Enigmatic Surface Ruptures at Cape Rytyi and Surroundings, Baikal Rift, Siberia: Seismic Hazard Implication
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Remote Sensing Methods
3.2. Surface Research Method and Observations
4. Results
4.1. Geomorphological Mapping
4.2. Fracturing in Outcrops
4.3. GPR Research
4.3.1. GPR Profile 1
4.3.2. GPR Profile 2
4.3.3. GPR Profile 3
4.4. Measurements of Topographic Profiles
5. Discussion
5.1. The Number of Seismic Events
5.2. The Magnitudes of the Seismic Events
5.3. Chronological Constraints of the Seismic Events
6. Conclusions
- Cape Rytyi and the adjacent territory are characterized by a wide variety of natural geomorphological and structural features, which indicate the widespread past development of debris flows, landslides, and rupturing processes associated with at least two paleoseismic events. Currently, in the peripheral part of the Rita River delta, a zone of seismically induced gravity ruptures formed during the remote 1962 earthquake has been observed.
- The surface faulting in the distal part of the Rita River delta and on the slopes of the Baikal Ridge are included in the seismic rupture pattern, which was mapped over a distance of 37 km and was associated with the activation of the Kocherikovsky fault. The width of the primary deformation zone is ~2 km. On the hanging wall side, the boundary of the shear zone can be conditionally limited by the mentioned modern seismically induced gravity failure zone at the edge of the Rita River delta, whose northeastern segment coincides along strike with the direction of paleoseismic ruptures and is located 1.5 km from them. Accordingly, the damage zone of the Kocherikovsky fault could be wide up to at least 3.5 km.
- The maximum displacement during the first paleoearthquake, which occurred at a 12–5 ka interval, reached 7.9 m, and 5 m during the second one, which was 4–0.3 ka ago. The magnitude estimated from different relationships using the rupture length and displacements are Mw = 7.3 (Ms = 7.4) and Mw = 6.9–7.1 (Ms = 6.9–7.3) for the first and second events, respectively.
- The preservation of coseismic scarps, their dip angles, and the degree of burial strongly depend on the initial landscape and can vary even within a few hundred meters. This fact must be taken into consideration when conducting morphotectonic studies to determine the rupture parameters.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blumetti, A.M.; Grutzner, C.; Guerrieri, L.; Livio, F. Quaternary earthquakes: Geology and palaeoseismology for seismic hazard assessment. Quat. Int. 2017, 451, 1–10. [Google Scholar] [CrossRef]
- Štěpančíková, P.; Hók, J.; Nývlt, D.; Dohnal, J.; Sýkorová, I.; Stemberk, J. Active tectonics research using trenching technique on the south-eastern section of the Sudetic Marginal Fault (NE Bohemian Massif, central Europe). Tectonophysics 2010, 485, 269–282. [Google Scholar] [CrossRef]
- Reiter, R. Earthquake Hazard Analysis; Columbia University Press: New York, NY, USA, 1990; p. 254. [Google Scholar]
- McGuire, R.K. Seismic Hazard and Risk Analysis; MNO-10; Earthquake Engineering Research Institute: Oakland, CA, USA, 2004; p. 240. [Google Scholar]
- Wang, Z. Seismic Hazard Assessment: Issues and Alternatives. Pure Appl. Geophys. 2011, 168, 11–25. [Google Scholar] [CrossRef]
- Machette, M.N. Active, capable, and potentially active faults—A paleoseismic perspective. J. Geod. 2000, 29, 387–392. [Google Scholar] [CrossRef]
- Niwa, M.; Shimada, K.; Ishimaru, T.; Tanaka, Y. Identifcation of capable faults using fault rock geochemical signatures: A case study from offset granitic bedrock on the Tsuruga Peninsula, central Japan. Eng. Geol. 2019, 260, 105235. [Google Scholar] [CrossRef]
- IAEA. The Contribution of Palaeoseismology to Seismic Hazard Assessment in Site Evaluation for Nuclear Installations; No. 1767; IAEA TECDOC: Vienna, Austria, 2015; ISBN 978-92-0-105415-9.
- Caputo, R. Ground effects of large morphogenic earthquakes. J. Geodyn. 2005, 40, 113–118. [Google Scholar] [CrossRef]
- Carbonel, D.; Gutiérrez, F.; Sevil, J.; McCalpin, J.P. Evaluating Quaternary activity versus inactivity on faults and folds using geomorphological mapping and trenching: Seismic hazard implications. Geomorphology 2019, 338, 43–46. [Google Scholar] [CrossRef]
- Meghraoui, M.; Camelbeeck, T.; Vanneste, K.; Brondeel, M. Active faulting and paleoseismology along the Bree fault, lower Rhine graben, Belgium. J. Geophys. Res. 2000, 105, 13809–13841. [Google Scholar] [CrossRef]
- McCalpin, J.P. Paleoseismology, 2nd ed.; Academic Press: Amsterdam, The Netherlands; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 978-0-12-373576-8. [Google Scholar]
- Akyuz, H.S.; Karabacak, V.; Zabcı, C. Paleoseismic trenching. In Encyclopedia of Earthquake Engineering; Beer, M., Kougioumtzoglou, I., Patelli, E., Au, I.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–15. [Google Scholar] [CrossRef]
- Ortuño, M.; Corominas, O.; Villamor, P.; Zúñiga, R.F.; Lacan, P.; Aguirre-Díaz, G.; Perea, H.; Štěpančíková, P.; Ramírez-Herrera, M.T. Evidence of recent ruptures in the central faults of the Acambay Graben (central Mexico). Geomorphology 2019, 326, 43–46. [Google Scholar] [CrossRef]
- Mel’nikova, V.I.; Gileva, N.A.; Radziminovich, N.A.; Masal’skii, O.K.; Chechel’nitskii, V.V. Seismicity of the Baikal Rift Zone for the Digital Recording Period of Earthquake Observation (2001–2006). Seism. Instrum. 2010, 46, 193–206. [Google Scholar] [CrossRef]
- Lunina, O.V.; Denisenko, I.A. Single-event throws along the Delta Fault (Baikal rift) reconstructed from ground penetrating radar, geological and geomorphological data. J. Struct. Geol. 2020, 141, 104209. [Google Scholar] [CrossRef]
- Baikal Department of Federal Research Center “Geophysical Survey”, Russian Academy of Sciences. Available online: http://www.seis-bykl.ru/ (accessed on 22 November 2022).
- Scholz, C.A.; Hutchinson, D.R. Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone. Int. J. Earth Sci. 2000, 89, 212–228. [Google Scholar] [CrossRef]
- Logatchev, N.A. History and geodynamics of the Baikal rift. Russ. Geol. Geophys. 2003, 44, 373–387. [Google Scholar]
- Jolivet, M.; De Boisgrollier, T.; Petit, C.; Fournier, M.; Sankov, V.A.; Ringenbach, J.-C.; Byzov, L.; Miroshnichenko, A.I.; Kovalenko, S.N.; Anisimova, S.V. How old is the Baikal Rift Zone? Insight from apatite fission track thermochronology. Tectonics 2009, 28, TC3008. [Google Scholar] [CrossRef]
- Delvaux, D.; Moeys, R.; Stapel, G.; Petit, C.; Levi, K.; Miroshnichenko, A.; Ruzhich, V.; San’kov, V. Paleostress reconstruction and geodynamics of the Baikal region, Central Asia, part 2. Cenozoic rifting. Tectonophysics 1997, 282, 1–38. [Google Scholar] [CrossRef]
- Burmeister, A.A.; Kostyunin, O.V. Secrets of Baikal: Wrathful Cape Rytyi; OAO NPO Olbmashinform: Irkutsk, Russia, 2006. (In Russian) [Google Scholar]
- Karnyshev, A.D. Mysterious, Many-Sided, and Multilingual Baikal; BGU Press: Irkutsk, Russia, 2010. (In Russian) [Google Scholar]
- Geological Map. Scale 1:200,000, Series Pribaikal’skaya, Sheet No. 49-XIX; Aerogeologiya: Moscow, Russia, 1974. (In Russian) [Google Scholar]
- Solonenko, V.P.; Treskov, A.A.; Zhilkin, V.M.; Zorin, Y.A.; Korostin, R.V.; Kurushin, R.A.; Pavlov, O.V.; Pshenniikov, K.V.; Fomina, E.V.; Hilko, S.D.; et al. Seismotectonics and Seismicity of the Rift Zone of Pribaikalia; Nauka Press: Moscow, Russia, 1968. (In Russian) [Google Scholar]
- Chipizubov, A.V.; Mel’nikov, A.I.; Stolpovskii, A.V.; Baskakov, V.S. Segmentation of paleoseismic dislocations in the North Baikal fault zone. Dokl. Earth Sci. 2003, 388, 77–80. [Google Scholar]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Blanton, C.M.; Rockwell, T.K.; Contz, A.; Kelly, J.T. Refining the spatial and temporal signatures of creep and co-seismic slip along the southern San Andreas Fault using very high resolution UAS imagery and SfM-derived topography, Coachella Valley, California. Geomorphology 2020, 357, 107064. [Google Scholar] [CrossRef]
- Tmušić, G.; Manfreda, S.; Aasen, H.; James, M.R.; Gonçalves, G.; Ben-Dor, E.; Brook, A.; Polinova, M.; Arranz, G.G.; Mészáros, J.; et al. Current Practices in UAS-based Environmental Monitoring. Remote Sens. 2020, 12, 1001. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Gong, W.; Tang, H.; Juang, C.H.; Deng, Q.; Chen, J.; Ye, X. UAV photogrammetry-based remote sensing and preliminary assessment of the behavior of a landslide in Guizhou, China. Eng. Geol. 2021, 289, 106172. [Google Scholar] [CrossRef]
- Lunina, O.V.; Gladkov, A.A.; Denisenko, I.A. Signatures of Creep in the Zunduk Fault Damage Zone on the Northwestern Coast of Lake Baikal. Bull. Irkutsk. State Univ. Ser. Earth Sci. 2021, 35, 57–70. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Yao, W.; Liu, X.; Shao, Y.; Wang, W.; Han, L.; Wang, Y.; Zeng, X.; Li, J.; Wang, Z.; et al. High-resolution structure-from-motion models covering 160 km-long surface ruptures of the 2021 MW 7.4 Madoi earthquake in northern Qinghai-Tibetan Plateau. Earthq. Res. Adv. 2022, 2, 100140. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structurefrom-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Agisoft Metashape User Manual: Professional Edition, 2022. Version 1.6. Available online: https://www.agisoft.com/pdf/metashape-pro_1_6_en.pdf (accessed on 22 November 2022).
- East-Siberian Geoportal “ActiveTectonics”. Available online: http://activetectonics.ru/index.html (accessed on 22 November 2022).
- Middleton, T.A.; Walker, R.T.; Parsons, B.; Lei, Q.; Zhou, Y.; Ren, Z. A major, intraplate, normal-faulting earthquake: The 1739 Yinchuan event in northern China. J. Geophys. Res. Solid Earth 2016, 121, 293–320. [Google Scholar] [CrossRef]
- Van der Wal, J.L.N.; Nottebaum, V.C.; Gailleton, B.; Stauch, G.; Weismüller, C.; Batkhishig, O.; Lehmkuhl, F.; Reicherter, K. Morphotectonics of the northern Bogd fault and implications for Middle Pleistocene to modern uplift rates in southern Mongolia. Geomorphology 2020, 367, 107330. [Google Scholar] [CrossRef]
- Gustavsson, M.; Kolstrup, E.; Seijmonsbergen, A.C. A new symbol-and-GIS based detailed geomorphological mapping system: Renewal of a scientific discipline for understanding landscape development. Geomorphology 2006, 77, 90–111. [Google Scholar] [CrossRef] [Green Version]
- Otto, J.M.; Gustavson, M.; Geilhausen, M. Cartography: Design, symbolisation and visualisation of geomorphological maps. In Geomorphological Mapping. Methods and Applications; Smith, M.J., Paron, P., Griffiths, J.S., Eds.; Elsevier: London, UK, 2011; pp. 253–295. [Google Scholar]
- Caputo, R.; Helly, B.; Pavlides, S.; Papadopoulos, G. Palaeoseismological investigation of the Tyrnavos Fault (Thessaly, Central Greece). Tectonophysics 2004, 394, 1–20. [Google Scholar] [CrossRef]
- McClymont, A.F.; Villamor, P.; Green, A.G. Fault displacement accumulation and slip rate variability within the Taupo Rift (New Zealand) based on trench and 3-D ground penetrating radar data. Tectonics 2009, 28, TC4005. [Google Scholar] [CrossRef]
- Roberts, G.P.; Raithatha, B.; Sileo, G.; Pizzi, A.; Pucci, S.; Walker, J.F.; Wilkinson, M.; McCaffrey, K.; Phillips, R.J.; Michetti, A.M.; et al. Shallow subsurface structure of the 2009 April 6 Mw 6.3 L’Aquila earthquake surface rupture at Paganica, investigated with ground-penetrating radar. Geophys. J. Int. 2010, 183, 774–790. [Google Scholar] [CrossRef] [Green Version]
- Beauprêtre, S.; Garambois, S.; Manighetti, I.; Malavieille, J.; Senechal, G.; Chatton, M.; Davies, T.; Larroque, C.; Rousset, D.; Cotte, N.; et al. Finding the buried record of past earthquakes with GPR—Based palaeoseismology: A case study on the Hope fault, New Zealand. Geophys. J. Int. 2012, 189, 73–100. [Google Scholar] [CrossRef]
- Bano, M.; Dujardin, J.-R.; Schlupp, A.; Tsend-Ayush, N.; Munkhuu, U. GPR measurements to assess the characteristics of active faults in Mongolia. In IEICE Technical Report SANE2017–43; The Institute of Electronics, Information and Communication Engineers: Tokyo, Japan, 2017; pp. 1–6. [Google Scholar]
- Lunina, O.V.; Gladkov, A.S.; Gladkov, A.A. Surface and shallow subsurface structure of the Middle Kedrovaya paleoseismic rupture zone in the Baikal Mountains from geomorphological and ground-penetrating radar investigations. Geomorphology 2019, 326, 54–67. [Google Scholar] [CrossRef]
- Vladov, M.L.; Starovoitov, A.V. Fundamentals of GPR Surveys. A Manual; Moscow University Press: Moscow, Russia, 2004; ISBN 5-211-04938-1. (In Russian) [Google Scholar]
- Wells, D.L.; Coppersmith, K.J. New empirical relationship among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Lunina, O.V. Lithosphere stress field as a control over seismogenic fault parameters and earthquake magnitudes. Russ. Geol. Geophys. 2001, 42, 1389–1398. [Google Scholar]
- Lunina, O.V. Influence of the Lithosphere State of Stresses on the Relationships of the Parameters and Inner Structure of Seismically Active Faults. Ph.D. Thesis, Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia, 2002; 223p. (In Russian). [Google Scholar]
- Selby, N.D.; Bowers, D.; Marshall, P.D.; Douglas, A. Empirical path and station corrections for surface-wave magnitude, Ms, using a global network. Geophys. J. Int. 2003, 155, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Andrew, A. Earthquake Magnitudes. ThoughtCo, 28 August 2020. Available online: https://www.thoughtco.com/what-are-earthquake-magnitudes-1439115 (accessed on 17 February 2023).
- Ufimtsev, G.F. Small hollows in the Baikal Rift Zone. Geogr. Nat. Resour. 2013, 4, 28–36. [Google Scholar] [CrossRef]
- Lunina, O.V.; Gladkov, A.A. Rupturing in the deltaic deposits of Cape Rytyi on the northwestern shore of Lake Baikal (based on aerial photography data). Russ. Geol. Geophys. 2022, 63, 149–162. [Google Scholar] [CrossRef]
- Slemmons, D.B. Geological effects of the Dixie valley-Fairview peak, Nevada, earthquakes of December 16, 1954. Bull. Seismol. Soc. Am. 1957, 47, 353–375. [Google Scholar] [CrossRef]
- Drizhenko, F.K. Lake Baikal Atlas; Glavnoe Gidrographicheskoe Upravlenie: Saint-Petersburg, Russia, 1908. (In Russian) [Google Scholar]
- Imaeva, L.P.; Imaev, V.S.; Smekalin, O.P.; Grib, N.N. A Seismotectonic Zonation Map of Eastern Siberia: New Principles and Methods of Mapping. Open J. Earthq. Res. 2015, 4, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Bezrukova, E.V. Palaeogeography of Pribaikalie in the Late Glacial and Holocene; Nauka: Novosibirsk, Russia, 1999; p. 128. ISBN 5-02-031472-2. (In Russian) [Google Scholar]
- Makarov, S.A. Debris Flows in the Cis-Baikalia; V.B. Sochava Institute of Geography Publisher: Irkutsk, Russia, 2012; p. 111. ISBN 978-5-94797-183-5. (In Russian) [Google Scholar]
- Vorob’eva, G.A.; Gorunova, O.I.; Savel’ev, N.A. Chronology and paleogeography of Holocene in South of Central Siberia. In Geochronology of Quaternary Period; Nauka Press: Moscow, Russia, 1992; pp. 174–181. [Google Scholar]
- Arzhannikov, S.G.; Ivanov, A.V.; Arzhannikova, A.V.; Demonterova, E.I.; Jansen, J.D.; Preusser, F.; Kamenetsky, V.S.; Kamenetsky, M.B. Catastrophic events in the Quaternary outflow history of Lake Baikal. Earth-Sci. Rev. 2018, 177, 76–113. [Google Scholar] [CrossRef]
- McHugh, C.M.G.; Gurung, D.; Giosan, L.; Ryan, W.B.F.; Mart, Y.; Sancar, U.; Burckle, L.; Cagatay, N.M. The last reconnection of the Marmara Sea, (Turkey) to the Worlds Ocean: A paleoceanographic and paleoclimatic perspective. Mar. Geol. 2008, 255, 64–82. [Google Scholar] [CrossRef] [Green Version]
- Levi, K.G.; Zadonina, I.V.; Yazev, S.A. Radiocarbon Chronology of Natural and Social Phenomena of the Northern Hemisphere; v. 1; Publishing House of Irkutsk State University: Irkutsk, Russia, 2010; p. 715. (In Russian) [Google Scholar]
Profile Number | Distance between Profiles, m | Total Distance, m | Vertical Surface Offset, m | Scarp Slope Angle, ° | Scarp Height, m |
---|---|---|---|---|---|
Right bank of the Rita River | |||||
0 | 200 | 200 | - | 13 | - |
1 | 675 | 675 | 0.5 | 13 | 0.5 |
2 | 235 | 910 | 0.5 | 22 | 0.6 |
3 | 115 | 1025 | 0.7 | 10 | 0.7 |
4 | 162 | 1187 | 0.9 | 18 | 1 |
5 | 114 | 1301 | 0.5 | 15 | 0.6 |
6 | 45 | 1346 | 1.3 | 21 | 1.3 |
7 | 42 | 1388 | 2.3 | 24 | 2.3 |
8 | 47 | 1435 | 2.3 | 37 | 2.7 |
9 | 39 | 1474 | 1.7 | 25 | 1.7 |
10 | 42 | 1516 | 1 | 20 | 1.3 |
11 | 142 | 1658 | 1.5 | 28 | 1.5 |
12 | 33 | 1691 | 0.9 | 15 | 0.9 |
13 | 72 | 1763 | 2.8 | 36 | 2.8 |
14 | 45 | 1808 | 3.7 | 34 | 3.7 |
15 1 | 8 | 1816 | 4.6 | 33 | 4.6 |
16 | 66 | 1874 | 4.9 | 70 | 5.3 |
17 | 36 | 1910 | 5 | 39 | 5.9 |
18 | 50 | 1960 | 3.4 | 78 | 3.5 |
19 | 50 | 2010 | 2.8 | 62 | 2.8 |
20 | 28 | 2038 | 3 | 56 | 3.2 |
21 | 45 | 2083 | 5 | 50 | 5.6 |
Minimum | 0.5 | 10 | 0.5 | ||
Махimum | 5 | 78 | |||
Average | 2.2 | ||||
Left bank of the Rita River | |||||
22 | 945 | 3028 | 6.5 | 25 | 7.6 |
23 | 47 | 3075 | 8 | 30 | 9.5 |
24 | 97 | 3172 | 8.2 | 30 | 11 |
25 2 | 28 | 3200 | 9.9 | 33 | 12.5 |
26 | 52 | 3252 | 9 | 28 | 10.5 |
27 | 80 | 3280 | 8.5 | 34 | 11.1 |
Minimum | 6.5 | 25 | 7.6 | ||
Махimum | 9.9 | 34 | 12.5 | ||
Average | 8.35 |
Equations [40] | Mw | S | Equations [41,42] | Ms | S |
---|---|---|---|---|---|
Earlier event (1), MD = 7.9 m | |||||
Mw = 6.61 + 0.71 × logMD | 7.25 | 0.34 | Ms = 6.73 + 0.79 log × MD | 7.44 | 0.44 |
Later event (2), MD = 5 m, AD = 2.2 m, L = 37 | |||||
Mw = 4.86 + 1.32 × logL | 6.93 | 0.34 | Ms = 5.8 + 0.73 × logL | 6.94 | 0.54 |
Mw = 6.61 + 0.71 × logMD | 7.11 | 0.34 | Ms = 6.73 + 0.79 log × MD | 7.28 | 0.44 |
Mw = 6.78 + 0.65 × logAD | 7.00 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lunina, O.V.; Denisenko, I.A.; Gladkov, A.A.; Braga, C. Enigmatic Surface Ruptures at Cape Rytyi and Surroundings, Baikal Rift, Siberia: Seismic Hazard Implication. Quaternary 2023, 6, 22. https://doi.org/10.3390/quat6010022
Lunina OV, Denisenko IA, Gladkov AA, Braga C. Enigmatic Surface Ruptures at Cape Rytyi and Surroundings, Baikal Rift, Siberia: Seismic Hazard Implication. Quaternary. 2023; 6(1):22. https://doi.org/10.3390/quat6010022
Chicago/Turabian StyleLunina, Oksana V., Ivan A. Denisenko, Anton A. Gladkov, and Carlos Braga. 2023. "Enigmatic Surface Ruptures at Cape Rytyi and Surroundings, Baikal Rift, Siberia: Seismic Hazard Implication" Quaternary 6, no. 1: 22. https://doi.org/10.3390/quat6010022
APA StyleLunina, O. V., Denisenko, I. A., Gladkov, A. A., & Braga, C. (2023). Enigmatic Surface Ruptures at Cape Rytyi and Surroundings, Baikal Rift, Siberia: Seismic Hazard Implication. Quaternary, 6(1), 22. https://doi.org/10.3390/quat6010022