Evidence for an Extreme Cooling Event Prior to the Laschamp Geomagnetic Excursion in Eifel Maar Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coring Sites
2.2. The ELSA-20 Stratigraphy
2.3. Tephrochronology
2.4. Pollen and Organic Carbon (Chlorins) Data
2.5. Flood and Slump Event Layers
3. Results
3.1. Alignment of Cores
3.2. Flood and Slump Frequencies
4. Discussion
4.1. Flood Phases during the Last 65,000 Years
4.2. Frost at 43,500 b2k
5. Conclusions
- Phases of increased and supra-local flood activity coincide with Heinrich stadials in marine sediment records,
- Flood frequency remained high throughout all Heinrich stadials,
- Flood deposition was caused by a decline in stabilizing vegetation cover due to detrimental climate conditions and increased water supply from heavy rains or seasonal snowmelt,
- Periods of high slumping activity occurred during the early MIS 3 warm phase, at 43,500 yr b2k and subsequent to GI3,
- The slumping event at 43,500 b2k (ACE) led to the formation of a prominent fractured, breccia-like sediment texture with a preservation of lamination within individual rotated blocks, indicating that the sediment was solidified due to deep frost conditions during GS12,
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 2004, 431, 147–151. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greeland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef]
- Svensson, A.; Andersen, K.K.; Bigler, M.; Clausen, H.B.; Dahl-Jensen, D.; Davies, S.M.; Johnsen, S.J.; Muscheler, R.; Parrenin, F.; Rasmussen, S.O.; et al. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past. 2008, 4, 47–57. [Google Scholar] [CrossRef]
- Sirocko, F.; Martinez-García, A.; Mudelsee, M.; Albert, J.; Britzius, S.; Christl, M.; Diehl, D.; Diensberg, B.; Friedrich, R.; Fuhrmann, F.; et al. Multidecadal climate variability in central Europe over the past 60,000 years. Nat. Geosci. 2021, 14, 651–658. [Google Scholar] [CrossRef]
- Fletcher, W.J.; Sánchez Goñi, M.F.; Allen, J.R.M.; Cheddadi, R.; Combourieu-Nebout, N.; Huntley, B.; Lawson, I.; Londeix, L.; Magri, D.; Margari, V.; et al. Millennial-scale variability during last glacial in vegetation records from Europe. Quat. Sci. Rev. 2010, 29, 2839–2864. [Google Scholar] [CrossRef]
- Sirocko, F.; Knapp, H.; Dreher, F.; Förster, M.W.; Albert, J.; Brunck, H.; Veres, D.; Dietrich, S.; Zech, M.; Hambach, U.; et al. The ELSA-Vegetation-Stack: Reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar sediments of the last 60,000 years. Glob. Planet Chang. 2016, 142, 108–135. [Google Scholar] [CrossRef]
- Sirocko, F.; Albert, J.; Britzius, S.; Dreher, F.; Martínez-García, A.; Dosseto, A.; Burger, J.; Terberger, T.; Haug, G. Threshold for the presence of glacial megafauna in central Europe during the last 60,000 years. Nat. Sci. Rep. 2022, 12, 20055. [Google Scholar] [CrossRef] [PubMed]
- Büchel, G. Vulkanologische Karte der West-und Hocheifel; Landesvermessungsamt Rheinland-Pfalz: Koblenz, Germany, 1994. [Google Scholar]
- Förster, M.W.; Sirocko, F. Volcanic activity in the Eifel during the last 500,000 years: The ELSA-Tephra-Stack. Glob. Planet Chang. 2016, 142, 100–107. [Google Scholar] [CrossRef]
- Förster, M.W.; Zemlitskaya, A.; Otter, L.; Buhre, S.; Sirocko, F. Late Pleistocene Eifel eruptions: Insights from clinopyroxene and glass geochemistry of tephra layers from Eifel Laminated Sediment Archive sediment cores. J. Quat. Sci. 2019, 35, 186–198. [Google Scholar] [CrossRef]
- Seelos, K.; Sirocko, F.; Dietrich, S. A continuous high-resolution dust record for the reconstruction of wind systems in central Europe (Eifel, Western Germany) over the past 133 ka. Geophys. Res. Lett. 2009, 36, L20712. [Google Scholar] [CrossRef]
- Sirocko, F.; Seelos, K.; Schaber, K.; Rein, B.; Dreher, F.; Diehl, M.; Lehne, R.; Jäger, K.; Krbetschek, M.; Degering, D. A late Eemian aridity pulse in central Europe during the last glacial interception. Nature 2005, 436, 833–836. [Google Scholar] [CrossRef] [PubMed]
- Sirocko, F.; Dietrich, S.; Veres, D.; Grootes, P.; Schaber-Mohr, K.; Seelos, K.; Nadeau, M.-J.; Kromer, B.; Rothacker, L.; Röhner, M.; et al. Multi-Proxy-Dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany. Quat. Sci. Rev. 2013, 62, 56–72. [Google Scholar] [CrossRef]
- Fuhrmann, F.; Diensberg, B.; Gong, X.; Lohmann, G.; Sirocko, F. Aridity synthesis for eight selected key regions of the global climate system during the last 60 000 years. Clim. Past 2020, 16, 2221–2238. [Google Scholar] [CrossRef]
- Brunck, H.; Sirocko, F.; Albert, J. The ELSA-Flood-Stack: A reconstruction from the laminated sediments of Eifel maar structures during the last 60 000 years. Glob. Planet Chang. 2016, 142, 136–146. [Google Scholar] [CrossRef]
- Brauer, A.; Endres, C.; Negendank, J.F.W. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quat. Int. 1999, 61, 17–25. [Google Scholar] [CrossRef]
- Reinig, F.; Wacker, L.; Jöris, O.; Oppenheimer, C.; Guidobaldi, G.; Nievergelt, D.; Adolphi, F.; Cherubini, P.; Engels, S.; Esper, J.; et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature 2021, 595, 66–69. [Google Scholar] [CrossRef]
- Ampel, L.; Wohlfarth, B.; Risberg, J.; Veres, D. Paleolimnological response to millennial and centennial scale climate variability during MIS 3 and 2 as suggested by the diatom record in Les Echets. Quat. Sci. Rev. 2008, 27, 1493–1504. [Google Scholar] [CrossRef]
- Wohlfarth, B.; Veres, D.; Ampel, L.; Lacourse, T.; Blaauw, M.; Preusser, F.; Andrieu-Ponel, V.; Keravis, D.; Lallier-Vergès, E.; Björck, S.; et al. Rapid ecosystem response to abrupt climate changes during the last glacial period in Western Europe, 40–16 ka. Geology 2008, 36, 407–410. [Google Scholar] [CrossRef]
- Wernli, H.; Pfahl, S. Grundlage des Klimas und extremer Wettersituationen. In Wetter, Klima, Menschheitsentwicklung. Von der Eiszeit bis ins 21. Jahrhundert; Sirocko, F., Ed.; Theiss: Stuttgart, Germany, 2009; pp. 44–52. [Google Scholar]
- Seib, N.; Kley, J.; Büchel, G. Identification of maars and similar volcanic landforms in the West Eifel Volcanic Field through image processing of DTM data: Efficiency of different methods depending on preservation state. Int. J. Earth Sci. 2013, 102, 875–901. [Google Scholar] [CrossRef]
- Engels, S.; Bohncke, S.J.P.; Heiri, O.; Schaber, K.; Sirocko, F. The lacustrine sediment record of Oberwinkler Maar (Eifel, Germany): Chironomid and macro-remain-based inferences of environmental changes during Oxygen Isotope Stage 3. Boreas 2008, 37, 414–425. [Google Scholar] [CrossRef]
- Berglund, B.E.; Ralska-Jasiewiczowa, M. Pollen analysis and pollen diagrams. In Handbook of Holocene Palaoecology and Palaeohydrology; Berglund, B.E., Ed.; John Wiley and Sons: New York, NY, USA, 1986; pp. 455–484. [Google Scholar]
- Faegri, K.; Iversen, J. Textbook of Pollen Analysis; John Wiley and Sons: Chichester, UK, 1989. [Google Scholar]
- Rein, B.; Sirocko, F. In-situ reflectance spectroscopy—Analysing techniques for high resolution pigment 300 logging sin sediment cores. Int. J. Earth Sci. 2002, 91, 950–954. [Google Scholar] [CrossRef]
- Butz, C.; Grosjean, M.; Fischer, D.; Wunderle, S.; Tylmann, W.; Rein, B. Hyperspectral imaging spectroscopy: A promising method for the biogeochemical analysis of lake sediments. J. Appl. Remote Sens. 2015, 9, 096031. [Google Scholar] [CrossRef]
- Michelutti, N.; Smol, J.P. Visible spectroscopy reliably tracks trends in paleo-production. J. Paleolimnol. 2016, 56, 253–265. [Google Scholar] [CrossRef]
- Sanchini, A.; Grosjean, M. Quantification of chlorophyll a, chlorophyll b and pheopigments a in lake sediments through deconvolution of bulk UV-VIS absorption spectra. J. Paleolimnol. 2020, 64, 243–256. [Google Scholar] [CrossRef]
- Macklin, M.G. Holocene River Environments in Prehistoric Britain: Human Interaction and Impact. J. Quat. Sci. 1999, 14, 521–530. [Google Scholar] [CrossRef]
- Thorndycraft, V.R.; Benito, G.; Rico, M.; Sopea, A.; Sánchez-Moya, Y.; Casas, A. A long-term flood discharge record derived from slackwater flood deposits of the Llobregat River, NE Spain. J. Hydrol. 2005, 313, 16–31. [Google Scholar] [CrossRef]
- Naafs, B.D.A.; Hefter, J.; Grützner, J.; Stein, R. Warming of surface waters in the mid-latitude North Atlantic during Heinrich events. Paleoceanogr 2013, 28, 153–163. [Google Scholar] [CrossRef]
- Laj, C.; Kissel, C.; Beer, J. High Resolution Global Paleointensity Stack Since 75 kyr (GLOPIS-75) Calibrated to Absolute Values. In Timescales of the Paleomagnetic Field; Channell, J.E.T., Kent, D.V., Lowrie, W., Meert, J.G., Eds.; Am Geophys Union: Washington, DC, USA, 2004; pp. 255–265. [Google Scholar]
- Nowaczyk, N.R.; Frank, U.; Kind, J.; Arz, H.W. A high-resolution paleointensity stack of the past 14 to 68 ka from Black Sea sediments. Earth Planet Sci. Lett. 2013, 384, 1–16. [Google Scholar] [CrossRef]
- Muscheler, R.; Beer, J.; Wagner, G.; Laj, C.; Kissel, C.; Raisbeck, G.M.; Yiou, F.; Kubik, P.W. Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth Planet Sci. Lett. 2004, 219, 325–340. [Google Scholar] [CrossRef]
- Vandenberghe, J. Climate forcing of fluvial system development: An evolution of ideas. Quat. Sci. Rev. 2003, 22, 2053–2060. [Google Scholar] [CrossRef]
- Broeker, W.; Bond, G.; Klas, M.; Clark, E.; McManus, J. Origin of the northern Atlantic’s Heinrich events. Clim. Dyn. 1992, 6, 265–273. [Google Scholar] [CrossRef]
- Hemming, S.R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 2004, 42, RG1005. [Google Scholar] [CrossRef]
- Staubwasser, M.; Drăgușin, V.; Onac, B.P.; Assonov, S.; Ersek, V.; Hoffmann, D.L.; Veres, D. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proc. Natl. Acad. Sci. USA 2018, 115, 9116–9121. [Google Scholar] [CrossRef] [PubMed]
- Antoine, P.; Coutard, S.; Guerin, G.; Deschodt, L.; Goval, E.; Locht, J.-L.; Paris, C. Upper Pleistocene loess-paleosol records from Northern France in the European context: Environmental background and dating of the Middle Palaeolithic. Quat. Int. 2016, 411, 4–24. [Google Scholar] [CrossRef]
- Nigst, P.R.; Haesaerts, P.; Damblon, F.; Frank-Fellner, C.; Mallol, C.; Viola, B.; Götzinger, M.; Niven, L.; Trnka, G.; Hublin, J.-J. Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment. Proc. Natl. Acad. Sci. USA 2014, 111, 14394–14399. [Google Scholar] [CrossRef]
- Vandenberghe, J.; van der Pflicht, J. The age of the Hengelo interstadial revisited. Quat Geochro 2016, 32, 21–28. [Google Scholar] [CrossRef]
- Van Huissteden, J. Tundra rivers of the last glacial: Sedimentation and geomorphological processes during the Middle Pleniglacial (Eastern Netherlands). Meded. Rijks Geol. Dienst. 1990, 44, 1–138. [Google Scholar]
- Kasse, C.; Vandenberghe, J.; Bohncke, S.J.P. Climate change and fluvial dynamics of the Maas during the Late Weichselian and Early Holocene. In European River Activity and Climate Change During the Lateglacial and Early Holocene; Frenzel, B., Vandenberghe, J., Kasse, C., Bohncke, S., Gläser, B., Eds.; VU Research Portal: Amsterdam, The Netherlands, 1995; Volume 14, pp. 123–150. [Google Scholar]
- Cooper, A.; Turney, C.S.M.; Palmer, J.; Hogg, A.; McGlone, M.; Wilmhurst, J.; Lorrey, A.M.; Heaton, T.J.; Russell, J.M.; McCracken, K.; et al. A global environmental crisis 42,000 years ago. Science 2021, 371, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Vogt, J.; Zieger, B.; Glassmeier, K.-H.; Stadelmann, A.; Kallenrode, M.-B.; Sinnhuber, M.; Winkler, H. Energetic particles in the paleomagnetosphere: Reduced dipole configurations and quadrupolar contributions. J. Geophys. Res. 2007, 112, A06216. [Google Scholar] [CrossRef]
- Winkler, H.; Sinnhuber, M.; Notholt, J.; Kallenrode, M.-B.; Steinhilber, F.; Vogt, J.; Zieger, B.; Glassmeier, K.-H.; Stadelmann, A. Modeling impacts of geomagnetic field variations on middle atmospheric ozone responses to solar proton events on long timescales. J. Geophys. Res. 2008, 113, D02302. [Google Scholar] [CrossRef]
- Singer, B.S.; Guillou, H.; Jicha, B.R.; Laj, C.; Kissel, C.; Beard, B.L.; Johnson, C.M. 40Ar/39Ar, K-Ar and 230Th–238U dating of the Laschamp excursion: A radioisotopic tie-point for ice core and climate chronologies. Earth Planet Sci. Lett. 2009, 286, 80–88. [Google Scholar] [CrossRef]
- Channell, J.E.T.; Hodell, D.A.; Curtis, J.A. ODP Site 1063 (Bermuda Rise) revisited: Oxygen isotopes, excursions, and paleointensity in the Brunhes chron. Geochem. Geophys. Geosyst. 2012, 13, Q02001. [Google Scholar] [CrossRef]
- Raup, D.M. Magnetic reversals and mass extinctions. Nature 1985, 314, 341–343. [Google Scholar] [CrossRef]
- Böhnel, H.; Reismann, N.; Jäger, G.; Haverkamp, U.; Negendank, J.F.W.; Schmincke, H.-U. Paleomagnetic investigation of the Quaternary West Eifel volcanics (Germany): Indication for increased volcanic activity during geomagnetic excursion/event? J. Geophys. 1987, 62, 50–61. [Google Scholar]
- Marzocchi, W.; Mulargia, F.; Paruolo, P. The correlation of geomagnetic reversals and mean sea level in the last 150 m.y. Earth Planet Sci. Lett. 1992, 111, 383–393. [Google Scholar] [CrossRef]
- Meert, J.G.; Levashova, N.M.; Bazhenov, M.L.; Landing, E. Rapid changes of magnetic Field polarity in the late Ediacaran: Linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana. Res. 2016, 34, 149–157. [Google Scholar] [CrossRef]
- Pavlov, V.E.; Fluteau, F.; Latyshev, A.V.; Fetisova, A.M.; Elkins-Tanton, L.T.; Black, B.A.; Burgess, S.D.; Veselovskiy, R.V. Geomagnetic secular variations at the Permian-Triassic boundary and pulsed magmatism during the eruption of the Siberian Traps. Geochem. Geophys. Geosyst. 2019, 20, 773–791. [Google Scholar] [CrossRef]
- Herndon, J.M. Causes and consequences of geomagnetic field collapse. J. Geog. Environ. Earth Sci. Int. 2020, 24, 60–76. [Google Scholar] [CrossRef]
- Herndon, J.M. Scientific basis and geophysical consequences of geomagnetic reversals and excursions: A fundamental statement. J. Geog. Environ. Earth Sci. Int. 2021, 25, 59–69. [Google Scholar] [CrossRef]
- Conard, N.J.; Bolus, M.; Goldberg, P.; Münzel, S. The last Neanderthals and first modern humans in the Swabian Jura. In When Neanderthals and Modern Human Met; Conard, N.J., Ed.; Kerns Verlag: Tübingen, Germany, 2006; pp. 305–342. [Google Scholar]
- Conard, N.J.; Bolus, M. Radiocarbon dating in the late Middle Paleolithic and the Aurignacian of the Swabian Jura. J. Hum. Evolut. 2008, 55, 886–897. [Google Scholar] [CrossRef]
- Obreht, I.; Hambach, U.; Veres, D.; Zeeden, C.; Bösken, J.; Stevens, T.; Marković, S.B.; Klasen, N.; Brill, D.; Burow, C.; et al. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for Modern Human dispersal. Sci. Rep. 2017, 7, 5848. [Google Scholar] [CrossRef] [PubMed]
- Morin, E. Evidence for declines in human population densities during the early Upper Paleolithic in western Europe. Proc. Natl. Acad. Sci. USA 2008, 105, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Discamps, E.; Jaubert, J.; Bachellerie, F. Human choices and environmental constraints: Deciphering the variability of large game procurement from Mousterian to Aurignacian times (MIS 5–3) in southwestern France. Quat. Sci. Rev. 2011, 30, 2755–2775. [Google Scholar] [CrossRef]
- Hoffecker, J.F. The spread of modern humans in Europe. Proc. Natl. Acad. Sci. USA 2009, 106, 16040–16045. [Google Scholar] [CrossRef]
- Hublin, J.-J. The modern human colonization of western Eurasia: When and where? Quat. Sci. Rev. 2015, 118, 194–210. [Google Scholar] [CrossRef]
- Rendu, W.; Renou, S.; Soulier, M.-C.; Rigaud, S.; Roussel, M.; Soressi, M. Subsistence strategy changes during Middle to Upper Paleolithic transition of Human Populations to their environment. Sci. Rep. 2019, 9, 15817. [Google Scholar] [CrossRef]
- Giaccio, B.; Hajdas, I.; Isaia, R.; Deino, A.; Nomade, S. High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Sci. Rep. 2017, 7, 45940. [Google Scholar] [CrossRef]
- Wulf, S.; Hardiman, M.J.; Staff, R.A.; Koutsodendris, A.; Appelt, O.; Blockley, S.P.E.; Lowe, J.J.; Manning, C.J.; Ottolini, L.; Schmitt, A.K.; et al. The marine isotope stage 1–5 cryptotephra record of Tenaghi Philippon, Greece: Towards a detailed tephrostratigraphic framework for the Eastern Mediterranean region. Quat. Sci. Rev. 2018, 186, 236–262. [Google Scholar] [CrossRef]
- Fedele, F.G.; Giaccio, B.; Hajdas, I. Timescales and cultural process at 40,000 BP in the light of the Campanian Ignimbrite eruption, Western Eurasia. J. Hum. Evolut. 2008, 55, 834–857. [Google Scholar] [CrossRef]
- Fitzsimmons, K.E.; Hambach, U.; Veres, D.; Iovita, R. The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution. PLoS ONE 2013, 8, e65839. [Google Scholar] [CrossRef]
- Norval, M.; Cullen, A.P.; de Gruijl, F.R.; Longstreth, J.; Takizawa, Y.; Lucas, R.M.; Noonan, F.P.; Van der Leun, J.C. The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochem. Photobiol. Sci. 2007, 6, 232–251. [Google Scholar] [CrossRef]
- Valet, J.-P.; Valladas, H. The Laschamp-Mono lake geomagnetic events and the extinction of Neanderthal: A causal link or a coincidence? Quat. Sci. Lett. 2010, 29, 3887–3893. [Google Scholar] [CrossRef] [Green Version]
- Conard, N.J.; Bolus, M. Radiocarbon dating the appearance of modern humans and timing of cultural innovations in Europe: New results and new challenges. J. Hum. Evolut. 2003, 44, 331–371. [Google Scholar] [CrossRef] [PubMed]
- Higham, T.; Basell, L.; Jacobi, R.; Wood, R.; Bronk Ramsey, C.; Conard, N.J. Testing models for the beginning of the Aurignacian and the advent of figurative art and music: The radiocarbon chronology of Geißenklösterle. J. Hum. Evolut. 2012, 62, 664–676. [Google Scholar] [CrossRef]
- Hublin, J.-J.; Talamo, S.; Julien, M.; David, F.; Connet, N.; Bodu, P.; Vandermeersch, B.; Richards, M.P. Radiocarbon dates from the Grotte du Renne and Saint-Césaire support a Neandertal origin for the Châtelperronian. Proc. Natl. Acad. Sci. USA 2012, 109, 18743–18748. [Google Scholar] [CrossRef] [PubMed]
- Semal, P.; Rougier, H.; Crevecoeur, I.; Jungels, C.; Flas, D.; Hauzeur, A.; Maureille, B.; Germonpré, M.; Bocherens, H.; Pirson, S.; et al. New data on the late Neanderthals: Direct dating of the Belgian Spy fossils. Am. J. Phys. Anthropol. 2009, 138, 421–428. [Google Scholar] [CrossRef] [Green Version]
Maar Lake | Diameter [m] | Core | Height above Sea Level [m] | Time Span Coverage [yr b2k] | Core Depth [m] | UTM Coordinates |
---|---|---|---|---|---|---|
Auel Maar | 1293 | AU2 | 452.90 | 10,000–59,130 | 123.0 | 32 N 328,668.00 5,572,850.00 |
AU3 | 452.40 | 10,000–59,120 | 102.0 | 32 N 328,686.00 5,572,859.00 | ||
AU4 | 451.50 | 10,000–59,130 | 104.5 | 32 N 328,732.00 5,572,977.00 | ||
Dehner Maar | 931 | DE3 | 565.37 | 12,000–76,250 | 88.0 | 32 N 322,384.42 5,574,206.47 |
Mehrscheider Maar | 771 | MS1 | 528.00 | 28,600–65,700 | 69.0 | 32 N 324,823.03 5,574,125.16 |
Oberwinkler Maar | 800 | OW1 | 385.00 | 25,800–72,000 | 49.0 | 32 N 352,719.74 5,556,393.10 |
Rother Maar | 823 | RM2 | 453.00 | 7700–66,400 | 65.0 | 32 N 330,075.77 5,570,533.04 |
LEZ | Time Marker | Age [yr b2k] | AU2 [m] | AU3 [m] | AU4 [m] | DE3 [m] | MS1 [m] | OW1 [m] | RM2 [m] |
---|---|---|---|---|---|---|---|---|---|
LEZ 3 | LST top | 13.80 | 13.59 | 14.40 | 3.40 | ||||
Cold, temperate | LST base | 13,056 | 13.95 | 13.69 | 14.50 | 3.48 | |||
forest | Onset GI1 | 14,692 | 14.65 | 14.68 | 15.61 | 10.00 | 7.70 | ||
LEZ 4 | End GI2 | 23,220 | 18.31 | 19.09 | 20.30 | ||||
Polar | Onset GI2 | 23,340 | 18.39 | 19.19 | 27.16 | 20.80 | |||
desert | EVT top | 24.36 | 24.15 | 30.48 | |||||
EVT base | 24,720 | 24.44 | 24.16 | 30.57 | |||||
LEZ 5 | End GI3 | 27,540 | 34.15 | 34.45 | 34.25 | 28.15 | |||
Forest-tundra | Onset GI3 | 27,780 | 34.75 | 35.04 | 34.95 | 36.73 | 28.55 | ||
WBT top | 36.66 | 36.80 | 36.83 | 37.80 | 28.80 | ||||
WBT base | 28,100 | 36.90 | 37.02 | 36.89 | 37.92 | 28.92 | |||
End GI4 | 28,600 | 39.55 | 39.82 | 39.63 | 39.88 | 9.19 | 29.10 | ||
Onset GI4 | 28,900 | 39.95 | 40.17 | 40.10 | 40.18 | 3.30 | 9.49 | 29.90 | |
UT1 top | 46.43 | 46.55 | 46.50 | 42.76 | 8.72 | 31.36 | |||
UT1 base | 30,300 | 46.59 | 46.68 | 46.59 | 42.91 | 8.80 | 31.41 | ||
LEZ 6 | End GI5.2 | 32,040 | 54.25 | 54.31 | 54.44 | 43.92 | 10.35 | 18.30 | 33.35 |
Forest-steppe | Onset GI5.2 | 32,500 | 55.40 | 55.15 | 55.03 | 44.27 | 10.70 | 19.00 | 33.90 |
End GI6 | 33,360 | 56.65 | 56.83 | 56.68 | 44.57 | 11.65 | 19.65 | 35.10 | |
Onset GI6 | 33,740 | 57.70 | 57.73 | 57.41 | 12.55 | 20.03 | 35.60 | ||
End GI7 | 34,740 | 61.95 | 62.11 | 62.37 | 21.36 | 36.40 | |||
Onset GI7c | 35,480 | 63.15 | 63.32 | 63.84 | 22.22 | 36.85 | |||
LEZ 7 | End GI8 | 36,580 | 65.35 | 65.43 | 65.47 | 46.26 | 14.50 | 23.87 | 37.90 |
Cold temperate | Onset GI8c | 38,220 | 66.95 | 66.87 | 67.05 | 47.59 | 18.10 | 26.02 | 40.95 |
forest | End GI9 | 39,900 | 69.15 | 69.50 | 69.36 | 49.63 | 20.65 | 42.35 | |
Onset GI9 | 40,160 | 70.65 | 70.57 | 70.46 | 50.02 | 21.20 | 42.55 | ||
DWT top | 71.14 | 71.11 | 70.91 | 21.46 | 42.68 | ||||
DWT base | 40,370 | 71.19 | 71.16 | 70.93 | 21.50 | 42.70 | |||
End GI10 | 40,800 | 71.75 | 71.94 | 71.84 | 21.75 | ||||
Onset GI10 | 41,460 | 73.15 | 72.77 | 72.60 | 51.01 | 22.50 | |||
End GI11 | 42,240 | 75,30 | 76.05 | 75.38 | 22.75 | 27.50 | |||
Onset GI11 | 43,340 | 77.15 | 76.42 | 76.46 | 53.54 | 23.55 | 43.60 | ||
ACE top | 43,500 | 77.20 | 76.60 | 76.62 | 53.60 | 24.08 | 28.00 | 43.61 | |
ACE base | 77.94 | 77.10 | 76.94 | 56.97 | 24.33 | 29.00 | 44.00 | ||
End GI12 | 44,280 | 77.49 | 77.07 | 30.02 | |||||
Onset GI12c | 46,860 | 78.35 | 78.20 | 77.87 | 56.99 | 30.80 | 46.40 | ||
MMT top | 81.60 | 81.74 | 81.16 | 57.58 | 28.07 | 31.94 | 47.43 | ||
MMT base | 47,340 | 81.63 | 81.78 | 81.17 | 57.63 | 28.14 | 31.95 | 47.45 | |
End GI13 | 48,340 | 88.02 | 87.77 | 58.28 | 29.80 | 35.60 | 47.80 | ||
LEZ 8 | Onset GI13c | 49,280 | 88.30 | 89.92 | 89.61 | 59.72 | 32.55 | 36.18 | 48.45 |
Warm temperate | End GI14 | 49,600 | 90.87 | 90.50 | 60.07 | 33.20 | 36.33 | 49.10 | |
forest | Onset GI14a | 51,500 | 91.75 | 91.59 | 61.18 | ||||
Onset GI14b | 51,660 | 91.91 | 91.72 | 61.98 | |||||
Onset GI14e | 54,220 | 93.25 | 93.52 | 93.44 | 67.05 | 37.15 | 38.64 | 51.90 | |
End GI15.1 | 54,900 | 93.83 | 93.68 | ||||||
Onset GI15.1 | 55,000 | 93.85 | 93.70 | ||||||
End GI15.2 | 55,400 | 93.95 | 93.97 | 93.78 | 69.25 | 38.84 | 52.35 | ||
Onset GI15.2 | 55,800 | 95.10 | 96.31 | 95.13 | 69.56 | 38.95 | 52.80 | ||
End GI16 | 56,500 | 97.75 | 100.42 | 99.70 | 70.32 | 39.06 | 53.15 | ||
Onset GI16.1c | 58,040 | 101.28 | 101.17 | 38.80 | |||||
End GI16.2 | 58,160 | 101.37 | 101.19 | ||||||
Onset GI16.2 | 58,280 | 100.95 | 101.45 | 101.31 | 73.81 | 53.80 | |||
End GI17 | 58,560 | 101.70 | 101.65 | 101.64 | |||||
Onset GI17.2 | 59,080 | 102.15 | 101.96 | 102.31 | |||||
AUT top | 102.33 | 102.38 | 76.24 | 39.80 | 39.42 | 56.39 | |||
AUT base | 59,130 | 76.30 | 39.86 | 39.58 | 56.58 | ||||
End GI18 | 63,840 | 78.35 | 46.35 | 62.40 | |||||
Onset GI18 | 64,100 | 78.43 | 46.65 | 62.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albert, J.; Sirocko, F. Evidence for an Extreme Cooling Event Prior to the Laschamp Geomagnetic Excursion in Eifel Maar Sediments. Quaternary 2023, 6, 14. https://doi.org/10.3390/quat6010014
Albert J, Sirocko F. Evidence for an Extreme Cooling Event Prior to the Laschamp Geomagnetic Excursion in Eifel Maar Sediments. Quaternary. 2023; 6(1):14. https://doi.org/10.3390/quat6010014
Chicago/Turabian StyleAlbert, Johannes, and Frank Sirocko. 2023. "Evidence for an Extreme Cooling Event Prior to the Laschamp Geomagnetic Excursion in Eifel Maar Sediments" Quaternary 6, no. 1: 14. https://doi.org/10.3390/quat6010014
APA StyleAlbert, J., & Sirocko, F. (2023). Evidence for an Extreme Cooling Event Prior to the Laschamp Geomagnetic Excursion in Eifel Maar Sediments. Quaternary, 6(1), 14. https://doi.org/10.3390/quat6010014