E. fulvus) | 22,943 | 130 |
DeA-8834 | Dunaszekcső | 630 | 14C | shell (S. oblonga) | 22,765 | 77 |
DeA-8836 | Dunaszekcső | 640 | 14C | shell (S. oblonga) | 23,327 | 76 |
DeA-8837 | Dunaszekcső | 645 | 14C | shell (S. oblonga) | 23,363 | 76 |
DeA-3748 | Dunaszekcső | 655 | 14C | shell (S. oblonga) | 24,311 | 135 |
DeA-8838 | Dunaszekcső | 660 | 14C | shell (S. oblonga) | 23,638 | 74 |
DeA-8722 | Dunaszekcső | 665 | 14C | shell (S. oblonga) | 24,477 | 118 |
DeA-7782 | Dunaszekcső | 670 | 14C | shell (S. oblonga) | 24,003 | 97 |
DeA-8723 | Dunaszekcső | 675 | 14C | shell (S. oblonga) | 22,332 | 128 |
DeA-8724 | Dunaszekcső | 680 | 14C | shell (S. oblonga) | 23,879 | 128 |
DeA-3749 | Dunaszekcső | 685 | 14C | shell (S. oblonga) | 24,262 | 138 |
DeA-8726 | Dunaszekcső | 690 | 14C | shell (T. hispidus) | 21,870 | 100 |
DeA-8725 | Dunaszekcső | 690 | 14C | shell (S. oblonga) | 24,425 | 111 |
DeA-8727 | Dunaszekcső | 695 | 14C | shell (S. oblonga) | 22,781 | 159 |
DeA-7784 | Dunaszekcső | 700 | 14C | shell (T. hispidus) | 23,123 | 87 |
DeA-7783 | Dunaszekcső | 700 | 14C | shell (S. oblonga) | 23,913 | 101 |
DeA-8729 | Dunaszekcső | 705 | 14C | shell (Clausiliidae sp.) | 19,609 | 96 |
DeA-8728 | Dunaszekcső | 705 | 14C | shell (C. tridens) | 24,652 | 122 |
DeA-3750 | Dunaszekcső | 710 | 14C | shell (S. oblonga) | 23,349 | 163 |
DeA-7785 | Dunaszekcső | 725 | 14C | shell (O. dolium) | 23,783 | 108 |
DeA-7787 | Dunaszekcső | 755 | 14C | shell (T. hispidus) | 24,670 | 105 |
DeA-7786 | Dunaszekcső | 755 | 14C | shell (S. oblonga) | 25,901 | 125 |
DeA-7789 | Dunaszekcső | 765 | 14C | shell (Clausiliidae sp.) | 23,695 | 98 |
DeA-3751 | Dunaszekcső | 775 | 14C | shell (S. oblonga) | 26,159 | 157 |
DeA-7790 | Dunaszekcső | 785 | 14C | shell (S. oblonga) | 25,748 | 112 |
DeA-7791 | Dunaszekcső | 785 | 14C | shell (S. oblonga) | 26,121 | 118 |
DeA-8947 | Dunaszekcső | 790 | 14C | shell (S. oblonga) | 27,450 | 123 |
DeA-8948 | Dunaszekcső | 795 | 14C | shell (S. oblonga) | 26,080 | 112 |
DeA-3752 | Dunaszekcső | 800 | 14C | shell (S. oblonga) | 25,187 | 141 |
DeA-8949 | Dunaszekcső | 805 | 14C | shell (S. oblonga) | 26,284 | 115 |
DeA-8950 | Dunaszekcső | 810 | 14C | shell (S. oblonga) | 21,825 | 93 |
DeA-8951 | Dunaszekcső | 810 | 14C | shell (Clausiliidae sp.) | 25,680 | 107 |
DeA-8952 | Dunaszekcső | 815 | 14C | shell (S. oblonga) | 25,884 | 138 |
DeA-11448 | Dunaszekcső | 815 | 14C | charcoal | 26,156 | 159 |
DeA-11546 | Dunaszekcső | 815 | 14C | charcoal | 25,319 | 430 |
DeA-2918 | Dunaszekcső | 820 | 14C | shell (T. hispidus) | 15,844 | 56 |
DeA-2922 | Dunaszekcső | 820 | 14C | shell (V. crystallina) | 25,838 | 123 |
DeA-2917 | Dunaszekcső | 820 | 14C | charcoal | 26,433 | 178 |
DeA-2919 | Dunaszekcső | 820 | 14C | shell (S. oblonga) | 26,142 | 125 |
DeA-2921 | Dunaszekcső | 820 | 14C | shell (C. tridens) | 26,851 | 118 |
DeA-2920 | Dunaszekcső | 820 | 14C | shell (Clausiliidae sp.) | 26,979 | 126 |
DeA-6596 | Dunaszekcső | 820 | 14C | charcoal | 26,726 | 142 |
DeA-6597 | Dunaszekcső | 820 | 14C | charcoal | 27,320 | 158 |
DeA-6601 | Dunaszekcső | 820 | 14C | shell (D. ruderatus) | 26,010 | 148 |
DeA-6602 | Dunaszekcső | 820 | 14C | shell (Clausiliidae sp.) | 26,954 | 151 |
DeA-6603 | Dunaszekcső | 820 | 14C | shell (E. fulvus) | 25,548 | 171 |
DeA-6604 | Dunaszekcső | 820 | 14C | shell (T. hispidus) | 26,553 | 142 |
DeA-2924 | Dunaszekcső | 825 | 14C | shell (V. crystallina) | 20,724 | 111 |
DeA-2923 | Dunaszekcső | 825 | 14C | charcoal | 25,868 | 165 |
DeA-2925 | Dunaszekcső | 825 | 14C | shell (Clausiliidae sp.) | 26,113 | 129 |
DeA-11449 | Dunaszekcső | 830 | 14C | charcoal | 22,346 | 152 |
DeA-11547 | Dunaszekcső | 830 | 14C | charcoal | 21,226 | 301 |
DeA-11450 | Dunaszekcső | 835 | 14C | charcoal | 24,419 | 117 |
DeA-11451 | Dunaszekcső | 835 | 14C | charcoal | 24,482 | 142 |
DeA-8953 | Dunaszekcső | 840 | 14C | shell (T. hispidus) | 26,000 | 108 |
DeA-3810 | Dunaszekcső | 850 | 14C | charcoal | 26,015 | 320 |
DeA-5943 | Dunaszekcső | 850 | 14C | charcoal | 26,139 | 162 |
DeA-5944 | Dunaszekcső | 850 | 14C | charcoal | 27,492 | 179 |
DeA-3811 | Dunaszekcső | 865 | 14C | charcoal | 29,547 | 537 |
DeA-8587 | Dunaszekcső | 870 | 14C | shell (T. hispidus) | 26,756 | 99 |
DeA-5945 | Dunaszekcső | 890 | 14C | charcoal | 29,063 | 449 |
DeA-8608 | Dunaszekcső | 900 | 14C | charcoal | 27,727 | 277 |
DeA-8588 | Dunaszekcső | 900 | 14C | shell (Clausiliidae sp.) | 28,008 | 108 |
DeA-8589 | Dunaszekcső | 910 | 14C | shell (G. frumentum) | 30,122 | 131 |
DeA-5946 | Dunaszekcső | 925 | 14C | charcoal | 31,954 | 862 |
DeA-8590 | Dunaszekcső | 940 | 14C | shell (Clausiliidae sp.) | 29,221 | 176 |
DeA-8609 | Dunaszekcső | 955 | 14C | charcoal | 30,487 | 384 |
DeA-8610 | Dunaszekcső | 955 | 14C | charcoal | 33,159 | 672 |
DeA-8591 | Dunaszekcső | 955 | 14C | shell (Clausiliidae sp.) | 32,402 | 188 |
DeA-8592 | Dunaszekcső | 970 | 14C | shell (C. cf dubia) | 30,005 | 120 |
DeA-8612 | Dunaszekcső | 970 | 14C | charcoal | 32,533 | 548 |
DeA-5947 | Dunaszekcső | 980 | 14C | charcoal | 28,813 | 776 |
DeA-8593 | Dunaszekcső | 995 | 14C | shell (C. cf dubia) | 28,060 | 125 |
DeA-5948 | Dunaszekcső | 1010 | 14C | charcoal | 31,528 | 436 |
DeA-5949 | Dunaszekcső | 1010 | 14C | charcoal | 33,785 | 636 |
DeA-8614 | Dunaszekcső | 1025 | 14C | charcoal | 38,643 | 811 |
DeA-8594 | Dunaszekcső | 1045 | 14C | shell (G. frumentum) | 35,058 | 214 |
D-AMS 4172 | Madaras | 16–20 | 14C | G. frumentum | 10,986 | 57 |
DeA-11787 | Madaras | 60–64 | 14C | T. hispidus | 12,891 | 46 |
D-AMS 4173 | Madaras | 100–104 | 14C | G. frumentum | 13,561 | 41 |
DeA-1467 | Madaras | 148–152 | 14C | T. hispidus | 14,498 | 81 |
DeA-11908 | Madaras | 200–204 | 14C | T. hispidus | 14,891 | 53 |
DeA-11907 | Madaras | 248–252 | 14C | T. hispidus | 16,133 | 63 |
DeA-20947 | Madaras | 272–276 | 14C | F. fruticum | 16,541 | 54 |
DeA-11906 | Madaras | 300–304 | 14C | T. hispidus | 16,628 | 63 |
D-AMS 4174 | Madaras | 400–404 | 14C | C. columella | 17,150 | 50 |
DeA-11905 | Madaras | 448–452 | 14C | T. hispidus | 17,368 | 63 |
DeA-11903 | Madaras | 500–504 | 14C | V. tenuilabris | 17,858 | 64 |
DeA-11904 | Madaras | 548–552 | 14C | T. hispidus | 17,870 | 71 |
DeA-11902 | Madaras | 548–552 | 14C | G. frumentum | 17,935 | 66 |
DeA-1466 | Madaras | 588–592 | 14C | C. columella | 18,528 | 121 |
DeA-11901 | Madaras | 600–604 | 14C | E. fulvus | 18,942 | 71 |
DeA-11900 | Madaras | 648–652 | 14C | C. tridens | 19,288 | 72 |
DeA-11860 | Madaras | 700–704 | 14C | C. tridens | 20,193 | 93 |
DeA-11898 | Madaras | 748–752 | 14C | T. hispidus | 20,503 | 75 |
DeA-11896 | Madaras | 748–752 | 14C | C. tridens | 20,544 | 79 |
DeA-20943 | Madaras | 800–804 | 14C | T. hispidus | 20,509 | 72 |
DeA-1465 | Madaras | 892–896 | 14C | C. tridens | 21,266 | 159 |
DeA-11895 | Madaras | 896–900 | 14C | C. tridens | 21,381 | 82 |
DeA-11897 | Madaras | 900–904 | 14C | G. frumentum | 21,415 | 86 |
DeA-19221 | Madaras | 900–904 | 14C | soil organic matter | 21,899 | 126 |
DeA-8796 | Madaras | 904–908 | 14C | G. frumentum | 21,518 | 98 |
Deb-3104 | Madaras | 900–908 | 14C | Pinus charcoal | 21,937 | 252 |
DeA-8799 | Madaras | 908–912 | 14C | G. frumentum | 21,968 | 84 |
DeA-11861 | Madaras | 920–924 | 14C | G. frumentum | 22,062 | 106 |
DeA-20946 | Madaras | 924–928 | 14C | C. tridens | 22,066 | 82 |
D-AMS 005122 | Madaras | 948–952 | 14C | G. frumentum | 23,636 | 104 |
DeA-11790 | Madaras | 952–956 | 14C | P. planorbis | 23,899 | 102 |
D-AMS 004636 | Madaras | 996–1000 | 14C | G. frumentum | 34,654 | 264 |
D-AMS 016719 | Katymár | 62 | 14C | S. oblonga | 12,648 | 43 |
deb-3253 | Katymár | 137 | 14C | O. dolium | 13,944 | 93 |
GdA-579 | Katymár | 281 | 14C | O. dolium | 16,570 | 70 |
GdA-582 | Katymár | 338 | 14C | C. dubia | 18,550 | 90 |
GdA-557 | Katymár | 535 | 14C | P. sterri | 21,490 | 110 |
GdA-558 | Katymár | 540 | 14C | G. frumentum | 21,760 | 120 |
deb-3064 | Katymár | 600 | 14C | charcoal | 23,749 | 360 |
GdA-551 | Katymár | 920 | 14C | charcoal | 27,180 | 180 |
deb-3058 | Katymár | 1000 | 14C | charcoal | 29,828 | 554 |
D-AMS 004636 | Katymár | 1032 | 14C | G. frumentum | 34,654 | 264 |
Deb-2056 | Szeged-Öthalom | 150–175 | 14C | shell | 16,000 | 200 |
Deb-1486 | Szeged-Öthalom | 175–200 | 14C | shell | 16,080 | 150 |
Deb-3159 | Szeged-Öthalom | 200–225 | 14C | shell | 16,323 | 145 |
Deb-3184 | Szeged-Öthalom | 250–275 | 14C | shell | 18,205 | 206 |
Deb-2049 | Szeged-Öthalom | 425–450 | 14C | shell | 25,200 | 300 |
n.a. | Surduk | 180 | 14C | n.a. | 6400 | 190 |
n.a. | Surduk | 330 | 14C | n.a. | 17,135 | 85 |
n.a. | Surduk | 445 | 14C | n.a. | 23,740 | 145 |
n.a. | Surduk | 530 | 14C | n.a. | 26,000 | 330 |
n.a. | Surduk | 675 | 14C | n.a. | 26,500 | 370 |
n.a. | Surduk | 780 | 14C | n.a. | 26,775 | 530 |
n.a. | Surduk | 805 | 14C | n.a. | 27,550 | 175 |
n.a. | Surduk | 845 | 14C | n.a. | 26,640 | 340 |
n.a. | Surduk | 850 | 14C | n.a. | 27,870 | 440 |
n.a. | Surduk | 900 | 14C | n.a. | 28,360 | 645 |
n.a. | Surduk | 925 | 14C | n.a. | 28,950 | 180 |
n.a. | Surduk | 970 | 14C | n.a. | 29,335 | 725 |
n.a. | Surduk | 1025 | 14C | n.a. | 29,145 | 710 |
n.a. | Surduk | 1180 | 14C | n.a. | 44,025 | 1350 |
BT 140 | Surduk | 260 | IRSL | n.a. | 15,800 | 1600 |
BT 141 | Surduk | 490 | IRSL | n.a. | 19,700 | 2100 |
BT 142 | Surduk | 800 | IRSL | n.a. | 36,300 | 3900 |
BT 143 | Surduk | 840 | IRSL | n.a. | 31,800 | 3400 |
BT 144 | Surduk | 980 | IRSL | n.a. | 39,800 | 4500 |
BT 145 | Surduk | 1160 | IRSL | n.a. | 53,400 | 5600 |
BT 146 | Surduk | 1270 | IRSL | n.a. | 53,100 | 5500 |
BT 147 | Surduk | 1420 | IRSL | n.a. | 66,000 | 7000 |
BT 148 | Surduk | 1480 | IRSL | n.a. | 82,600 | 9000 |
BT 149 | Surduk | 1940 | IRSL | n.a. | 120,700 | 12,800 |
Z-1 | Zmajevac | 150 | IRSL | n.a. | 17,800 | 1900 |
ZMA-7 | Zmajevac | 300 | IRSL | n.a. | 16,700 | 1800 |
ZMA-6 | Zmajevac | 450 | IRSL | n.a. | 20,200 | 2100 |
ZMA-5 | Zmajevac | 800 | IRSL | n.a. | 49,900 | 5000 |
Z-8 | Zmajevac | 950 | IRSL | n.a. | 61,000 | 6200 |
ZMA-4 | Zmajevac | 1170 | IRSL | n.a. | 68,600 | 6900 |
ZMA-3 | Zmajevac | 1275 | IRSL | n.a. | 101,000 | 10,000 |
ZMA-2 | Zmajevac | 2100 | IRSL | n.a. | 121,000 | 12,000 |
ZMA-1 | Zmajevac | 2560 | IRSL | n.a. | 217,000 | 22,000 |
Š3–1663 | Šarengrad | 900 | IRSL | n.a. | 230,000 | 18,000 |
Š2–1662 | Šarengrad | 1000 | IRSL | n.a. | 228,000 | 19,000 |
Š1–1661 | Šarengrad | 1500 | IRSL | n.a. | 298,000 | 24,000 |
SB070112 | Črvenka | 30 | OSL | n.a. | 7700 | 600 |
SB070111 | Črvenka | 85 | OSL | n.a. | 13,000 | 1000 |
SB070110 | Črvenka | 130 | OSL | n.a. | 15,000 | 1000 |
SB070109 | Črvenka | 210 | OSL | n.a. | 23,000 | 2000 |
SB070108 | Črvenka | 290 | OSL | n.a. | 24,000 | 2000 |
SB070107 | Črvenka | 400 | OSL | n.a. | 22,000 | 2000 |
SB070106 | Črvenka | 470 | OSL | n.a. | 33,000 | 3000 |
SB070105 | Črvenka | 550 | OSL | n.a. | 38,000 | 4000 |
SB070104 | Črvenka | 670 | OSL | n.a. | 45,000 | 4000 |
SB070103 | Črvenka | 770 | OSL | n.a. | 56,000 | 4000 |
SB070102 | Črvenka | 910 | OSL | n.a. | 58,000 | 4000 |
SB070101 | Črvenka | 1130 | OSL | n.a. | 114,000 | 7000 |
References
- Vandenberghe, J.; Hujizer, B.; Mücher, H.; Laan, W. Short climatic oscillations in a western European loess sequence (Kesselt, Belgium). J. Quat. Sci. 1998, 13, 35–38. [Google Scholar] [CrossRef]
- Antoine, P.; Rousseau, D.D.; Zöller, L.; Lang, A.; Munaut, A.V.; Hatté, C.; Fontugne, M. High resolution record of the last interglacial-glacial cycle in loess palaeosol sequences of Nussloch (Rhine Valley-Germany). Quat. Int. 2001, 76–77, 211–229. [Google Scholar] [CrossRef]
- Rousseau, D.D.; Zöller, L.; Valet, J.P. Climatic variations in the Upper Pleistocene loess sequence at Achenheim (Alsace, France): Analysis of magnetic susceptibility and thermoluminescence chronology. Quat. Res. 1998, 49, 255–263. [Google Scholar] [CrossRef]
- Rousseau, D.D.; Gerasimenko, N.; Matvviishina, Z.; Kukla, G.J. Late Pleistocene environments of central Ukraine. Quat. Res. 2001, 56, 349–356. [Google Scholar] [CrossRef]
- Rousseau, D.D.; Antoine, P.; Christine, H.; Lang, A. Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the last glaciation. Quat. Sci. Rev. 2002, 21, 1577–1582. [Google Scholar] [CrossRef]
- Jary, Z. Periglacial markers within the Late Pleistocene loess-palaeosol sequences in Poland and Western Ukraine. Quat. Int. 2009, 198, 124–135. [Google Scholar] [CrossRef]
- Moine, O.; Rousseau, D.D.; Antoine, P. The impact of Dansgaard-Oeschger cycles on the loessic environment and malacofauna of Nussloch (Germany) during the Upper Weichselian. Quat. Res. 2008, 70, 91–104. [Google Scholar] [CrossRef]
- Lehmkuhl, F.; Nett, J.J.; Potter, S.; Schulte, P.; Sprafke, T.; Jary, Z.; Antoine, P.; Wacha, L.; Wolf, D.; Zerboni, A.; et al. Loess landscapes of Europe—Mapping, geomorphology, and zonal differentiation. Earth Sci. Rev. 2021, 215, 103769. [Google Scholar] [CrossRef]
- Pye, K. The nature, origin and accumulation of loess. Quat. Sci. Rev. 1995, 14, 653–667. [Google Scholar] [CrossRef]
- Kohfeld, K.E.; Harrison, S.P. DIRTMAP: The geological record of dust. Earth Sci. Rev. 2001, 54, 81–114. [Google Scholar] [CrossRef]
- Gábris, G.; Horváth, E.; Novothny, Á.; Rszkiczay-Rüdiger, Z. Fluvial and aeolian landscape evolution in Hungary—Results of the last 20 years research. Neth. J. Geosci. 2014, 91, 111–128. [Google Scholar] [CrossRef]
- Lehmkuhl, F.; Bösken, J.; Hošek, J.; Sprafke, T.; Marković, S.B.; Obreht, I.; Hambach, U.; Sümegi, P.; Thiemann, A.; Steffens, S.; et al. Loess distribution and related Quaternary sediments in the Carpathian Basin. J. Maps 2018, 14, 661–670. [Google Scholar] [CrossRef]
- Obreht, I.; Zeeden, C.; Hambach, U.; Veres, D.; Marković, S.B.; Lehmkuhl, F. A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin. Earth Sci. Rev. 2019, 190, 498–520. [Google Scholar] [CrossRef]
- Koloszár, L. The thickest and the most complete loess sequence in the Carpathian basin: The borehole Udvari-2A. Cent. Eur. J. Geosci. 2010, 2, 165–174. [Google Scholar] [CrossRef]
- Sümegi, P.; Gulyás, S.; Molnár, D.; Sümegi, B.P.; Almond, P.C.; Vandenberghe, J.; Zhou, L.; Pál-Molnár, E.; Törőcsik, T.; Hao, Q.; et al. New chronology of the best developed loess/paleosol sequence of Hungary capturing the past 1.1 ma: Implications for correlation and proposed pan-Eurasian stratigraphic schemes. Quat. Sci. Rev. 2018, 191, 144–166. [Google Scholar] [CrossRef]
- Smalley, I.J.; Leach, J.A. The origin and distribution of the loess in the Danube basin and associated regions of East-Central Europe—A review. Sediment. Geol. 1978, 21, 1–26. [Google Scholar] [CrossRef]
- Marković, S.B.; Stevens, T.; Kukla, G.J.; Hambach, U.; Fitzsimmons, K.E.; Gibbard, P.; Buggle, B.; Zech, M.; Guo, Z.; Hao, Q.; et al. Danube loess stratigraphy—Towards a pan-European loess stratigraphic model. Earth Sci. Rev. 2015, 148, 228–258. [Google Scholar] [CrossRef]
- Újvári, G.; Kovács, J.; Varga, G.y.; Raucsik, B.; Marković, S.B. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: A review. Quat. Sci. Rev. 2010, 29, 3157–3166. [Google Scholar] [CrossRef]
- Marković, S.B.; Stevens, T.; Mason, J.; Vandenberghe, J.; Yang, S.; Veres, D.; Újvári, G.; Timar-Gabor, A.; Zeeden, C.; Guo, Z.; et al. Loess correlations—Between myth and reality. Palaeogr. Palaeoclimatol. Palaeoecol. 2018, 509, 4–23. [Google Scholar] [CrossRef]
- Marković, S.B.; Hambach, U.; Stevens, T.; Jovanović, M.; O’Hara-Dhand, K.; Basarin, B.; Lu, H.; Smalley, I.; Buggle, B.; Zech, M.; et al. Loess in the Vojvodina region (Northern Serbia): An essential link between European and Asian Pleistocene environments. Neth. J. Geosci. 2012, 91, 173–188. [Google Scholar] [CrossRef]
- Sümegi, P.; Krolopp, E. Quatermalacological analyses for modeling of the Upper Weichselian palaeoenvironmental changes in the Carpathian Basin. Quat. Int. 2002, 91, 53–63. [Google Scholar] [CrossRef]
- Stevens, T.; Marković, S.B.; Zech, M.; Hambach, U.; Sümegi, P. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quat. Sci. Rev. 2011, 30, 662–681. [Google Scholar] [CrossRef]
- Huntley, D.J.; Godfrey-Smith, D.I.; Thewalt, M.L.W. Optical dating of sediments. Nature 1985, 313, 105–107. [Google Scholar] [CrossRef]
- Rhodes, E.J. Optically stimulated luminescence dating of sediments over the past 250,000 years. Annu. Rev. Earth Planet. Sci. 2011, 39, 461–488. [Google Scholar] [CrossRef]
- Auclair, M.; Lamothe, M.; Lagroix, F.; Banerjee, S.K. Luminescence investigations of loess and tephra from Halfway House section, Central Alaska. Quat. Geochronol. 2007, 2, 34–38. [Google Scholar] [CrossRef]
- Buylaert, J.P.; Murray, A.S.; Vandenberghe, D.; Vriend, M.; De Corte, F.; Van den haute, P. Optical dating of Chinese loess using sandsized quartz: Establishing a time frame for Late Pleistocene climate changes in the western part of the Chinese Loess Plateau. Quat. Geochronol. 2008, 3, 99–113. [Google Scholar] [CrossRef]
- Buylaert, J.P.; Murray, A.S.; Thomsen, K.J.; Jain, M. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiat. Meas. 2009, 44, 560–565. [Google Scholar] [CrossRef]
- Stuiver, M.; Reimer, P.J.; Braziunas, T.F. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 1998, 40, 1127–1151. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, A.J. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; Grootes, P.M. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Molnár, M.; Janovics, R.; Major, I.; Orsovszki, J.; Gönczi, R.; Veres, M.; Leonard, A.G.; Castle, S.M.; Lange, T.E.; Wacker, L.; et al. Status report of the new AMS C-14 preparation lab of the Hertelendi Laboratory of Environmental Studies, Debrecen, Hungary. Radiocarbon 2013, 55, 665–676. [Google Scholar]
- Molnár, M.; Rinyu, L.; Veres, M.; Seiler, M.; Wacker, L.; Synal, H.A. EnvironMICADAS: A mini 14C AMS with enhanced Gas Ion Source Interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 2013, 55, 338–344. [Google Scholar] [CrossRef]
- Pigati, J.S.; McGeehin, J.P.; Muhs, D.R.; Bettis, E.A. III. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quat. Sci. Rev. 2013, 76, 114–128. [Google Scholar] [CrossRef]
- Schatz, A.K.; Scholten, T.; Kühn, P. Paleoclimate and weathering of the Tokaj (Hungary) loess-paleosol sequence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 426, 170–182. [Google Scholar]
- Schatz, A.K.; Buylaert, J.P.; Murray, A.; Stevens, T.; Scholten, T. Establishing a luminescence chronology for a palaeosol-loess profile at Tokaj (Hungary): A comparison of quartz OSL and polymineral IRSL signals. Quat. Geochronol. 2012, 10, 68–74. [Google Scholar] [CrossRef]
- Sümegi, P.; Hertelendi, E. Reconstruction of microenvironmental changes in the Kopasz Hill loess area at Tokaj (Hungary) between 15 and 70 ka BP. Radiocarbon 2016, 40, 9. [Google Scholar]
- Schatz, A.-K.; Zech, M.; Buggle, B.; Gulyás, S.; Hambach, U.; Marković, S.B.; Sümegi, P.; Scholten, T. The late Quaternary loess record of Tokaj, Hungary: Reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers. Quat. Int. 2011, 240, 52–61. [Google Scholar] [CrossRef]
- Makó, L.; Molnár, D.; Runa, B.; Bozsó, G.; Cseh, P.; Nagy, B.; Sümegi, P. Selected Grain-Size and Geochemical Analyses of the Loess-Paleosol Sequence of Pécel (Northern Hungary): An Attempt to Determine Sediment Accumulation Conditions and the Source Area Location. Quaternary 2021, 4, 17. [Google Scholar] [CrossRef]
- Makó, L.; Molnár, D.; Cseh, P.; Nagy, B.; Sümegi, P. Development history of the loess-paleosol profiles of Pécel, Kisdorog and Bonyhádvarasd, Hungary. Quaternary 2023, 6, 38. [Google Scholar]
- Makó, L.; Cseh, P.; Nagy, B.; Sümegi, P.; Molnár, D. Paleoecological Reconstruction Derived from an Age-Depth Model and Mollusc Data, Pécel, Hungary. Quaternary 2025, 8, 37. [Google Scholar] [CrossRef]
- Lengyel, G. An aspect to re-evaluation of Ságvár (Lyukas-domb) Upper Paleolithic site. Folia Archeol. 2010, 54, 25–37. [Google Scholar]
- Lengyel, G. Reassessing the Middle and Late Upper Palaeolithic in Hungary. Acta Archaeol. Carpathica 2017, 51, 47–66. [Google Scholar]
- Bösken, J.J. Luminescence dating of eolian and fluvial archives in the middle and lower Danube catchment and the paleoenvironmental implications. EG Quat. Sci. J. 2020, 69, 89–92. [Google Scholar] [CrossRef]
- Molnár, D.; Sümegi, P.; Makó, L.; Cseh, P.; Zeeden, C.; Nett, J.; Lehmkuhl, F.; Törőcsik, T.; Sümegi, B.P. Palaeoecological background of the Upper Palaeolithic site of Ságvár, Hungary: Radiocarbon-dated malacological and sedimentological studies on the Late Pleistocene environment. J. Quat. Sci. 2021, 36, 1353–1363. [Google Scholar] [CrossRef]
- Molnár, D.; Sümegi, P.; Fekete, I.; Makó, L.; Sümegi, B.P. Radiocarbon dated malacological records of two Late Pleistocene loess-paleosol sequences from SW-Hungary: Paleoecological inferences. Quat. Int. 2019, 504, 108–117. [Google Scholar] [CrossRef]
- Molnár, D.; Makó, L.; Molnár, M.; Sümegi, P. Case Study from Máza Brickyard (SW-Hungary): Paleoecology and Sediment Accumulation Changes in the Southern Part of the Carpathian Basin. Quaternary 2024, 7, 35. [Google Scholar] [CrossRef]
- Újvári, G.; Molnár, M.; Novothny, Á.; Páll-Gergely, B.; Kovács, J.; Várhegyi, A. AMS 14C and OSL/IRSL dating of the Dunaszekcső loess sequence (Hungary): Chronology for 20 to 150 ka and implications for establishing reliable age-depth models for the last 40 ka. Quat. Sci. Rev. 2014, 106, 140–154. [Google Scholar] [CrossRef]
- Újvári, G.; Molnár, M.; Páll-Gergely, B. Charcoal and mollusc shell 14C-dating of the Dunaszekcső loess record, Hungary. Quat. Geochronol. 2016, 35, 43–53. [Google Scholar] [CrossRef]
- Újvári, G.; Stevens, T.; Molnár, M.; Demény, A.; Lambert, F.; Varga, G.; Tull, A.J.T.; Páll-Gergely, B.; Buylaert, J.-P.; Kovács, J. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Earth Atmos. Planet. Sci. 2017, 114, 50. [Google Scholar] [CrossRef]
- Molnár, B.; Krolopp, E. Latest Pleistocene Geohistory of the Bácska Loess area. Acta Mineral.-Petrogr. Szeged 1978, 22, 245–265. [Google Scholar]
- Krolopp, E. Results of malacofaunal investigations on the LPS of Madaras brickyard. Cumania 1989, 11, 13–27. (In Hungarian) [Google Scholar]
- Sümegi, P. Upper Pleistocene Evaluation of Hajdúság Region Based on Fine-Stratigraphical (Sedimentological, Paleontological, Geochemical) Analyses. Ph.D. Thesis, University of Szeged, Szeged, Hungary, 1989. (In Hungarian). [Google Scholar]
- Sümegi, P. New Pleistocene locality of Cochlicopa nitens (Gallenstein, 1848) in Hungary. Malakológiai Tájékoztató 1992, 11, 23–25. [Google Scholar]
- Sümegi, P. Comparative Paleoecological and Stratigraphical Valuation of the NE Hungarian Loess Areas. Ph.D. Thesis, Hungarian Academy of Sciences, Budapest-Debrecen, Hungary, 1996. (In Hungarian). [Google Scholar]
- Sümegi, P.; Szöőr, G.; Hertelendi, E. Palaeoenvironmental reconstruction of the last period of the Upper Würm in Hungary, based on malacological and radiocarbon data. Soosiana 1991, 19, 5–12. [Google Scholar]
- Krolopp, E.; Sümegi, P. Palaeoecological reconstruction of the Late Pleistocene, based on Loess Malacofauna in Hungary. GeoJournal 1995, 36, 213–222. [Google Scholar] [CrossRef]
- Sümegi, P.; Krolopp, E. Late Quaternary Palaeoecology and Historical Geography of Hungary based on quartermalacological and radiocarbon analyses. In Proceedings of the 12th International Malacological Congress, Vigo, Spain, 3–7 September 1995; pp. 330–331. [Google Scholar]
- Hupuczi, J.; Sümegi, P. The Late Pleistocene paleoenvironment and paleoclimate of the Madaras section (South Hungary), based on preliminary records from mollusks. Cent. Eur. J. Geosci. 2010, 2, 64–70. [Google Scholar] [CrossRef]
- Hupuczi, J.; Sümegi, P. Latest malacological results of the loess section at Madaras brickyard. Archeom. Műhely 2011, 8, 157–162. (In Hungarian) [Google Scholar]
- Sümegi, P.; Gulyás, S.; Molnár, D.; Bozsó, G.; Fekete, I.; Makó, L.; Cseh, P.; Molnár, M.; Sümegi, B.P.; Almond, P.; et al. New chronology and extended palaeoenvironmental data to the 1975 loess profile of Madaras brickyard, South Hungary. J. Quat. Sci. 2021, 36, 1364–1381. [Google Scholar] [CrossRef]
- Sümegi, P.; Molnár, D.; Náfrádi, K.; Makó, L.; Cseh, P.; Törőcsik, T.; Molnár, M.; Zhou, L. Vegetation and land snail-based reconstruction of the palaeocological changes in the forest steppe eco-region of the Carpathian Basin during last glacial warming. Glob. Ecol. Conserv. 2022, 22, e01976. [Google Scholar] [CrossRef]
- Sümegi, P.; Molnár, D.; Gulyás, S.; Stevens, T.; Makó, L.; Cseh, P.; Molnár, M.; Fitzsimmons, K.; Nett, J.J.; Hlavatsky, D.; et al. Comparison of High-Resolution 14C and Luminescence-Based Chronologies of the MIS 2 Madaras Loess/Paleosol Sequence, Hungary: Implications for Chronological Studies. Quaternary 2022, 5, 47. [Google Scholar] [CrossRef]
- Rudner, E.; Sümegi, P. Recurring taiga forest steppe habitats in the Carpathian Basin in the upper weichselian. Quat. Int. 2001, 76–77, 177–189. [Google Scholar] [CrossRef]
- Bokhorst, M.P.; Vanberghe, J.; Sümegi, P.; Lanzont, M.; Gerasimenko, N.P.; Matviishina, Z.N.; Marković, S.B.; Frechen, M. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records. Quat. Int. 2011, 234, 64–72. [Google Scholar] [CrossRef]
- Gocke, M.; Gulyás, S.; Hambach, U.; Jovanović, M.; Kovács, G.; Marković, S.B.; Wiesenberg, G.L. Biopores and root features as new tools for improving paleoecological understanding of terrestrial sediment-paleosol sequences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 394, 42–58. [Google Scholar]
- Sümegi, P. Loess and Upper Paleolithic Environment in Hungary. Aurea Kiadó Nagykovácsi 2005, 4, 312. [Google Scholar]
- Sümegi, P.; Molnár, D.; Gulyás, S.; Náfrádi, K.; Sümegi, B.P.; Törőcsik, T.; Persaits, G.; Molnár, M.; Vandenberghe, J.; Zhou, L. High-resolution proxy record of the environmental response to climatic variations during transition MIS3/MIS2 and MIS2 in Central Europe: The loess-paleosol sequence of Katymár brickyard (Hungary). Quat. Int. 2019, 504, 40–55. [Google Scholar]
- Krolopp, E.; Sümegi, P.; Kuti, L.; Hertelendi, E.; Kordos, L. Szeged-Öthalom környéki löszképződmények keletkezésének palaeoökológiai rekonstrukciója. Földtani Közlöny 1995, 125, 309–361. (In Hungarian) [Google Scholar]
- Sümegi, P.; Náfrádi, K.; Molnár, D.; Sávai, S. Results of paleoecological studies in the loess region of Szeged-Öthalom (SE Hungary). Quat. Int. 2015, 372, 66–78. [Google Scholar] [CrossRef]
- Molnár, D.; Makó, L.; Sümegi, P.; Sümegi, B.P.; Törőcsik, T. Revisiting the palaeolithic site at Szeged-Öthalom: Attempt for appoint the palaeolithic horizon. Stud. Quat. 2019, 36, 45–53. [Google Scholar] [CrossRef]
- Fuchs, M.; Rousseau, D.D.; Antoine, P.; Hatté, C.; Gauthier, C.; Marković, S.B.; Zoeller, L. Chronology of the Last Climatic Cycle (Upper Pleistocene) of the Surduk loess sequence, Vojvodina, Serbia. Boreas 2008, 37, 66–73. [Google Scholar] [CrossRef]
- Antoine, P.; Rousseau, D.D.; Fuchs, M.; Hatté, C.; Gauthier, C.; Marković, S.B.; Jovanović, M.; Gaudenyi, T.; Moine, O.; Rossignol, J. High-resolution record of the last climatic cycle in the southern Carpathian Basin (Surduk, Vojvodina, Serbia). Quat. Int. 2009, 198, 19–36. [Google Scholar] [CrossRef]
- Hatté, C.; Gauthier, C.; Rousseau, D.D.; Antoine, P.; Fuchs, M.; Lagroix, F.; Marković, S.B.; Moine, O.; Sima, A. Excursions to C4 vegetation recorded in the Upper Pleistocene loess of Surduk (Northern Serbia): An organic isotope geochemistry study. Clim. Past 2013, 9, 1001–1014. [Google Scholar] [CrossRef]
- Radaković, M.G.; Gavrilović, B.; Gavrilov, M.B.; Marković, R.S.; Hao, Q.; Schaetzl, R.J.; Zeeden, C.; Cai, B.; Perić, Z.M.; Antić, A.; et al. A Glacial-Interglacial Malacofauna Record from the Titel Loess Plateau, Serbia, between ~350 and 250 ka. Quaternary 2024, 7, 28. [Google Scholar]
- Galović, L.; Frechen, M.; Halamić, J.; Durn, G.; Romić, M. Loess chronostratigraphy in Eastern Croatia—A luminescene dating approach. Quat. Int. 2009, 198, 85–97. [Google Scholar]
- Molnár, D.; Hupuczi, J.; Galović, L.; Sümegi, P. Preliminary malacological investigation on the loess profile at Zmajevac, Croatia. Cent. Eur. J. Geosci. 2010, 2, 52–56. [Google Scholar]
- Banak, A.; Mandic, O.; Kovačić, M.; Pavelić, D. Late Pleistocene climate history of the Baranja loess plateau—Evidence from the Zmajevac loess-paleosol section (northeastern Croatia). Geol. Croat. 2011, 65, 411–422. [Google Scholar]
- Molnár, D.; Sávai, S.; Hupuczi, J.; Galović, L.; Sümegi, P. Malacological investigations on East-Croatian loess-paleosol profiles. Archeom. Műhely 2011, 2, 127–136. (In Hungarian) [Google Scholar]
- Molnár, D.; Makó, L.; Cseh, P.; Sümegi, P.; Fekete, I.; Galović, L. Middle and Late Pleistocene loess-palaeosol archives in East Croatia: Multi-proxy palaeoecological studies on Zmajevac and Šarengrad II sequences. Stud. Quat. 2021, 38, 3–17. [Google Scholar]
- Hupuczi, J.; Molnár, D.; Galović, L.; Sümegi, P. Preliminary malacological investigation of the loess profile at Šarengrad, Croatia. Cent. Eur. J. Geosci. 2010, 2, 57–63. [Google Scholar]
- Wacha, L.; Galović, L.; Koloszár, L.; Magyari, Á.; Chikán, G.; Marsi, I. The chronology of the Šarengrad II loess-paleosol section (Eastern Croatia). Geol. Croat. 2013, 66, 191–203. [Google Scholar]
- Sümegi, P.; Marković, S.B.; Molnár, D.; Sávai, S.; Náfrádi, K.; Szelepcsényi, Z.; Novák, Z. Črvenka loess-paleosol sequence revisited: Local and regional Quaternary biogeographical inferences of the southern Carpathian Basin. Open Geosci. 2016, 8, 390–404. [Google Scholar] [CrossRef]
- Makó, L.; Molnár, D.; Cseh, P.; Sümegi, P. MAR comparisons between different chronometric methods for two profiles in the Bodrogkeresztúr area. Stud. Quat. 2021, 38, 67–73. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makó, L.; Cseh, P.; Hupuczi, J. Examination of Age-Depth Models Through Loess-Paleosol Sections in the Carpathian Basin. Quaternary 2025, 8, 55. https://doi.org/10.3390/quat8040055
Makó L, Cseh P, Hupuczi J. Examination of Age-Depth Models Through Loess-Paleosol Sections in the Carpathian Basin. Quaternary. 2025; 8(4):55. https://doi.org/10.3390/quat8040055
Chicago/Turabian StyleMakó, László, Péter Cseh, and Júlia Hupuczi. 2025. "Examination of Age-Depth Models Through Loess-Paleosol Sections in the Carpathian Basin" Quaternary 8, no. 4: 55. https://doi.org/10.3390/quat8040055
APA StyleMakó, L., Cseh, P., & Hupuczi, J. (2025). Examination of Age-Depth Models Through Loess-Paleosol Sections in the Carpathian Basin. Quaternary, 8(4), 55. https://doi.org/10.3390/quat8040055