Evaluation of the Linkages between Ecosystem Services and Land Use/Land Cover Changes in Matenchose Watershed, Rift Valley Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Matenchose Watershed
2.2. Land Use and Land Cover Data
2.3. ESV Assessment
2.4. Elasticity of ESV Change with Land Use and Land Cover
3. Results and Discussions
3.1. Land Use and Land Cover Changes
3.2. Variations of Ecosystem Service Values of the Matenchose Watershed
3.3. Influence of Variation of LULC on Specific Ecosystem Service Value
3.4. Elasticity Assessment of ESV Changes with Land Use Categories
3.5. Limitation of this study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aneseyee, A.B.; Soromessa, T.; Elias, E. The effect of land use/land cover changes on ecosystem services valuation of Winike watershed, Omo Gibe basin, Ethiopia. Hum. Ecol. Risk Assess. 2019, 26, 2608–2627. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Braat, L.C.; de Groot, R. The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W.; Tolessa, T. Estimating the impacts of land use / land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia. Ecosyst. Serv. 2018, 31, 219–228. [Google Scholar] [CrossRef]
- Godebo, M.M.; Ulsido, M.D.; Jilo, T.E.; Geleto, G.M. Influence of land use and land cover changes on ecosystem services in the Bilate Alaba Sub-watershed, Southern Ethiopia. J. Ecol. Nat. Environ. 2018, 10, 228–238. [Google Scholar] [CrossRef]
- Mekuria, W.; Diyasa, M.; Tengberg, A.; Haileslassie, A. Effects of long-term land use and land cover changes on ecosystem service values: An example from the central rift valley, Ethiopia. Land 2021, 10, 1373. [Google Scholar] [CrossRef]
- Biratu, A.A.; Bedadi, B.; Gebrehiwot, S.G.; Melesse, A.M.; Nebi, T.H.; Abera, W.; Tamene, L.; Egeru, A. Impact of Landscape Management Scenarios on Ecosystem Service Values in Central Ethiopia. Land 2022, 11, 1266. [Google Scholar] [CrossRef]
- Shiferaw, H.; Alamirew, T.; Kassawmar, T.; Zeleke, G. Evaluating ecosystems services values due to land use transformation in the Gojeb watershed, Southwest Ethiopia. Environ. Syst. Res. 2021, 10, 22. [Google Scholar] [CrossRef]
- Shiferaw, H.; Bewket, W.; Alamirew, T.; Zeleke, G.; Teketay, D.; Bekele, K.; Schaffner, U.; Eckert, S. Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Sci. Total Environ. 2019, 675, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Tolessa, T.; Gessese, H.; Tolera, M.; Kidane, M. Changes in Ecosystem Service Values in Response to Changes in Landscape Composition in the Central Highlands of Ethiopia. Environ. Process. 2018, 5, 483–501. [Google Scholar] [CrossRef]
- Muleta, T.T.; Biru, M.K. Human modified landscape structure and its implication on ecosystem services at Guder watershed in Ethiopia. Environ. Monit. Assess. 2019, 191, 295. [Google Scholar] [CrossRef]
- Temesgen, H.; Wu, W.; Shi, X.; Yirsaw, E.; Bekele, B.; Kindu, M. Variation in ecosystem service values in an agroforestry dominated landscape in Ethiopia: Implications for land use and conservation policy. Sustainability 2018, 10, 1126. [Google Scholar] [CrossRef]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2017, 6, 17. [Google Scholar] [CrossRef]
- Garedew, E.; Sandewall, M.; Söderberg, U.; Campbell, B.M. Land-Use and Land-Cover Dynamics in the Central Rift Valley of Ethiopia. Environ. Manag. 2009, 44, 683–694. [Google Scholar] [CrossRef]
- Yesuph, A.Y.; Dagnew, A.B. Land use/cover spatiotemporal dynamics, driving forces and implications at the Beshillo catchment of the Blue Nile Basin, North Eastern Highlands of Ethiopia. Environ. Syst. Res. 2019, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Bewket, W.; Abebe, S. Land-use and land-cover change and its environmental implications in a tropical highland watershed, Ethiopia. Int. J. Environ. Stud. 2013, 70, 126–139. [Google Scholar] [CrossRef]
- Mathewos, M.; Dananto, M.; Erkossa, T.; Mulugeta, G. Land Use Land Cover Dynamics at Bilate Alaba Sub-watershed, Southern Ethiopia. J. Appl. Sci. Environ. Manag. 2019, 23, 1521–1528. [Google Scholar] [CrossRef]
- Birhane, E.; Ashfare, H.; Fenta, A.A.; Hishe, H.; Gebremedhin, M.A.; G. wahed, H.; Solomon, N. Land use land cover changes along topographic gradients in Hugumburda national forest priority area, Northern Ethiopia. Remote Sens. Appl. Soc. Environ. 2019, 13, 61–68. [Google Scholar] [CrossRef]
- Mathewos, M.; Lencha, S.M.; Tsegaye, M. Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation. Land 2022, 11, 1632. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Tolessa, T.; Kidane, M.; Bezie, A. Assessment of the linkages between ecosystem service provision and land use/land cover change in Fincha watershed, North-Western Ethiopia. Heliyon 2021, 7, e07673. [Google Scholar] [CrossRef]
- Schmidt, S.; Manceur, A.M.; Seppelt, R. Uncertainty of monetary valued ecosystem—Value transfer functions for global mapping. PLoS ONE 2016, 11, e0148524. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Duarte, G.T.; Ribeiro, M.C.; Paglia, A.P. Ecosystem services modeling as a tool for defining priority areas for conservation. PLoS ONE 2016, 11, e0154573. [Google Scholar] [CrossRef] [PubMed]
- Cerretelli, S.; Poggio, L.; Gimona, A.; Yakob, G.; Boke, S.; Habte, M.; Coull, M.; Peressotti, A.; Black, H. Spatial assessment of land degradation through key ecosystem services: The role of globally available data. Sci. Total Environ. 2018, 628–629, 539–555. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; Solomonides, S. Ecosystem Services Valuation Database (ESVD) Update of Global Ecosystem Service Valuation Data; FSD Report No 2020-06 Wageningen, The Netherlands. 2020, pp. 1–58. Available online: https://www.espartnership.org/wp-content/uploads/2020/08/ESVD_Global-Update-FINAL-Report-June-2020.pdf (accessed on 30 January 2023).
- Dereje, B.; Nedaw, D. Groundwater Recharge Estimation Using WetSpass Modeling in Upper Bilate Catchment, Southern Ethiopia. Momona Ethiop. J. Sci. 2019, 11, 37. [Google Scholar] [CrossRef]
- Beyamo, L.S. Assessment of Land Use Land Cover Dynamics and Its Impact on Soil Loss: Using GIS and Remote Sensing, in Shashogo Woreda. Master’s Thesis, Addis Abeba University, Addis Abeba, Ethiopia, 2010. Available online: http://etd.aau.edu.et/handle/123456789/9959 (accessed on 30 January 2023).
- Alawamy, J.S.; Balasundram, S.K.; Hanif, A.H.M.; Sung, C.T.B. Detecting and analyzing land use and land cover changes in the Region of Al-Jabal Al-Akhdar, Libya using time-series landsat data from 1985 to 2017. Sustainability 2020, 12, 4490. [Google Scholar] [CrossRef]
- Belay, T.; Mengistu, D.A. Impacts of land use/land cover and climate changes on soil erosion in Muga watershed, Upper Blue Nile basin (Abay), Ethiopia. Ecol. Process. 2021, 10, 68. [Google Scholar] [CrossRef]
- Woldemariam, G.; Iguala, A.D.; Tekalign, S.; Reddy, R.U. Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: The Case of the Gobele Watershed, East Hararghe Zone, Ethiopia. Land 2018, 7, 25. [Google Scholar] [CrossRef]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability 2021, 13, 3740. [Google Scholar] [CrossRef]
- Dibaba, W.T.; Demissie, T.A.; Miegel, K. Watershed Hydrological Response to Combined Land Use/Land Cover and Climate Change in Highland Ethiopia: Finchaa Catchment. Water 2020, 12, 1801. [Google Scholar] [CrossRef]
- Abate, S. Evaluating the land use and land cover dynamics in Borena Woreda of South Wollo Highlands, Ethiopia. J. Sustain. Dev. Africa 2011, 13, 87–107. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 9–16. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; Taylor &Francis Group Routledge: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Okeke, F.; Karnieli, A. Methods for fuzzy classification and accuracy assessment of historical aerial photographs for vegetation change analyses. Part I: Algorithm development. Int. J. Remote. Sens. 2006, 27, 153–176. [Google Scholar] [CrossRef]
- WoldeYohannes, A.; Cotter, M.; Kelboro, G.; Dessalegn, W. Land Use and Land Cover Changes and Their Effects on the Landscape of Abaya-Chamo Basin, Southern Ethiopia. Land 2018, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Kindu, M.; Schneider, T.; Döllerer, M.; Teketay, D.; Knoke, T. Scenario modelling of land use/land cover changes in Munessa-Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2018, 622–623, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Tolessa, T.; Senbeta, F.; Abebe, T. Land use/land cover analysis and ecosystem services valuation in the central highlands of Ethiopia. For. Trees Livelihoods 2017, 26, 111–123. [Google Scholar] [CrossRef]
- Niquisse, S.; Cabral, P.; Rodrigues, Â.; Augusto, G. Ecosystem services and biodiversity trends in Mozambique as a consequence of land cover change. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 297–311. [Google Scholar] [CrossRef]
- Wang, X.; Dong, X.; Liu, H.; Wei, H.; Fan, W.; Lu, N.; Xu, Z.; Ren, J.; Xing, K. Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Yushanjiang, A.; Zhang, F.; Yu, H.; Kung, H. Quantifying the spatial correlations between landscape pattern and ecosystem service value: A case study in Ebinur Lake Basin, Xinjiang, China. Ecol. Eng. 2018, 113, 94–104. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Jing, Y. Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
- Elias, E.; Seifu, W.; Tesfaye, B.; Girmay, W. Impact of land use/cover changes on lake ecosystem of Ethiopia central rift valley. Cogent Food Agric. 2019, 5, 1595876. [Google Scholar] [CrossRef]
- Wang, S.; Wu, B.; Yang, P. Assessing the changes in land use and ecosystem services in an oasis agricultural region of Yanqi Basin, Northwest China. Environ. Monit. Assess. 2014, 186, 8343–8357. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
Path | Row | Sensors | Acquisition Date | Spatial Resolution (m) |
---|---|---|---|---|
169 | 055 | TM | 28 December 1991 | 30 × 30 |
169 | 055 | ETM+ | 2 December 2003 | 30 × 30 |
169 | 055 | OLI | 11 December 2020 | 30 × 30 |
LULC Classes | Description |
---|---|
Grassland | Places covered in small trees and bushes combined with grasses |
Forestland | Land with moderately tall trees, at least 20% canopy coverage, integral open space, and regions that have been felled primarily of eucalyptus trees that are not located close to river courses |
Bare land | areas with sparse and stunted vegetation, as well as wastelands and badlands with exposed rocks |
Cultivated land | Extended rain-fed agricultural production zones, primarily for cereals and pulses, are managed. |
Settlement | Area that is mostly covered by buildings, including urban areas and rural communities |
LULC Classes | Corresponding Biome | ESV Coefficient (USD ha—1 yr—1) |
---|---|---|
Agriculture | Cultivated area | 8028 |
Grassland | Grassland | 1597 |
Forest land | Tropical forests | 119,075 |
Bare land | Desert | 0 |
Ecosystem Services | Forest Land | Grassland | Agriculture |
---|---|---|---|
Food | 602 | 510 | |
Water | 47,869 | 313 | 604 |
Raw material | 11,739 | 637 | 6 |
Genetic resources | 16 | ||
Medicinal resources | 3 | ||
Ornamental resources | |||
Air quality regulation | 309 | 8 | 10 |
Climate regulation | 658 | 73 | 10 |
Moderation of extreme events | 108 | 993 | |
Regulation of water flows | 442 | 43 | 17 |
Waste treatment | 12 | 40 | |
Erosion prevention | 604 | 173 | |
Maintenance of soil fertility | 42 | 34 | |
Pollination | 877 | 1498 | |
Biological control | 14 | 621 | |
Maintenance of life cycles of migratory species | 19 | ||
Maintenance of genetic diversity | 7 | ||
Aesthetic information | 395 | ||
Opportunities for recreation and tourism | 52,789 | 92 | 3101 |
Inspiration for culture, art, and design | 5 | 284 | 16 |
Spiritual experience | |||
Information for cognitive development | 147 | ||
Existence and bequest values | 2960 | ||
Total | 119,075 | 1597 | 8028 |
LULC Classes | 1991 | 2003 | 2020 | Temporal (%) Change | The Annual Rate of the Change (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Area(ha) | Area(ha) | Area(ha) | 2003–1991 | 2020–2003 | 2020–1991 | 2003–1991 | 2020–2003 | 2020–1991 | |
Cultivated land | 2176.12 | 3549.92 | 5209.73 | 63 | 47 | 139.40 | 5.25 | 2.76 | 4.81 |
Grassland | 3498.76 | 2914.96 | 792.26 | −17 | −73 | −77 | −1.42 | −4.29 | −2.66 |
Forest land | 1837.63 | 415.85 | 348.92 | −77 | −16 | −81 | −6.42 | −4.77 | −2.79 |
bare land | 2119.06 | 2318.36 | 1986.38 | 9 | −14 | −6 | 0.75 | −0.82 | −0.21 |
settlement | 358.84 | 791.33 | 1653.11 | 121 | 109 | 361 | 10.08 | 6.41 | 12.45 |
Total | 9990.42 | 9990.42 | 9990.42 |
LULC Classes | 1991 | 2003 | 2020 | |||
---|---|---|---|---|---|---|
ESVs | % | ESVs | % | ESVs | % | |
Agriculture land | 17.47 | 7.22 | 28.50 | 34.47 | 41.82 | 49.42 |
Grassland | 5.59 | 2.31 | 4.66 | 5.63 | 1.27 | 1.49 |
Forest land | 218.82 | 90.47 | 49.52 | 59.90 | 41.55 | 49.09 |
Sum | 241.87 | 100 | 82.67 | 100 | 84.64 | 100 |
ESV Variations 1991, 2003, and 2020 (106 US $) | ||||
---|---|---|---|---|
Ecosystem Services | ESVf 1991 | ESVf 2003 | ESVf 2020 | Overall Change |
Food provision | 2.22 | 2.06 | 2.87 | 0.65 |
Water supply | 90.37 | 22.96 | 20.10 | −70.28 |
Raw material | 23.81 | 6.76 | 4.63 | −19.18 |
Genetic resources | 0.03 | 0.01 | 0.01 | −0.02 |
Medicinal resources | 0.01 | 0.00 | 0.00 | 0.00 |
Ornamental resources | 0.00 | 0.00 | 0.00 | 0.00 |
Air quality regulation | 0.62 | 0.19 | 0.17 | −0.45 |
Climate regulation | 1.49 | 0.52 | 0.34 | −1.15 |
Moderation of extreme events | 2.36 | 3.57 | 5.21 | 2.85 |
Regulation of water flows | 1.00 | 0.37 | 0.28 | −0.72 |
Waste treatment | 0.11 | 0.15 | 0.21 | 0.10 |
Erosion prevention | 1.49 | 0.87 | 1.11 | −0.37 |
Maintenance of soil fertility | 0.15 | 0.14 | 0.19 | 0.04 |
Pollination | 4.87 | 5.68 | 8.11 | 3.24 |
Biological control | 1.38 | 2.21 | 3.24 | 1.86 |
Maintenance of life cycles of migratory species | 0.03 | 0.01 | 0.01 | −0.03 |
Maintenance of genetic diversity | 0.01 | 0.00 | 0.00 | −0.01 |
Aesthetic information | 0.86 | 1.40 | 2.06 | 1.20 |
Opportunities for recreation and tourism | 104.08 | 33.23 | 34.65 | −69.43 |
Inspiration for culture, art, and design | 1.04 | 0.89 | 0.31 | −0.73 |
Spiritual experience | 0.00 | 0.00 | 0.00 | 0.00 |
Information for cognitive development | 0.51 | 0.43 | 0.12 | −0.40 |
Existence and bequest values | 5.44 | 1.23 | 1.03 | −4.41 |
Total | 241.87 | 82.67 | 84.64 | −157.24 |
Years | Functional ESV | Forest | Grassland | Agriculture | Total |
---|---|---|---|---|---|
1991 | provisional | 110.68 | 3.32 | 2.44 | 116.44 |
regulation | 3.95 | 0.43 | 4.06 | 8.44 | |
support | 1.74 | 0.00 | 3.33 | 5.07 | |
cultural | 102.46 | 1.83 | 7.64 | 111.93 | |
Sum | 218.82 | 5.59 | 17.47 | ||
2003 | provisional | 25.05 | 2.77 | 3.98 | 31.79 |
regulation | 0.89 | 0.36 | 6.62 | 7.87 | |
support | 0.39 | 0.00 | 5.44 | 5.83 | |
cultural | 23.19 | 1.52 | 12.47 | 37.18 | |
Sum | 49.52 | 4.66 | 28.50 | ||
2020 | provisional | 21.02 | 0.75 | 5.83 | 27.60 |
regulation | 0.75 | 0.10 | 9.71 | 10.56 | |
support | 0.33 | 0.00 | 7.98 | 8.31 | |
cultural | 19.45 | 0.41 | 18.30 | 38.16 | |
Sum | 41.55 | 1.27 | 41.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathewos, M.; Aga, A.O. Evaluation of the Linkages between Ecosystem Services and Land Use/Land Cover Changes in Matenchose Watershed, Rift Valley Basin, Ethiopia. Quaternary 2023, 6, 13. https://doi.org/10.3390/quat6010013
Mathewos M, Aga AO. Evaluation of the Linkages between Ecosystem Services and Land Use/Land Cover Changes in Matenchose Watershed, Rift Valley Basin, Ethiopia. Quaternary. 2023; 6(1):13. https://doi.org/10.3390/quat6010013
Chicago/Turabian StyleMathewos, Markos, and Alemu O. Aga. 2023. "Evaluation of the Linkages between Ecosystem Services and Land Use/Land Cover Changes in Matenchose Watershed, Rift Valley Basin, Ethiopia" Quaternary 6, no. 1: 13. https://doi.org/10.3390/quat6010013
APA StyleMathewos, M., & Aga, A. O. (2023). Evaluation of the Linkages between Ecosystem Services and Land Use/Land Cover Changes in Matenchose Watershed, Rift Valley Basin, Ethiopia. Quaternary, 6(1), 13. https://doi.org/10.3390/quat6010013