Cooling Following the Magnetic Field Weakening During the Matuyama–Brunhes Transition Recorded by Paks Loess, Hungary
Abstract
1. Introduction
2. Site and Sampling
3. Methods
4. Results
4.1. Environmental Magnetism
4.2. Rock Magnetism—Magnetic Mineral Characteristics
4.3. Paleomagnetism
5. Discussion
5.1. Identification and Description of the Putative MIS19 Cooling Event
5.2. Potential Marks of the Cooling Event in Loess Successions from Eurasia
5.3. Concerns
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFD | Alternating field demagnetization |
ARM | Anhysteretic remanent magnetization |
CLP | Chinese Loess Plateau |
ChRM | Characteristic remanent magnetization |
EEP | Eastern European Plain |
ELB | European Loess Belt |
GCR | Galactic cosmic ray |
HTC | High-temperature component |
LDB | Lower Danube Basin |
LTC | Low-temperature component |
MAD | Maximum angular deviation |
MBT | Matuyama–Brunhes Transition |
MDB | Middle Danube Basin |
MIS19 | Marine Isotope Stage 19 |
NRM | Natural remanent magnetization |
PD1 | Paks Double 1 paleosol |
PD2 | Paks Double 2 paleosol |
RPI | Relative paleointensity |
ThD | Thermal demagnetization |
κlf | Low-field volumetric magnetic susceptibility |
χlf | Low-frequency susceptibility |
χhf | High-frequency susceptibility |
χfd% | Relative frequency dependence of magnetic susceptibility |
References
- Hays, J.D.; Imbrie, J.; Shackleton, N.J. Variations in the Eartt’s orbit: Pacemaker of the ice ages. Science 1976, 194, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Friis-Christensen, E.; Lassen, K. Length of the solar Cycles: An indicator of solar activity closely associated with climate. Science 1991, 254, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, H. Sonnen-Beobachtungen im Jahre 1843. Astron. Nachrichten 1844, 495, 233–236. [Google Scholar] [CrossRef]
- Ogurtsov, M.G.; Nagovitsyn, Y.A.; Kocharov, G.E.; Jungner, H. Long-period cycles of the sun’s activity recorded in direct solar data and proxies. Sol. Phys. 2002, 211, 371–394. [Google Scholar] [CrossRef]
- Wagner, G.; Beer, J.; Masarik, J.; Muscheler, R.; Kubik, P.W.; Mende, W.; Laj, C.; Raisbeck, G.M.; Yiou, F. Presence of the solar de Vries cycle (205 years) during the last ice age. Geophys. Res. Lett. 2001, 28, 303–306. [Google Scholar] [CrossRef]
- Chapman, M.R.; Shackleton, N.J. Evidence of 550-year and 1000-year cyclicities in North Atlantic circulation patterns during the Holocene. Holocene 2000, 10, 287–291. [Google Scholar] [CrossRef]
- Nederbragt, A.J.; Thurow, J. Geographic coherence of millenial-scale climate cycles during the Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 221, 313–324. [Google Scholar] [CrossRef]
- Tiwari, M.; Ramesh, R. Solar variability in the past and palaeoclimate data pertaining to the southwest monsoon. Curr. Sci. 2007, 93, 477–487. [Google Scholar]
- Thomas, B.C.; Engler, E.E.; Kachelrieß, M.; Mellott, A.L.; Overholt, A.C.; Semikoz, D.V. Terrestrial effect of nearby supernovae in the early Pleistocene. Astrophys. J. Lett. 2016, 826, L3. [Google Scholar] [CrossRef]
- Overholt, A.C.; Melott, A.L.; Pohl, M. Testing the link between terrestrial climate change and galactic spiral arm transit. Astrophys. J. 2009, 705, L101. [Google Scholar] [CrossRef]
- Svensmark, H.; Friis-Christensen, E. Variation of cosmic ray flux and global cloud coverage—A missing link in solar-climate relationships. J. Atmos. Sol.-Terr. Phys. 1997, 59, 1225–1232. [Google Scholar] [CrossRef]
- Marsh, N.; Svensmark, H. Cosmic rays, clouds, and climate. Space Sci. Rev. 2000, 94, 215–230. [Google Scholar] [CrossRef]
- Sloan, T.; Wolfendale, A.W. Testing the proposed causal link between cosmic rays and cloud cover. Environ. Res. Lett. 2008, 3, 024001. [Google Scholar] [CrossRef]
- Erlykin, A.D.; Wolfendale, A.W. Cosmic ray effects on cloud cover and their relevance to climate change. J. Atmos. Sol.-Terr. Phys. 2011, 73, 1681–1686. [Google Scholar] [CrossRef]
- Tinsley, B.A. Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Sci. Rev. 2000, 94, 231–258. [Google Scholar] [CrossRef]
- Svensmark, H.; Bondo, T.; Svensmark, J. Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Wagner, G.; Livingstone, D.M.; Masarik, J.; Muscheler, R.; Beer, J. Some results relevant to the discussion of a possible link between cosmic rays and Earth’s climate. J. Geophys. Res. 2001, 106, 3381–3387. [Google Scholar] [CrossRef]
- Pierce, J.R.; Adams, P.J. Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys. Res. Lett. 2009, 36, L09820. [Google Scholar] [CrossRef]
- Duplissy, J.; Enghoff, M.B.; Aplin, K.L.; Arnold, F.; Aufmhoff, H.; Avngaard, M.; Baltensperger, U.; Bondo, T.; Bingham, R.; Carslaw, K.; et al. Results from the CERN pilot CLOUD experiment. Atmos. Chem. Phys. 2010, 10, 1635–1647. [Google Scholar] [CrossRef]
- Kirkby, J.; Curtius, J.; Almeida, J.; Dunne, E.; Duplissy, J.; Ehrhart, S.; Franchin, A.; Gagné, S.; Ickes, L.; Kürten, A.; et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 2011, 476, 429–433. [Google Scholar] [CrossRef]
- Kitaba, I.; Hyodo, M.; Katoh, S.; Dettman, D.L.; Sato, H. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal. Proc. Natl. Acad. Sci. USA 2013, 110, 1215–1220. [Google Scholar] [CrossRef]
- Kitaba, I.; Hyodo, M.; Nakagawa, T.; Katoh, S.; Dettman, D.L.; Sato, H. Geological support for the Umbrella Effect as a link between geomagnetic field and climate. Sci. Rep. 2017, 7, 40682. [Google Scholar] [CrossRef]
- Ueno, Y.; Hyodo, M.; Yang, T.; Katoh, S. Intensified East Asian winter monsoon during the last geomagnetic reversal transition. Sci. Rep. 2019, 9, 9389. [Google Scholar] [CrossRef]
- Jordanova, D.; Hus, J.; Evlogiev, J.; Geeraerts, R. Palaeomagnetism of the loess/palaeosol sequence in Viatovo (NE Bulgaria) in the Danube basin. Phys. Earth Planet. Inter. 2008, 167, 71–83. [Google Scholar] [CrossRef]
- Forster, T.; Heller, F.; Evans, M.E.; Havliček, P. Loess in the Czech Republic: Magnetic properties and paleoclimate. Studia Geoph. et Geod. 1996, 40, 243–261. [Google Scholar] [CrossRef]
- Márton, P. Paleomagnetism of the Paks brickyard exposures. Acta Geol. Acad. Sci. Hung. 1979, 22, 443–449. [Google Scholar]
- Sartori, M.; Heller, F.; Forster, T.; Borkovec, M.; Hammann, J.; Vincent, E. Magnetic properties of loess grain size fractions from the section at Paks, Hungary. Phys. Earth Planet. Inter. 1999, 116, 53–64. [Google Scholar] [CrossRef]
- Marković, S.B.; Hambach, U.; Stevens, T.; Kukla, G.J.; Heller, F.; McCoy, W.D.; Oches, E.A.; Buggle, B.; Zöller, L. The last million years recorded at the Stari Slankamen (Northern Serbia) loess-palaeosol sequence: Revised chronostratigraphy and long-term environmental trends. Quat. Sci. Rev. 2011, 30, 1142–1154. [Google Scholar] [CrossRef]
- Marković, S.B.; Stevens, T.; Kukla, G.J.; Hambach, U.; Fitzsimmons, K.E.; Gibbard, P.; Buggle, B.; Zech, M.; Guo, Z.; Hao, Q.; et al. Danube loess stratigraphy—Towards a pan-European loess stratigraphic model. Earth-Sci. Rewievs 2015, 148, 228–258. [Google Scholar] [CrossRef]
- Nawrocki, J.; Łanczont, M.; Rosowiecka, O.; Bogucki, C. Magnetostratigraphy of the loess-palaeosol key Palaeolithic section at Korolevo (Transcarpathia, W Ukraine). Quat. Int. 2016, 399, 72–85. [Google Scholar] [CrossRef]
- Gendler, T.S.; Heller, F.; Tsatskin, A.; Spassov, S.; Pasquier, J.D.; Faustov, S.S. Roxolany and Novaya Etuliya—Key sections in the western Black Sea loess area: Magnetostratigraphy, rock magnetism, and paleopedology. Quat. Int. 2006, 152–153, 78–93. [Google Scholar] [CrossRef]
- Nawrocki, J.; Bogucki, A.; Łanczont, M.; Nowaczyk, N.R. The Matuyama–Brunhes boundary and the nature of magnetic remanence acquisition in the loess–palaeosol sequence from the western part of the East European loess province. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 188, 39–50. [Google Scholar] [CrossRef]
- Hlavatskyi, D.; Bakhmutov, V. Early–Middle Pleistocene Magnetostratigraphic and Rock Magnetic Records of the Dolynske Section (Lower Danube, Ukraine) and Their Application to the Correlation of Loess–Palaeosol Sequences in Eastern and South-Eastern Europe. Quaternary 2021, 4, 43. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, C.; Hu, P.; Jiang, Z.; Ge, K.; Roberts, A.P. Magnetostratigraphy of Chinese loess–paleosol sequences. Earth-Sci. Rev. 2015, 150, 139–167. [Google Scholar] [CrossRef]
- Újvári, G.; Varga, A.; Raucsik, B.; Kovács, J. The Paks loess-paleosol sequence: A record of chemical weathering and provenance for the last 800 ka in the mid-Carpathian Basin. Quat. Int. 2014, 319, 22–37. [Google Scholar] [CrossRef]
- Maher, B.A.; Taylor, R.M. Formation of ultrafine-grained magnetite in soils. Nature 1988, 336, 368–370. [Google Scholar] [CrossRef]
- Evans, M.E. Magnetoclimatology of aeolian sediments. Geophys. J. Int. 2001, 144, 495–497. [Google Scholar] [CrossRef]
- Kirschvink, J. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int. 1980, 62, 699–718. [Google Scholar] [CrossRef]
- Tauxe, L. Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice. Rev. Geophys. 1993, 31, 319–354. [Google Scholar] [CrossRef]
- Norušis, M.J. SPSS for Windows Professional Statistic Release 6.0; SPSS Inc.: Chicago, IL, USA, 1993; 385p. [Google Scholar]
- Özdemir, Ö.; Dunlop, D.J. Thermoremanence and Néel temperature of Goethite. Geophys. Res. Lett. 1996, 23, 921–924. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, C.; Yu, Y.; Torrent, J.; Jackson, M.J.; Banerjee, S.K.; Zhu, R. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols. Geophys. J. Int. 2005, 161, 102–112. [Google Scholar] [CrossRef]
- Bradák, B.; Újvári, G.; Seto, Y.; Hyodo, M.; Végh, T. A conceptual magnetic fabric development model for the Paks loess in Hungary. Aeolian Res. 2018, 30, 20–31. [Google Scholar] [CrossRef]
- Bradák, B.; Seto, Y.; Hyodo, M.; Szeberényi, J. Significance of ultrafine grains in the magnetic fabric of paleosols. Geoderma 2018, 330, 125–135. [Google Scholar] [CrossRef]
- Ao, H.; Dekkers, M.J.; Deng, C.; Zhu, R. Palaeoclimatic significance of the Xiantai fluvio-lacustrine sequence in the Nihewan Basin (North China), based on rock magnetic properties and claymineralogy. Geophys. J. Int. 2009, 177, 913–924. [Google Scholar] [CrossRef]
- Maegakiuchi, K.; Hyodo, M.; Kitaba, I.; Hirose, K.; Katoh, S.; Sato, H. Brief sea-level fall event and centennial to millennial sea-level variations during Marine Isotope Stage 19 in Osaka Bay, Japan. J. Quaternary Sci. 2016, 31, 809–822. [Google Scholar] [CrossRef]
- Guyodo, Y.; Valet, J.-P. Global changes in geomagnetic intensity during the past 800 thousand years. Nature 1999, 399, 249–252. [Google Scholar] [CrossRef]
- Valet, J.P.; Fournier, A.; Courtillot, V.; Herrero-Bervera, E. Dynamical similarity of geomagnetic field reversals. Nature 2012, 490, 89–93. [Google Scholar] [CrossRef]
- Channell, J.E.T.; Mazaud, A.; Sullivan, P.; Turner, S.; Raymo, M.E. Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Sites 983 and 984 (Iceland Basin). J. Geophys. Res. Solid Earth 2002, 107, 2114–2127. [Google Scholar] [CrossRef]
- Guyodo, Y.; Acton, G.D.; Brachfeld, S.; Channell, J.E.T. A sedimentary paleomagnetic record of the Matuyama Chron from the Western Antarctic margin (ODP Site 1101). Earth Planet. Sci. Lett. 2001, 191, 61–74. [Google Scholar] [CrossRef]
- Panaiotu, C.G.; Panaiotu, E.C.; Grama, A.; Necula, C. Paleoclimatic record from a loess-paleosol profile in southeastern Romania. Phys. Chem. Earth Part A 2001, 26, 893–898. [Google Scholar] [CrossRef]
- Kraus, M.J. Paleosols in clastic sedimentary rocks: Their geologic applications. Earth Sci. Rev. 1999, 47, 41–70. [Google Scholar] [CrossRef]
- Újvári, G.; Kele, S.; Bernasconi, S.M.; Haszpra, L.; Novothny, Á.; Bradák, B. Clumped isotope paleotemperatures from MIS 5 stage soil carbonates in southern Hungary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 518, 72–81. [Google Scholar] [CrossRef]
- Forster, T.; Evans, M.E.; Heller, F. The frequency dependence of low field susceptibility in loess sediments. Geophys. J. Int. 1994, 118, 636–642. [Google Scholar] [CrossRef]
- Bradák, B.; Seto, Y.; Stevens, T.; Újvári, G.; Feher, K.; Költringer, C. Magnetic susceptibility in the European Loess Belt: New and existing models of magnetic enhancement in loess. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 569, 110329. [Google Scholar] [CrossRef]
- Balescu, S.; Jordanova, D.; Brisson, L.F.; Hardy, F.; Huot, S.; Lamothe, M. Luminescence chronology of the northeastern Bulgarian loess-paleosol sequences (Viatovo and Kaolinovo). Quat. Int. 2020, 552, 15–24. [Google Scholar] [CrossRef]
- Rădan, S.C. Towards a synopsis of dating the loess from the Romanian Plain and Dobrogea: Authors and methods through time. GeoEcoMar 2012, 18, 153–172. Available online: https://www.geoecomar.ro/website/publicatii/Nr.18-2012/12_radan_BT.pdf (accessed on 4 August 2019).
- Jia, J.; Lu, H.; Wang, Y.; Xia, D. Variations in the iron mineralogy of a loess section in Tajikistan during the mid-Pleistocene and late Pleistocene: Implications for the climatic evolution in Central Asia. Geochem. Geophys. Geosystems 2018, 19, 1244–1258. [Google Scholar] [CrossRef]
- Forster, T.; Heller, F. Loess deposits from the Tajik depression (Central Asia): Magnetic properties and paleoclimate. Earth Planet. Sci. Lett. 1994, 128, 501–512. [Google Scholar] [CrossRef]
- Song, Y.; Fang, X.; Torii, M.; Ishikawa, N.; Li, J.; An, Z. Late Neogene rock magnetic record of climatic variation from Chinese eolian sediments related to uplift of the Tibetan Plateau. J. Asian Earth Sci. 2007, 30, 324–332. [Google Scholar] [CrossRef]
- Guo, Z.T.; Berger, A.; Yin, Q.Z.; Qin, L. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim. Past 2009, 5, 21–31. [Google Scholar] [CrossRef]
- Bronger, A.; Heinkele, T. Micromorphology and genesis of paleosols in the Luochuan loess section, China: Pedostratigraphic and environmental implications. Geoderma 1989, 45, 123–143. [Google Scholar] [CrossRef]
ELB | Site | Litho-Stratigraphical Position | Chronostrat. | Ref. |
---|---|---|---|---|
Bulgaria | Viatovo (Bulgaria) | L7 loess (MBT: S6 forest-like paleosol, L7 loess and underlying Red clay) | MIS20 | [24] |
Czech Republic | Červený Kopec (Red Hill, Brno) | PC10 paleosol complex | MIS19 | [25] |
Hungary | Paks | Underlying loess of Paks Double 2 paleosol | MIS20 | [26] |
Upper transient horizon of Paks Double 2 (PD2), a red, clayey, homogeneous, well-developed paleosol | MIS19 | [27] | ||
Serbia | Stari Slankamen | Lower part of loess unit V-L9 | MIS22 | [28,29] |
Ukraine | Korolevo | Bt horizon of S7 well-developed paleosol | MIS19 | [30] |
Roxolany | Loess layer between the PK6.2-PK7 soil horizon of the PK5-PK7 paleosol complex (‘Roxolany soil suite’) | MIS19 | [31] | |
Novaya Etuliya | PK7 paleosol horizon of the PK5-PK7 paleosol complex (‘Roxolany soil suite’) | |||
Zahvizdja | Accumulation horizon of S7, a well-developed, gleyey interglacial soil | MIS19 | [32] | |
Dolynske | D-S7S3 and D-S8S1 luvisol, and chromic luvisol-type palaeosol units | MIS19 | [33] |
Site | Characteristics of the MBT/MIS19 Units (Mag. Sus. Curve) | Ref. | ||
---|---|---|---|---|
European Loess Belt | Červený Kopec | No clear marks of the cooling event | [25] | |
NW of EEP | Koriten | No clear marks of the cooling event (small peaks representing the MIS19 paleosol) | [56] | |
Viatovo | Smaller peaks on the local maxima of MIS19 paleosol (similar to Xifeng, CLP) | [56] | ||
Central Danube Basin | Paks | A step-like feature on the local maxima of MIS19 paleosol | ||
Novaya Etuliya | No clear marks of the cooling event | [31] | ||
Stari Slankamen | Smaller peaks and a thick upper transition horizon on the local maxima of the MIS19 paleosol (similar to Chaona and Chanwu). | [29] | ||
LDB | Zimnicea | A step-like feature on the local maxima of the MIS19 paleosol | [57] | |
Korolevo | No clear marks of the cooling event (narrow peak representing the MIS19 paleosol) | [30] | ||
SW of EEP | Roxolany | Sharp boundary between the MIS19 paleosol and the overlaying loess (abrupt change in the climate or hiatus) | [31] | |
Zahvizdja | No clear marks of the cooling event | [30] | ||
Dolynske | A step-like feature on the local maxima of the MIS19 paleosol | [33] | ||
Central Asia | Darai Kalon | A step-like feature on the local maxima of MIS19 paleosol | [58] | |
Karamaidan | A step-like feature on the local maxima of MIS19 paleosol (not a characteristic appearance) | [59] | ||
East Asia (CLP) | Chaona | Smaller peaks and a thick upper transition horizon on the local maxima of MIS19 paleosol (similar to Stari-Slankamen and Chanwu) | [60] | |
Chanwu | Smaller peaks and a thick upper transition horizon on the local maxima of MIS19 paleosol (similar to Stari-Slankamen and Chaona) | [61] | ||
Lingtai | A step-like feature on the local maxima of the MIS19 paleosol | [23] | ||
Luochuan | Thick upper transition horizon (similar to Chanwu) | [34] | ||
Xifeng | Smaller peaks and a thick upper transition horizon on the local maxima of the MIS19 paleosol (similar to Chanwu and Luochuan). | [23] | ||
Zhaojiachuan | A step-like feature on the local maxima of the MIS19 paleosol | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bradák, B.; Hyodo, M.; Horváth, E. Cooling Following the Magnetic Field Weakening During the Matuyama–Brunhes Transition Recorded by Paks Loess, Hungary. Quaternary 2025, 8, 54. https://doi.org/10.3390/quat8040054
Bradák B, Hyodo M, Horváth E. Cooling Following the Magnetic Field Weakening During the Matuyama–Brunhes Transition Recorded by Paks Loess, Hungary. Quaternary. 2025; 8(4):54. https://doi.org/10.3390/quat8040054
Chicago/Turabian StyleBradák, Balázs, Masayuki Hyodo, and Erzsébet Horváth. 2025. "Cooling Following the Magnetic Field Weakening During the Matuyama–Brunhes Transition Recorded by Paks Loess, Hungary" Quaternary 8, no. 4: 54. https://doi.org/10.3390/quat8040054
APA StyleBradák, B., Hyodo, M., & Horváth, E. (2025). Cooling Following the Magnetic Field Weakening During the Matuyama–Brunhes Transition Recorded by Paks Loess, Hungary. Quaternary, 8(4), 54. https://doi.org/10.3390/quat8040054