Stable Isotope Analysis of Pleistocene Proboscideans from Afar (Ethiopia) and the Dietary and Ecological Contexts of Palaeoloxodon
Abstract
:1. Introduction and Background
2. Materials and Methods
2.1. Fossil Assemblages
2.2. Sample Collection
2.3. Sample Pre-Treatment
2.4. Sample Isotopic Analysis
2.5. Data Analysis
3. Results
3.1. Bulk Samples
3.1.1. δ13C (Carbon Isotope Ratios)
3.1.2. δ18O (Oxygen Isotope Ratios)
3.2. Serial Samples
3.3. Bone Surface Modification
4. Discussion
4.1. Carbon and Oxygen Isotope Ratios of the Non-Proboscidean Fauna
4.2. Carbon and Oxygen Isotope Ratios of the Palaeoloxodon Sample
4.3. Paleoenvironmental Implications of the Carbon and Oxygen Isotope Ratios
4.4. Ecological Dynamics of Palaeoloxodon in the Awash Basin
4.5. Were Hominins Part of the Equation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Sahle, Y.; Beyene, Y.; Defleur, A.; Asfaw, B.; WoldeGabriel, G.; Hart, W.K.; Morgan, L.E.; Renne, P.R.; Carlson, J.P.; White, T.D. Revisiting Herto: New evidence of Homo sapiens from Ethiopia. In Modern Human Origins and Dispersals; Sahle, Y., Reyes-Centeno, H., Bentz, C., Eds.; Kerns Verlag: Tübingen, Germany, 2019; pp. 105–137. [Google Scholar]
- McKee, J.K. Faunal turnover rates and mammalian biodiversity of the late Pliocene and Pleistocene of Eastern Africa. Paleobiology 2001, 27, 500–511. [Google Scholar] [CrossRef]
- Potts, R.; Behrensmeyer, A.K.; Faith, J.T.; Tryon, C.A.; Brooks, A.S.; Yellen, J.E.; Deino, A.L.; Kinyanjui, R.; Clark, J.B.; Haradon, C.M.; et al. Environmental dynamics during the onset of the Middle Stone Age in eastern Africa. Science 2018, 360, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Vidal, C.M.; Lane, C.S.; Asrat, A.; Barfod, D.N.; Mark, D.F.; Tomlinson, E.L.; Tadesse, A.Z.; Yirgu, G.; Deino, A.; Hutchison, W.; et al. Age of the oldest known Homo sapiens from eastern Africa. Nature 2022, 601, 579–583. [Google Scholar] [CrossRef]
- Faith, J.T.; Du, A.; Behrensmeyer, A.K.; Davies, B.; Patterson, D.B.; Rowan, J.; Wood, B. Rethinking the ecological drivers of hominin evolution. Trends Ecol. Evol. 2021, 36, 797–807. [Google Scholar] [CrossRef]
- Lupien, R.L.; Russell, J.M.; Subramanian, A.; Kinyanjui, R.; Beverly, E.J.; Uno, K.T.; de Menocal, P.; Dommain, R.; Potts, R. Eastern African environmental variation and its role in the evolution and cultural change of Homo over the last 1 million years. J. Hum. Evol. 2021, 157, 103028. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.S.; Du, A.; Rowan, J.; Yost, C.L.; Billingsley, A.L.; Campisano, C.J.; Brown, E.T.; Deino, A.L.; Feibel, C.S.; Grant, K.; et al. Plio-Pleistocene environmental variability in Africa and its implications for mammalian evolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2107393119. [Google Scholar] [CrossRef]
- Bibi, F.; Cantalapiedra, J.L. Plio-Pleistocene African megaherbivore losses associated with community biomass restructuring. Science 2023, 380, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Faith, J.T.; Rowan, J.; Du, A. Late Cenozoic Faunal and Ecological Change in Africa. Annu. Rev. Earth Planet. Sci. 2024, 52, 379–407. [Google Scholar] [CrossRef]
- Zhang, H. Evolution and Systematics of the Elephantidae (Mammalia, Proboscidea) from the Late Miocene to Recent. Ph.D. Thesis, University of Bristol, Bristol, UK, 2020. Unpublished. [Google Scholar]
- Sanders, W.J. Evolution and Fossil Record of African Proboscidea, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Sanders, W.J.; Gheerbrant, E.; Harris, J.M.; Saegusa, H.; Delmer, C. Proboscidea. In Cenozoic Mammals of Africa; Werdelin, L., Sanders, W.J., Eds.; University of California Press: Berkeley, CA, USA, 2010; pp. 163–251. [Google Scholar]
- Lister, A.M. The role of behaviour in adaptive morphological evolution of African proboscideans. Nature 2013, 500, 331–334. [Google Scholar] [CrossRef]
- Saarinen, J.; Lister, A.M. Fluctuating climate and dietary innovation drove ratcheted evolution of proboscidean dental traits. Nat. Ecol. Evol. 2023, 7, 1490–1502. [Google Scholar] [CrossRef]
- Dietrich, W.O. Elephas antiquus recki n.f. aus dem Diluvium Deutch-Ostafrikas. In Wissenschaftliche Ergebnisse; Reck, H., Ed.; Oldoway Expedition: Berlin, Germany, 1915; pp. 1–80. [Google Scholar]
- Arambourg, C. L’Elephas recki Dietrich, sa position systematique et ses affinites. Bull. De La Société Géologique De Fr. 1942, 5, 73–89. [Google Scholar] [CrossRef]
- Arambourg, C.; Chavaillon, J.; Coppens, Y. Résultatsde la Nouvelle Mission de l’Omo (2e Campagne 1968). Comptes Rendus Des Séances L’académie Des Sci. 1969, 268, 759–762. [Google Scholar]
- Maglio, V.J. Origin and evolution of the Elephantidae. Trans. Amer. Philos. Soc. 1973, 63, 1–144. [Google Scholar] [CrossRef]
- Beden, M. Les Eléphants (Loxodonta et Elephas) d’Afrique Orientale. Systématique, Phylogénie, Intéret Biochronologie. Ph.D. Thesis, Faculté de Sciences, Université de Poitiers, Poitiers, France, 1979. [Google Scholar]
- Beden, M. Family Elephantidae. In Koobi Fora Research Project 2; Harris, J.M., Ed.; Clarendon Press: Oxford, UK, 1983; pp. 40–129. [Google Scholar]
- Kalb, J.E.; Mebrate, A. Fossil elephantoids: From the hominid-bearing Awash group, middle Awash valley, afar depression, Ethiopia. Trans. Am. Philos. Soc. 1993, 83, i–114. [Google Scholar] [CrossRef]
- Todd, N.E. Reanalysis of African Elephas recki: Implications for time, space and taxonomy. Quat. Int. 2005, 126, 65–72. [Google Scholar] [CrossRef]
- Saegusa, H.; Gilbert, W.H. Elephantidae. In Homo Erectus: Pleistocene Evidence from the Middle Awash, Ethiopia; Gilbert, W.H., Asfaw, B., Eds.; University of California Press: Berkeley, CA, USA, 2009; pp. 193–226. [Google Scholar]
- Sanders, W.J.; Haile-Selassie, Y. A new assemblage of mid-Pliocene proboscideans from the Woranso-Mille area, Afar region, Ethiopia: Taxonomic, evolutionary, and paleoecological considerations. J. Mamm. Evol. 2012, 19, 105–128. [Google Scholar] [CrossRef]
- Larramendi, A.; Zhang, H.; Palombo, M.R.; Ferretti, M.P. The evolution of Palaeoloxodon skull structure: Disentangling phylogenetic, sexually dimorphic, ontogenetic, and allometric morphological signals. Quat. Sci. Rev. 2020, 229, 106090. [Google Scholar] [CrossRef]
- Manthi, F.K.; Sanders, W.J.; Plavcan, J.M.; Cerling, T.E.; Brown, F.H. Late Middle Pleistocene Elephants from Natodomeri, Kenya and the Disappearance of Elephas (Proboscidea, Mammalia) in Africa. J. Mamm. Evol. 2020, 27, 483–495. [Google Scholar] [CrossRef]
- Klein, R.G. Why anatomically modern people did not disperse from Africa 100,000 years ago. In Neandertals and Modern Humans in Western Asia; Akazawa, T., Aoki, K., Bar-Yosef, O., Eds.; Springer: Boston, MA, USA, 1998; pp. 509–521. [Google Scholar]
- Porat, N.; Chazan, M.; Grün, R.; Aubert, M.; Eisenmann, V.; Horwitz, L.K. New radiometric ages for the Fauresmith industry from Kathu Pan, southern Africa: Implications for the Earlier to Middle Stone Age transition. J. Archaeol. Sci. 2010, 37, 269–283. [Google Scholar] [CrossRef]
- Wilkins, J.; Schoville, B.J.; Brown, K.S.; Chazan, M. Evidence for early hafted hunting technology. Science 2012, 338, 942–946. [Google Scholar] [CrossRef]
- Ben-Dor, M.; Barkai, R. A matter of fat: Hunting preferences affected Pleistocene megafaunal extinctions and human evolution. Quat. Sci. Rev. 2024, 331, 108660. [Google Scholar] [CrossRef]
- Cerling, T.E.; Andanje, S.A.; Blumenthal, S.A.; Brown, F.H.; Chritz, K.L.; Harris, J.M.; Hart, J.A.; Kirera, F.M.; Kaleme, P.; Leakey, L.N.; et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl. Acad. Sci. USA 2015, 112, 11467–11472. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.G. Influence of Plio-Pleistocene aridification on human evolution: Evidence from paleosols of the Turkana Basin, Kenya. Am. J. Phys. Anthropol. 2004, 123, 106–118. [Google Scholar] [CrossRef]
- Owen, R.B.; Muiruri, V.M.; Lowenstein, T.K.; Renaut, R.W.; Rabideaux, N.; Luo, S.; Deino, A.L.; Sier, M.J.; Dupont-Nivet, G.; McNulty, E.P.; et al. Progressive aridification in East Africa over the last half million years and implications for human evolution. Proc. Natl. Acad. Sci. USA 2018, 115, 11174–11179. [Google Scholar] [CrossRef] [PubMed]
- Caley, T.; Souron, A.; Uno, K.T.; Macho, G.A. Climate and Human Evolution: Insights from Marine Records. Annu. Rev. Mar. Sci. 2024, 17, 23–53. [Google Scholar] [CrossRef]
- Castañeda, I.S.; Caley, T.; Dupont, L.; Kim, J.H.; Malaizé, B.; Schouten, S. Middle to Late Pleistocene vegetation and climate change in subtropical southern East Africa. Earth Planet. Sci. Lett. 2016, 450, 306–316. [Google Scholar] [CrossRef]
- Foerster, V.; Asrat, A.; Bronk Ramsey, C.; Brown, E.T.; Chapot, M.S.; Deino, A.; Duesing, W.; Grove, M.; Hahn, A.; Junginger, A.; et al. Pleistocene climate variability in eastern Africa influenced hominin evolution. Nat. Geosci. 2022, 15, 805–811. [Google Scholar] [CrossRef]
- Potts, R. Environmental hypotheses of hominin evolution. Am. J. Phys. Anthropol. 1998, 107, 93–136. [Google Scholar] [CrossRef]
- Orlando, L.; Metcalf, J.L.; Alberdi, M.T.; Telles-Antunes, M.; Bonjean, D.; Otte, M.; Martin, F.; Eisenmann, V.; Mashkour, M.; Morello, F.; et al. Revising the recent evolutionary history of equids using ancient DNA. Proc. Natl. Acad. Sci. USA 2009, 106, 21754–21759. [Google Scholar] [CrossRef]
- Boisserie, J.R.; Zazzo, A.; Merceron, G.; Blondel, C.; Vignaud, P.; Likius, A.; Brunet, M. Diets of modern and late Miocene hippopotamids: Evidence from carbon isotope composition and micro-wear of tooth enamel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 221, 153–174. [Google Scholar] [CrossRef]
- Malherbe, M. Dental Occlusal Form and Function in Equus Capensis: Evaluating a Controvertible Taxonomic Status. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2020. [Google Scholar]
- Assefa, Z.; Yirga, S.; Reed, K.E. The large-mammal fauna from the Kibish Formation. J. Hum. Evol. 2008, 55, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Mihlbachler, M.C.; Solounias, N. Coevolution of tooth crown height and diet in oreodonts (Merycoidodontidae, Artiodactyla) examined with phylogenetically independent contrasts. J. Mamm. Evol. 2006, 13, 11–36. [Google Scholar] [CrossRef]
- Souron, A. Diet and ecology of extant and fossil wild pigs. In Ecology, Conservation and Management of Wild Pigs and Peccaries; Cambridge University Press: Cambridge, UK, 2017; pp. 29–38. [Google Scholar]
- Martin, P.S. Africa and Pleistocene overkill. Nature 1966, 212, 339–342. [Google Scholar] [CrossRef]
- Martin, P.S. Prehistoric overkill. In Pleistocene Extinctions: The Search for a Cause; Martin, P.S., Wright, H.E., Jr., Eds.; Yale University Press: New Heaven, CT, USA, 1967; pp. 75–120. [Google Scholar]
- Surovell, T.A.; Waguespack, N.M.; Brantingham, P.J. Global archaeological evidence for proboscidean overkill. Proc. Natl. Acad. Sci. USA 2005, 102, 6231–6236. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra, J.L.; Sanisidro, O.; Zhang, H.; Alberdi, M.T.; Prado, J.L.; Blanco, F.; Saarinen, J. The rise and fall of proboscidean ecological diversity. Nat. Ecol. Evol. 2021, 5, 1266–1272. [Google Scholar] [CrossRef]
- Rundel, P.W.; Ehleringer, J.R.; Nagy, K.A. (Eds.) Stable Isotopes in Ecological Research; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Ben-David, M.; Flaherty, E.A. Stable isotopes in mammalian research: A beginner’s guide. J. Mammal. 2012, 93, 312–328. [Google Scholar] [CrossRef]
- Diefendorf, A.F.; Mueller, K.E.; Wing, S.L.; Koch, P.L.; Freeman, K.H. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc. Natl. Acad. Sci. USA 2010, 107, 5738–5743. [Google Scholar] [CrossRef]
- Kohn, M.J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl. Acad. Sci. USA 2010, 107, 19691–19695. [Google Scholar] [CrossRef]
- Groenewald, P.A.; Sealy, J.; Stynder, D.; Smith, K.M. Dietary resource partitioning among three coeval proboscidean taxa (Anancus capensis, Mammuthus subplanifrons, Loxodonta cookei) from the South African Early Pliocene locality of Langebaanweg E Quarry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 543, 109606. [Google Scholar] [CrossRef]
- Bryant, J.D.; Froelich, P.N. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 1995, 59, 4523–4537. [Google Scholar] [CrossRef]
- Bryant, J.D.; Froelich, P.N.; Fricke, H.C.; O’Neil, J.R.; Lynnerup, N. Oxygen isotope composition of human tooth enamel from medieval Greenland. Geology 1996, 24, 477–479. [Google Scholar] [CrossRef]
- Sponheimer, M.; Lee-Thorp, J.A. The oxygen isotope composition of mammalian enamel carbonate from Morea Estate, South Africa. Oecologia 2001, 126, 153–157. [Google Scholar] [CrossRef]
- Lee-Thorp, J.A.; Sponheimer, M. Opportunities and constraints for reconstructing palaeoenvironments from stable light isotope ratios in fossils. Geol. Q. 2005, 49, 195–204. [Google Scholar]
- Lee-Thorp, J.A. On Isotopes and Old Bones. Archaeometry 2008, 50, 925–950. [Google Scholar] [CrossRef]
- Levin, N.E.; Cerling, T.E.; Passey, B.H.; Harris, J.M.; Ehleringer, J.R. A stable isotope aridity index for terrestrial environments. Proc. Natl. Acad. Sci. USA 2006, 103, 11201–11205. [Google Scholar] [CrossRef]
- Blumenthal, S.A.; Levin, N.E.; Brown, F.H.; Brugal, J.P.; Chritz, K.L.; Harris, J.M.; Jehle, G.E.; Cerling, T.E. Aridity and hominin environments. Proc. Natl. Acad. Sci. USA 2017, 114, 7331–7336. [Google Scholar] [CrossRef] [PubMed]
- Faith, J.T. Paleodietary change and its implications for aridity indices derived from δ18O of herbivore tooth enamel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 490, 571–578. [Google Scholar] [CrossRef]
- Sahle, Y.; Giusti, D.; Tourloukis, V. Newly discovered Middle Pleistocene hominid-bearing deposits from the Lower Awash basin, Ethiopia. Anthropol. Sci. 2019, 127, 141–147. [Google Scholar] [CrossRef]
- Semaw, S.; Rogers, M.J.; Simpson, S.W.; Levin, N.E.; Quade, J.; Dunbar, N.; McIntosh, W.C.; Cáceres, I.; Stinchcomb, G.E.; Holloway, R.L.; et al. Co-occurrence of Acheulian and Oldowan artifacts with Homo erectus cranial fossils from Gona, Afar, Ethiopia. Sci. Adv. 2020, 6, eaaw4694. [Google Scholar] [CrossRef]
- Stinchcomb, G.E.; Quade, J.; Levin, N.E.; Iverson, N.; Dunbar, N.; McIntosh, W.; Arnold, L.J.; Demuro, M.; Duval, M.; Grün, R.; et al. Fluvial response to Quaternary hydroclimate in eastern Africa: Evidence from Gona, Afar, Ethiopia. Quat. Sci. Rev. 2023, 309, 108083. [Google Scholar] [CrossRef]
- Uno, K.T.; Fisher, D.C.; Wittemyer, G.; Douglas-Hamilton, I.; Carpenter, N.; Omondi, P.; Cerling, T.E. Forward and inverse methods for extracting climate and diet information from stable isotope profiles in proboscidean molars. Quat. Int. 2020, 557, 92–109. [Google Scholar] [CrossRef]
- Yang, D.; Bowen, G.J.; Uno, K.T.; Podkovyroff, K.; Carpenter, N.A.; Fernandez, D.P.; Cerling, T.E. BITS: A Bayesian Isotope Turnover and Sampling model for strontium isotopes in proboscideans and its potential utility in movement ecology. Methods Ecol. Evol. 2023, 14, 2800–2813. [Google Scholar] [CrossRef]
- Sahle, Y.; El Zaatari, S.; White, T.D. Hominid butchers and biting crocodiles in the African Plio–Pleistocene. Proc. Natl. Acad. Sci. USA 2017, 114, 13164–13169. [Google Scholar] [CrossRef]
- Haynes, G. Late quaternary proboscidean sites in Africa and Eurasia with possible or probable evidence for hominin involvement. Quaternary 2022, 5, 18. [Google Scholar] [CrossRef]
- Sponheimer, M.; Lee-Thorp, J.A. Alteration of Enamel Carbonate Environments during Fossilization. J. Archaeol. Sci. 1999, 26, 143–150. [Google Scholar] [CrossRef]
- Sponheimer, M.; Lee-Thorp, J.A. Enamel diagenesis at South African Australopith sites: Implications for paleoecological reconstruction with trace elements. Geochim. Cosmochim. Acta 2006, 70, 1644–1654. [Google Scholar] [CrossRef]
- Luyt, J.; Sealy, J. Inter-tooth comparison of δ13C and δ18O in ungulate tooth enamel from south-western Africa. Quat. Int. 2018, 495, 144–152. [Google Scholar] [CrossRef]
- Webb, E.C.; White, C.D.; Longstaffe, F.J. Investigating inherent differences in isotopic composition between human bone and enamel bioapatite: Implications for reconstructing residential histories. J. Archaeol. Sci. 2014, 50, 97–107. [Google Scholar] [CrossRef]
- Stichler, W. Interlaboratory comparison of new materials for carbon and oxygen ratio measurements. In Proceedings of the Consultants’ Meeting, Vienna, Austria, 1–3 December 1993; IAEA-TECDOC-825; IAEA: Vienna, Austria, 1995; pp. 67–74. [Google Scholar]
- Vogel, J.C. Isotopic assessment of the dietary habits of ungulates. S. Afr. J. Sci. 1978, 74, 298. [Google Scholar]
- Cerling, T.E.; Harris, J.M.; MacFadden, B.J.; Leakey, M.G.; Quade, J.; Eisenmann, V.; Ehleringer, J.R. Global vegetation change through the Miocene/Pliocene boundary. Nature 1997, 389, 153–158. [Google Scholar] [CrossRef]
- Sponheimer, M.; Lee-Thorp, J.A.; DeRuiter, D.J.; Smith, J.M.; Van Der Merwe, N.J.; Reed, K.; Marcus, W. Diets of southern African Bovidae: Stable isotope evidence. J. Mammal. 2003, 84, 471–479. [Google Scholar] [CrossRef]
- Luyt, J.; Faith, J.T.; Sealy, J. Large herbivore δ18O as a proxy for aridity in the South African winter and year-round rainfall zone. Quat. Res. 2024, 122, 92–105. [Google Scholar] [CrossRef]
- Braun, D.R.; Levin, N.E.; Stynder, D.; Herries, A.I.; Archer, W.; Forrest, F.; Roberts, D.L.; Bishop, L.C.; Matthews, T.; Lehmann, S.B.; et al. Mid-Pleistocene hominin occupation at Elandsfontein, Western Cape, South Africa. Quat. Sci. Rev. 2013, 82, 145–166. [Google Scholar] [CrossRef]
- Lehmann, S.B.; Braun, D.R.; Dennis, K.J.; Patterson, D.B.; Stynder, D.D.; Bishop, L.C.; Forrest, F.; Levin, N.E. Stable isotopic composition of fossil mammal teeth and environmental change in southwestern South Africa during the Pliocene and Pleistocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 457, 396–408. [Google Scholar] [CrossRef]
- Robinson, J.R.; Rowan, J.; Faith, J.T.; Fleagle, J.G. Paleoenvironmental change in the late middle Pleistocene–Holocene Kibish Formation, southern Ethiopia: Evidence from ungulate isotopic ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 450, 50–59. [Google Scholar] [CrossRef]
- Levin, N.E.; Simpson, S.W.; Quade, J.; Cerling, T.E.; Frost, S.R. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. In The Geology of Early Humans in the Horn of Africa; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2008; Volume 446, pp. 215–234. [Google Scholar]
- Blondel, C.; Rowan, J.; Merceron, G.; Bibi, F.; Negash, E.; Barr, W.A.; Boisserie, J.R. Feeding ecology of Tragelaphini (Bovidae) from the Shungura Formation, Omo Valley, Ethiopia: Contribution of dental wear analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 496, 103–120. [Google Scholar] [CrossRef]
- Ramírez-Pedraza, I.; Tornero, C.; Aouraghe, H.; Rivals, F.; Patalano, R.; Haddoumi, H.; Sala-Ramos, R. Arid, mosaic environments during the Plio-Pleistocene transition and early hominin dispersals in northern Africa. Nat. Commun. 2024, 15, 8393. [Google Scholar] [CrossRef]
- Souron, A. Morphology, diet, and stable carbon isotopes: On the diet of Theropithecus and some limits of uniformitarianism in paleoecology. Am. J. Phys. Anthropol. 2018, 166, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Souron, A.; Balasse, M.; Boisserie, J.R. Intra-tooth isotopic profiles of canines from extant Hippopotamus amphibius and late Pliocene hippopotamids (Shungura Formation, Ethiopia): Insights into the seasonality of diet and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 342, 97–110. [Google Scholar] [CrossRef]
- Chritz, K.L.; Blumenthal, S.A.; Cerling, T.E.; Klingel, H. Hippopotamus (H. amphibius) diet change indicates herbaceous plant encroachment following megaherbivore population collapse. Sci. Rep. 2016, 6, 32807. [Google Scholar] [CrossRef]
- Gagnon, M.; Chew, A.E. Dietary preferences in extant African Bovidae. J. Mammal. 2000, 81, 490–511. [Google Scholar] [CrossRef]
- Berry, P.S.; Bercovitch, F.B. Seasonal and geographical influences on the feeding ecology of giraffes in the Luangwa Valley, Zambia: 1973–2014. Afr. J. Ecol. 2017, 55, 80–90. [Google Scholar] [CrossRef]
- Cerling, T.E.; Andanje, S.A.; Gakuya, F.; Kariuki, J.M.; Kariuki, L.; Kingoo, J.W.; Khayale, C.; Lekolool, I.; Macharia, A.N.; Anderson, C.R.; et al. Stable isotope ecology of black rhinos (Diceros bicornis) in Kenya. Oecologia 2018, 187, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.G.; Roman, D.C.; Alemseged, Z.; Reed, D.; Geraads, D.; Munro, S. Stratigraphy, depositional environments, and basin structure of the Hadar and Busidima Formations at Dikika, Ethiopia. Geol. Soc. Am. Spec. Pap. 2008, 446, 87–118. [Google Scholar]
- Bedaso, Z.; Wynn, J.G.; Alemseged, Z.; Geraads, D. Paleoenvironmental reconstruction of the Asbole fauna (Busidima Formation, Afar, Ethiopia) using stable isotopes. Geobios 2010, 43, 165–177. [Google Scholar] [CrossRef]
- Gilbert, W.H.; Frost, S.R. Cercopithecidae. In Homo erectus: Pleistocene Evidence from the Middle Awash, Ethiopia; Gilbert, W.H., Asfaw, B., Eds.; University of California Press: Berkeley, CA, USA, 2009; pp. 115–132. [Google Scholar]
- Kalb, J.E.; Jaegar, M.; Jolly, C.J.; Kana, B. Preliminary geology, paleontology and paleoecology of a Sangoan site at Andalee, Middle Awash Valley, Ethiopia. J. Archaeol. Sci. 1982, 9, 349–363. [Google Scholar] [CrossRef]
- Geraads, D.; Alemseged, Z.; Reed, D.; Wynn, J.; Roman, D.C. The Pleistocene fauna (other than Primates) from Asbole, lower Awash Valley, Ethiopia, and its environmental and biochronological implications. Geobios 2004, 37, 697–718. [Google Scholar] [CrossRef]
- Parra, R. Comparison of foregut and hindgut fermentation in herbivores. In The Ecology of Arboreal Folivores; Montgomery, G.G., Ed.; Smithsonian Inst. Press: Washington, DC, USA, 1978; pp. 209–229. [Google Scholar]
- Demment, M.W.; Van Soest, P.J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 1985, 125, 641–672. [Google Scholar] [CrossRef]
- Semprebon, G.M.; Rivals, F. Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 253, 332–347. [Google Scholar] [CrossRef]
- Feranec, R.S. Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): A morphological specialization creating ecological generalization. Paleobiology 2003, 29, 230–242. [Google Scholar] [CrossRef]
- Brooks, A.S.; Yellen, J.E.; Potts, R.; Behrensmeyer, A.K.; Deino, A.L.; Leslie, D.E.; Ambrose, S.H.; Ferguson, J.R.; d’Errico, F.; Zipkin, A.M.; et al. Long-distance stone transport and pigment use in the earliest Middle Stone Age. Science 2018, 360, 90–94. [Google Scholar] [CrossRef]
- Faith, J.T.; Rowan, J.; Du, A.; Barr, W.A. The uncertain case for human-driven extinctions prior to Homo sapiens. Quat. Res. 2020, 96, 88–104. [Google Scholar] [CrossRef]
- Berthelet, A.; Chavaillon, J. The early Palaeolithic butchery site of Barogali (Republic of Djibouti). In The World of Elephants. International Congress Proceedings, Consiglio Nazionale Delle Ricerche; Cavarretta, G., Gioia, P., Mussi, M., Palombo, M.R., Eds.; Consiglio Nazionale delle Ricerche: Rome, Italy, 2001; pp. 176–179. [Google Scholar]
- Wright, D.K.; Thompson, J.; Mackay, A.; Welling, M.; Forman, S.L.; Price, G.; Zhao, J.X.; Cohen, A.S.; Malijani, O.; Gomani-Chindebvu, E. Renewed geoarchaeological investigations of mwanganda’s village (elephant butchery site), Karonga, Malawi. Geoarchaeology 2014, 29, 98–120. [Google Scholar] [CrossRef]
- Clark, J.D.; Haynes, C.V., Jr. An elephant butchery site at Mwanganda’s Village, Karonga, Malawi, and its relevance for Palaeolithic archaeology. World Archaeol. 1970, 1, 390–411. [Google Scholar] [CrossRef]
- Domínguez-Rodrigo, M.; Pickering, T.R.; Bunn, H.T. Configurational approach to identifying the earliest hominin butchers. Proc. Natl. Acad. Sci. USA 2010, 107, 20929–20934. [Google Scholar] [CrossRef]
- Cifuentes-Alcobendas, G.; Domínguez-Rodrigo, M. More than meets the eye: Use of computer vision algorithms to identify stone tool material through the analysis of cut mark micro-morphology. Archaeol. Anthropol. Sci. 2021, 13, 167. [Google Scholar] [CrossRef]
- Egeland, C.P.; Pobiner, B.L.; Merritt, S.R.; Kunitz, S. Actualistic butchery studies in zooarchaeology: Where we’ve been, where we are now, and where we want to go. J. Anthropol. Archaeol. 2024, 73, 101565. [Google Scholar] [CrossRef]
- Domínguez-Rodrigo, M.; Bunn, H.T.; Yravedra, J. A critical re-evaluation of bone surface modification models for inferring fossil hominin and carnivore interactions through a multivariate approach: Application to the FLK Zinj archaeofaunal assemblage (Olduvai Gorge, Tanzania). Quat. Int. 2014, 322, 32–43. [Google Scholar] [CrossRef]
- Pante, M.C. The larger mammal fossil assemblage from JK2, Bed III, Olduvai Gorge, Tanzania: Implications for the feeding behavior of Homo erectus. J. Hum. Evol. 2013, 64, 68–82. [Google Scholar] [CrossRef]
- Smith, G.M.; Ruebens, K.; Gaudzinski-Windheuser, S.; Steele, T.E. Subsistence strategies throughout the African Middle Pleistocene: Faunal evidence for behavioral change and continuity across the Earlier to Middle Stone Age transition. J. Hum. Evol. 2019, 127, 1–20. [Google Scholar] [CrossRef]
- Yravedra, J.; Rubio-Jara, S.; Courtenay, L.A.; Martos, J.A. Mammal butchery by Homo erectus at the Lower Pleistocene acheulean site of Juma’s korongo 2 (JK2), bed III, Olduvai Gorge, Tanzania. Quat. Sci. Rev. 2020, 249, 106612. [Google Scholar] [CrossRef]
- Ichikawa, M. Elephant hunting by the Mbuti hunter-gatherers in the Eastern Congo Basin. In Tuebingen Paleoanthropology Book Series—Contributions in Paleoanthropology Band 1: Human-Elephant Interactions: From Past to Present; Konidaris, G., Barkai, R., Tourloukis, V., Harvati, K., Eds.; University of Tubingen Press: Tübingen, Germany, 2021; pp. 454–467. [Google Scholar]
- Bradfield, J. Identifying bone-tipped arrow types in the archaeological record of southern Africa: The contribution of use-trace studies. J. Afr. Archaeol. 2015, 13, 135–147. [Google Scholar] [CrossRef]
- Lupo, K.D.; Schmitt, D.N. Reframing prehistoric human-proboscidean interactions: On the use and implications of ethnohistoric records for understanding the productivity of hunting megaherbivores. J. Archaeol. Method Theory 2024, 31, 369–413. [Google Scholar] [CrossRef]
- Sahle, Y.; Hutchings, W.K.; Braun, D.R.; Sealy, J.C.; Morgan, L.E.; Negash, A.; Atnafu, B. Earliest stone-tipped projectiles from the Ethiopian Rift date to> 279,000 years ago. PLoS ONE 2013, 8, e78092. [Google Scholar] [CrossRef] [PubMed]
- Sahle, Y.; Lombard, M. The Evolution of Long-Range Hunting with Stone-Tipped Weapons During the Afrotropic Middle Stone Age: A Testable Framework Based on Tip Cross-Sectional Area. Quaternary 2024, 7, 50. [Google Scholar] [CrossRef]
- Cerling, T.E.; Manthi, F.K.; Mbua, E.N.; Leakey, L.N.; Leakey, M.G.; Leakey, R.E.; Brown, F.H.; Grine, F.E.; Hart, J.A.; Kaleme, P.; et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl. Acad. Sci. USA 2013, 110, 10501–10506. [Google Scholar] [CrossRef]
Specimen ID | Tooth | Sampling Position | Locality | Age Estimate | Taxonomy |
---|---|---|---|---|---|
BSN-56/P37 | M3 | buccal, anterior | Busidima North | <1.2 Ma | P. recki recki |
BSN-63/P2 | M3 | “ | Busidima North | <1.2 Ma | P. recki recki |
BOU-VP-1/1 | M3 | buccal, posterior | Daka, Bouri | 1.0 Ma | P. recki recki |
BOU-VP-1/33 | M3 | buccal, anterior | Daka | 1.0 Ma | P. recki recki |
BOU-VP-3/19 | M3 | buccal, posterior | Daka | 1.0 Ma | P. recki recki |
BOU-VP-4/5 | M3 | “ | Daka | 1.0 Ma | P. recki recki |
M-KDR-1/5 | M3 | lingual, posterior | Kada Dora | 0.5~0.35 Ma | P. cf. recki recki |
M-KDR 1/47 | Indet. | buccal, anterior | Kada Dora | 0.5~0.35 Ma | P. cf. recki recki |
M-KDR 1/53 | M3 frag. | “ | Kada Dora | 0.5~0.35 Ma | P. cf. recki recki |
M-KDR 1/54 | M3 | buccal, posterior | Kada Dora | 0.5~0.35 Ma | P. cf. recki recki |
BUY-VP-2/115 | M3 | Mesial, anterior | Buyelle | Middle Pleist. | P. jolensis |
BUY-VP-4/18 | M3 | buccal, posterior | Buyelle | Middle Pleist. | P. jolensis |
KOB-VP-3/18 | M3 frag. | “ | Koba-ah | Middle Pleist. | P. jolensis |
KOB-VP-3/19 | M3 | “ | Koba-ah | Middle Pleist. | P. jolensis |
OHH-VP-2/230 | dp3 | “ | Ounda Ha Haile | Middle Pleist. | P. jolensis |
BOU-VP-16/56 | M3 frag. | “ | Herto | 0.16 Ma | P. jolensis |
BOU-VP-18/8 | M2 frag. | “ | Herto | 0.16 Ma | P. jolensis |
BOU-VP-18/9 | M3 frag. | “ | Herto | 0.16 Ma | P. jolensis |
BOU-VP-38/1 | M3 frag. | “ | Herto | 0.16 Ma | P. jolensis |
YAN-3 2011-55 | Indet. frag. | Indet. | Ya’alu Nort, Gona | <0.15 Ma | P. jolensis |
YAS-11 2019-1 | Indet. frag. | Indet. | Ya’alu South | <0.15 Ma | P. jolensis |
YAS-3 2011-20 | Indet. frag. | Indet | Ya’alu South | <0.15 Ma | P. jolensis |
Taxonomy | Descriptives | δ13C | δ18OvPDB |
---|---|---|---|
P. jolensis | Mean | −0.50 | −2.93 |
Median | −0.13 | −3.24 | |
N | 12 | 12 | |
Std. Deviation | 1.08 | 2.22 | |
Range | 3.71 | 7.97 | |
P. recki recki | Mean | −0.41 | −3.22 |
Median | −0.59 | −3.24 | |
N | 6 | 6 | |
Std. Deviation | 1.24 | 0.75 | |
Range | 3.12 | 1.89 | |
P. cf. recki recki | Mean | −0.19 | −5.39 |
Median | −0.12 | −6.48 | |
N | 4 | 4 | |
Std. Deviation | 0.49 | 2.79 | |
Range | 1.17 | 6.08 | |
Antilopini | Mean | 0.26 | −3.49 |
Median | 0.26 | −3.49 | |
N | 1 | 1 | |
Std. Deviation | - | - | |
Range | - | - | |
Equus sp. | Mean | −1.38 | −3.47 |
Median | −0.95 | −3.31 | |
N | 6 | 6 | |
Std. Deviation | 1.83 | 3.07 | |
Range | 4.88 | 7.95 | |
Giraffa sp. | Mean | −8.14 | −0.28 |
Median | −9.02 | −0.96 | |
N | 18 | 18 | |
Std. Deviation | 2.63 | 3.42 | |
Range | 9.08 | 12.50 | |
H. cf. gorgops | Mean | −2.07 | −6.52 |
Median | −2.36 | −6.89 | |
N | 6 | 6 | |
Range | 2.11 | 3.17 | |
Std. Deviation | 0.88 | 1.23 | |
Tragelaphini | Mean | −2.58 | −1.94 |
Median | −1.66 | −3.20 | |
N | 5 | 5 | |
Std. Deviation | 3.59 | 3.43 | |
Range | 8.75 | 8.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luyt, J.; Sahle, Y.; Stynder, D. Stable Isotope Analysis of Pleistocene Proboscideans from Afar (Ethiopia) and the Dietary and Ecological Contexts of Palaeoloxodon. Quaternary 2025, 8, 16. https://doi.org/10.3390/quat8010016
Luyt J, Sahle Y, Stynder D. Stable Isotope Analysis of Pleistocene Proboscideans from Afar (Ethiopia) and the Dietary and Ecological Contexts of Palaeoloxodon. Quaternary. 2025; 8(1):16. https://doi.org/10.3390/quat8010016
Chicago/Turabian StyleLuyt, Julie, Yonatan Sahle, and Deano Stynder. 2025. "Stable Isotope Analysis of Pleistocene Proboscideans from Afar (Ethiopia) and the Dietary and Ecological Contexts of Palaeoloxodon" Quaternary 8, no. 1: 16. https://doi.org/10.3390/quat8010016
APA StyleLuyt, J., Sahle, Y., & Stynder, D. (2025). Stable Isotope Analysis of Pleistocene Proboscideans from Afar (Ethiopia) and the Dietary and Ecological Contexts of Palaeoloxodon. Quaternary, 8(1), 16. https://doi.org/10.3390/quat8010016