Comparison of High-Resolution 14C and Luminescence-Based Chronologies of the MIS 2 Madaras Loess/Paleosol Sequence, Hungary: Implications for Chronological Studies
Abstract
:1. Introduction
2. Setting and Lithostratigraphy of the Madaras Loess-Paleosol Sequence
3. Materials and Methods
3.1. 14C Dating
3.2. Luminescence Dating
3.2.1. Sampling and Sample Preparation
3.2.2. Quartz OSL
3.2.3. Polymineral pIR-IRSL
3.2.4. Dosimetry
3.3. Age-Depth Modeling
3.4. Sedimentation Rates
4. Results and Discussion
4.1. 14C Age Models
4.2. Quartz OSL and Polymineral pIRIRSL Data
4.3. Sedimentation Rates Compared between the Two Models and Other Coeval MIS 2 Sites of the Carpathian Basin
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muhs, D.R.; Bettis, E.A. Quaternary loess-Paleosol sequences as examples of climate-driven sedimentary extremes. Geological Society of America Special Paper 370. Extrem. Depos. Environ. Mega End Memb. Geol. Time 2003, 70, 53–74. [Google Scholar] [CrossRef]
- Obreht, I.; Zeeden, C.; Hambach, U.; Veres, D.; Marković, S.B.; Lehmkuhl, F. A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin. Earth-Sci. Rev. 2019, 190, 498–520. [Google Scholar] [CrossRef]
- Rousseau, D.-D.; Boers, N.; Sima, A.; Svensson, A.M.; Bigler, M.; Lagroix, F.; Taylor, S.M.; Antoine, P. MIS3 & 2 millennial oscillations in Greenland dust and Eurasian aeolian records—A paleosol perspective. Quat. Sci. Rev. 2017, 169, 99–113. [Google Scholar]
- Újvári, G.; Stevens, T.; Molnár, M.; Demény, A.; Lambert, F.; Varga, G.; Timothy, A.J.; Páll-Gergely, B.; Buylaert, J.P.; Kovács, J. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proc. Natl. Acad. Sci. USA 2017, 114, 10632–10638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sümegi, P.; Gulyás, S.; Molnár, D.; Szilágyi, G.; Sümegi, B.; Törőcsik, T.; Molnár, M. 14C Dated Chronology of the Thickest and Best Resolved Loess/Paleosol Record of the LGM from SE Hungary Based on Comparing Precision and Accuracy of Age-Depth Models. Radiocarbon 2020, 62, 403–417. [Google Scholar] [CrossRef]
- Sümegi, P.; Gulyás, S.; Csökmei, B.; Molnár, D.; Hambach, U.; Stevens, T.; Markovic, S.; Almond, P. Climatic fluctuations inferred for the Middle and Late Pleniglacial (MIS 2) based on high-resolution (ca 20yr) preliminary environmental magnetic investigation of the loess section of the Madaras brickyard. Cent. Eur. Geol. 2012, 55, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Bokhorst, M.P.; Vandenberghe, J.; Sümegi, P.; Lanczont, M.; Gerasimenko, N.P.; Matviishina, Z.N.; Markovic, S.B.; Frechen, M. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records. Quat. Int. 2011, 234, 64–72. [Google Scholar] [CrossRef]
- Hupuczi, J.; Sümegi, P. The Late Pleistocene paleoenvironment and paleoclimate of the Madaras section (South Hungary), based on preliminary records from mollusks. Cent. Eur. J. Geosci. 2010, 2, 64–70. [Google Scholar] [CrossRef]
- Sümegi, P. Loess and Upper Paleolithic Environment in Hungary; Aurea Kiadó: Nagykovácsi, Hungary, 2005. [Google Scholar]
- Hertelendi, E.; Csongor, É.; Záborszky, L.; Molnár, I.; Gál, I.; Győrffy, M.; Nagy, S. Counting system for high precision C-14 dating. Radiocarbon 1989, 32, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Hertelendi, E.; Sümegi, P.; Szöőr, G. Geochronologic and paleoclimatic characterization of Quaternary sediments in the Great Hungarian Plain. Radiocarbon 1992, 34, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Molnár, M.; Janovics, R.; Major, I.; Orsovszki, J.; Gönczi, R.; Veres, M.; Leonard, A.G.; Castle, S.M.; Lange, T.E.; Wacker, L.; et al. Status Report of the New AMS 14C Sample Preparation Lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 2013, 55, 665–676. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 3, 457–474. [Google Scholar] [CrossRef]
- Reimer, P.; Austin, W.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M. TheIntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Pigati, J.S.; Quade, J.; Shanahan, T.M.; Haynes, C.V., Jr. Radiocarbon dating of minute gastropods and new constraints on the timing of spring-discharge deposits in southern Arizona, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 204, 33–45. [Google Scholar] [CrossRef]
- Pigati, J.S.; Rech, J.A.; Nekola, J.C. Radiocarbon dating of small terrestrial gastropod shells in North America. Quat. Geochronol. 2010, 5, 519–532. [Google Scholar] [CrossRef]
- Pigati, J.S.; McGeehin, J.P.; Muhs, D.R.; Bettis, E.A., III. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quat. Sci. Rev. 2013, 76, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Sümegi, P.; Hertelendi, E. Reconstruction of microenvironmental changes in Kopasz Hill loess area at Tokaj (Hungary) between 15,000–70,000 BP years. Radiocarbon 1998, 40, 855–863. [Google Scholar] [CrossRef] [Green Version]
- Újvári, G.; Molnár, M.; Novothny, Á.; Páll-Gergely, B.; Kovács, J.; Várhegyi, A. AMS 14C and OSL/IRSL dating of the Dunaszekcső loess sequence (Hungary): Chronology for 20 to 150 ka and implications for establishing reliable age-depth models for the last 40 ka. Quat. Sci. Rev. 2014, 106, 140–154. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Gu, Z.; Han, J.; Hao, Q.; Lu, Y.; Wang, L.; Wu, N.; Peng, Y. Radiocarbon age anomalies of land snail shells in the Chinese Loess Plateau. Quat. Geochronol. 2011, 6, 383–389. [Google Scholar] [CrossRef]
- Berger, G.W.; Mulhern, P.J.; Huntley, P.J. Isolation of silt-sized quartz from sediments. Anc. TL 1980, 11, 8–9. [Google Scholar]
- Duller, G.A.T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 2003, 37, 161–165. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose procedure. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. The single-aliquot regenerative dose protocol: Potential improvements in reliability. Radiat. Meas. 2003, 37, 377–381. [Google Scholar] [CrossRef]
- Bøtter-Jensen, L.; Andersen, C.E.; Duller, G.A.T.; Murray, A.S. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiat. Meas. 2003, 37, 535–541. [Google Scholar] [CrossRef]
- Stevens, T.; Armitage, S.J.; Lu, H.; Thomas, D.S.G. Examining the potential of high sampling resolution OSL dating of Chinese loess. Quat. Geochronol. 2007, 2, 15–22. [Google Scholar] [CrossRef]
- Banerjee, D.; Murray, A.S.; Bøtter-Jensen, L.; Lang, A. Equivalent dose determination from a single aliquot of polymineral fine grains. Radiat. Meas. 2001, 33, 73–94. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Zhao, H. On the performances of the single-aliquot regenerative-dose (SAR) protocol for Chinese loess: Fine quartz and polymineral grains. Radiat. Meas. 2006, 41, 1–8. [Google Scholar] [CrossRef]
- Duller, G.A.T. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Anc. TL 2007, 25, 15–24. [Google Scholar]
- Stevens, T.; Markovic, S.B.; Zech, M.; Hambach, U.; Sümegi, P. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quat. Sci. Rev. 2011, 30, 662–681. [Google Scholar] [CrossRef]
- Rees-Jones, J. Optical dating of young sediments using fine-grain quartz. Anc. TL 1995, 13, 9–13. [Google Scholar]
- Bell, W.T. Alpha dose attenuation in quartz grains for thermoluminescence dating. Anc. TL 1980, 12, 4–8. [Google Scholar]
- Adamiec, G.; Aitken, M.J. Dose rate conversion factors: Update. Anc. TL 1998, 16, 37–50. [Google Scholar]
- Liritzis, I.; Stamoulis, K.; Papachristodoulou, C.; Ioannides, K. A re-evaluation of radiation dose-rate conversion factors. Mediterr. Archaeol. Archaeom. 2013, 13, 1–15. [Google Scholar]
- Guerin, G.; Mercier, N.; Adamiec, G. Dose-rate conversion factors: Update. Anc. TL 2011, 29, 5–8. [Google Scholar]
- Armitage, S.J.; Bailey, R.M. The measured dependence of laboratory beta dose rates on sample grain size. Radiat. Meas. 2005, 39, 123–127. [Google Scholar] [CrossRef]
- Murray, A.S.; Olley, J.M. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: A status review. Geochronometria 2002, 21, 1–16. [Google Scholar]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term variations. Radiat. Meas. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A.; Benett, K.D.; Reimer, P.J. Double the dates and go for Bayes-Impacts of model choice, dating density and quality of chronologies. Quat. Sci. Rev. 2018, 188, 58–66. [Google Scholar] [CrossRef] [Green Version]
- North Greenland Ice-Core Project (NGRIP) Members. High resolution record of Northern Hemisphere climate extending to the Last Interglacial period. Nature 2004, 431, 147–151. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Andersen, K.K.; Svensson, A.M.; Steffensen, J.P.; Vinther, B.M.; Clausen, H.B.; Siggaard-Andersen, S.J.; Larsen, L.B.; Dahl-Jensen, D.; Bigler, M.; et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 2006, 111, D06102. [Google Scholar] [CrossRef] [Green Version]
- Lomax, J.; Fuchs, M.; Preusser, F.; Fiebig, M. Luminescence based loess chronostratigraphy of the Upper Palaeolithic site Krems-Wachtberg, Austria. Quat. Int. 2014, 351, 88–97. [Google Scholar] [CrossRef]
- Schatz, A.K.; Buylaert, J.P.; Murray, A.; Stevens, T.; Scholten, T. Establishing a luminescence chronology for a palaeosol-loess profile at Tokaj (Hungary): A comparison of quartz OSL and polymineral IRSL signals. Quat. Geochronol. 2012, 10, 68–74. [Google Scholar] [CrossRef]
- Perić, Z.; Lagerbäck, A.E.; Stevens, T.; Újvári, G.; Zeeden, C.; Buylaert, J.P.; Marković, S.B.; Hambach, U.; Fischer, P.; Schmidt, C.; et al. Quartz OSL dating of late quaternary Chinese and Serbian loess: A cross Eurasian comparison of dust mass accumulation rates. Quat. Int. 2019, 502, 30–44. [Google Scholar] [CrossRef]
- Murray, A.S.; Schmidt, E.D.; Stevens, T.; Buylaert, J.P.; Marković, S.B.; Tsukamoto, S.; Frechen, M. Dating Middle Pleistocene loess from Stari Slankamen (Vojvodina, Serbia)—Limitations imposed by the saturation behaviour of an elevated temperature IRSL signal. Catena 2014, 117, 34–42. [Google Scholar] [CrossRef]
- Thiel, C.; Horváth, E.; Frechen, M. Revisiting the loess/palaeosol sequence in Paks, Hungary: A post-IR IRSL based chronology for the ‘Young Loess Series’. Quat. Int. 2014, 319, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Novothny, Á.; Frechen, M.; Horváth, E.; Wacha, L.; Rolf, C. Investigating the penultimate and last glacial cycles of the Süttő loess section (Hungary) using luminescence dating, high-resolution grain size, and magnetic susceptibility data. Quat. Int. 2011, 234, 75–85. [Google Scholar] [CrossRef]
- Schmidt, E.D.; Machalett, B.; Marković, S.B.; Tsukamoto, S.; Frechen, M. Luminescence chronology of the upper part of the Stari Slankamen loess sequence (Vojvodina, Serbia). Quat. Geochr. 2010, 5, 137–142. [Google Scholar] [CrossRef]
- Perić, Z.M.; Marković, S.B.; Sipos, G.; Gavrilov, M.B.; Thiel, C.; Zeeden, C.; Murray, A.S. A post-IR IRSL chronology and dust mass accumulation rates of the Nosak loess-palaeosol sequence in northeastern Serbia. Boreas 2020, 49, 841–857. [Google Scholar] [CrossRef]
- Marković, S.B.; Vandenberghe, J.; Stevens, T.; Mihailović, D.; Gavrilov, M.B.; Radaković, M.G.; Zeeden, C.; Obrecht, I.; Perić, Z.M.; Nett, J.J.; et al. Geomorphological evolution of the Petrovaradin Fortress Palaeolithic site (Novi Sad, Serbia). Quat. Res. 2021, 103, 21–34. [Google Scholar] [CrossRef]
- Constantin, D.; Begy, R.; Vasiliniuc, S.; Panaiotu, C.; Necula, C.; Codrea, V.; Timar-Gabor, A. High-resolution OSL dating of the Costinesti section (Dobrogea, SE Romania) using fine and coarse quartz. Quat. Int. 2014, 334–335, 20–29. [Google Scholar] [CrossRef]
- Timar, A.; Vandenberghe, D.; Panaiotu, E.C.; Panaiotu, C.G.; Necula, C.; Cosma, C.; Vanden haute, P. Optical dating of Romanian loess using fine-grained quartz. Quat. Geochronol. 2010, 5, 143–148. [Google Scholar] [CrossRef]
- Timar, A.; Vandenberghe, D.A.G.; Vasiliniuc, S.; Panaoitu, C.E.; Panaoitu, C.G.; Dimofte, D.; Cosma, C. Optical dating of Romanian loess: A comparison between silt-sized and sand-sized quartz. Quat. Int. 2011, 240, 62–70. [Google Scholar] [CrossRef]
- Thiel, C.; Buylaert, J.P.; Murray, A.; Terhost, B.; Hofer, I.; Tsukamoto, S.; Frechen, M. Luminescence dating of the Stratzing loess profile (Austria)—Testing the potential of an elevated temperature post-IR IRSL protocol. Quat. Int. 2011, 234, 23–31. [Google Scholar] [CrossRef]
- Wacha, L.; Frechen, M. The geochronology of the “Gorjanović loess section” in Vukovar, Croatia. Quat. Int. 2011, 240, 87–99. [Google Scholar] [CrossRef]
- Wacha, L.; Vlahović, I.; Tsukamoto, S.; Kovačić, M.; Hasan, O.; Pavelić, D. The chronostratigraphy of the latest Middle Pleistocene aeolian and alluvial activity on the Island of Hvar, eastern Adriatic, Croatia. Boreas 2015, 45, 152–164. [Google Scholar] [CrossRef]
- Wacha, L.; Rolf, C.; Hambach, U.; Frechen, M.; Galović, L.; Duchoslav, M. The Last Glacial aeolian record of the Island of Susak (Croatia) as seen from a high-resolution grain–size and rock magnetic analysis. Quat. Int. 2018, 494, 211–224. [Google Scholar] [CrossRef]
- Wacha, L.; Laag, C.; Grizelj, A.; Tsukamoto, S.; Zeeden, C.; Ivanisević, D.; Rolf, C.; Banak, A.; Frechen, M. High-resolution palaeoenvironmental reconstruction at Zmajevac (Croatia) over the last three glacial/interglacial cycles. Paleog. Paleoc. Paleoe. 2021, 546, 110504. [Google Scholar] [CrossRef]
- Fenn, K.; Durcan, J.A.; Thomas, D.S.G.; Millar, I.L.; Markovic, S.B. Re-analysis of late Quaternary dust mass accumulation rates in Serbia using new luminescence chronology for loess–palaeosol sequence at Surduk. Boreas 2020, 49, 634–652. [Google Scholar] [CrossRef]
- Miao, X.; Hanson, R.; Stohr, C.J.; Wang, H. Holocene loess in Illinois revealed by OSL dating: Implications for stratigraphy and geoarcheology of the Midwest United States. Quat. Sci. Rev. 2018, 200, 253–261. [Google Scholar] [CrossRef]
- Tecsa, V.; Mason, J.A.; Johnson, W.C.; Miao, X.; Constantin, D.; Radu, S.; Magdas, D.A.; Veres, D.; Markovic, S.B.; Timar-Gabor, A. Latest Pleistocene to Holocene loess in the central Great Plains: Optically stimulated luminescence dating and multi-proxy analysis of the enders loess section (Nebraska, USA). Quat. Sci. Rev. 2020, 229, 106130. [Google Scholar] [CrossRef]
- Nett, J.J.; Chu, W.; Fischer, P.; Hambach, U.; Klasen, N.; Zeeden, C.; Obreht, I.; Obrocki, L.; Pötter, S.; Gavrilov, M.B.; et al. The Early Upper Paleolithic Site Crvenka-At, Serbia–The First Aurignacian Lowland Occupation Site in the Southern Carpathian Basin. Front. Earth Sci. 2021, 9, 56. [Google Scholar] [CrossRef]
- Gray, H.J.; Jain, M.; Sawakuchi, A.O.; Mahan, S.A.; Tucker, G.E. Luminescence as a sediment tracer and provenance tool. Rev. Geophys. 2019, 57, 987–1017. [Google Scholar] [CrossRef] [Green Version]
- Götte, T.; Ramseyer, K. Trace element characteristics, luminescence properties and real structure of quartz. In Quartz: Deposits, Mineralogy and Analytics; Götze, J., Möckel, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 265–285. [Google Scholar]
- Stevens, T.; Adamiec, G.; Bird, A.F.; Lu, H. An abrupt shift in dust source on the Chinese Loess Plateau revealed through high sampling resolution OSL dating. Quat. Sci. Rev. 2013, 82, 121–132. [Google Scholar] [CrossRef]
- Rodrigues, A.L.; Dias, M.I.; Valera, A.C.; Rocha, F.; Prudencio, M.I.; Marques, R. Geochemistry, luminescence and innovative dose rate determination of a Chalcolithic calcite-rich negative feature. J. Archaeol. Sci. Rep. 2019, 26, 101887. [Google Scholar] [CrossRef]
- Pietsch, T.J.; Olley, J.M.; Nanson, G.C. Fluvial transport as a natural luminescence 20eli20tizer of quartz. Quat. Geochronol. 2008, 3, 365–376. [Google Scholar] [CrossRef]
- Fitzsimmons, K.E. Anassessment of the luminescence sensitivity of Australian quartz with respect to sediment history. Geochronometria 2011, 38, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Miháltz, I. A Duna-Tisza köze déli részének Földtani felvétele (Geological survey of the southern part of the Danube-Tisza Interfluve). Magy. Állami Földtani Intézet Jelentése Az 1950-Es Évről 1953, 1, 113–144. (In Hungarian) [Google Scholar]
- Molnár, B. Die Verbreitung der aeolischen bildungen an der oberflache und untertags im Zwischenstromland von Donau und Theiss. Földtani Közlöny 1961, 91, 300–315. (In German) [Google Scholar]
- Molnár, B. Pliocene and Pleistocene lithofacies of the Great Hungarian Plain. Acta Geol. Hung. 1970, 14, 445–457. [Google Scholar]
- Molnár, B. A Duna-Tisza köze felső-pliocén és pleisztocén fejlődéstörténete (Upper Pliocene and Pleistocene geohistory of the Danube-Tisza Interfluve). Földtani Közlöny 1975, 107, 1–16. (In Hungarian) [Google Scholar]
- Molnár, B.; Krolopp, E. Latest Pleistocene geohistory of the Bácska Loess Area. Acta Min. Petro. 1978, 23, 245–265. [Google Scholar]
- Molnár, B. Quaternary geohistory of the Hungarian part of the Danube-Tisza Interfluve. Proc. Geol. Inst. Belgrade 1988, 21, 61–78. [Google Scholar]
- Fenn, K.; Thomas, D.S.G.; Durcan, J.A.; Millar, I.L.; Veres, D.; Piermattei, A.; Lane, C.S. A tale of two signals: Global and local influences on the Late Pleistocene loess sequences in Bulgarian Lower Danube. Quat. Sci. Rev. 2021, 274, 107264. [Google Scholar] [CrossRef]
- Moska, P.; Murray, A.S. Stability of the quartz fast-component in insensitive samples. Radiat. Meas. 2006, 41, 878–885. [Google Scholar] [CrossRef]
- Klasen, N.; Fiebig, M.; Preusser, F.; Radtke, U. Luminescence properties of glaicofluvial sediments from Bavarian Alpine Foreland. Radiat. Meas. 2006, 41, 866–870. [Google Scholar] [CrossRef]
- Klasen, N.; Fiebig, M.; Preusser, F.; Reiner, J.M.; Radtke, U. Luminescence dating of proglacial sediments from the Eastern Alps. Quat. Int. 2007, 164–165, 21–32. [Google Scholar] [CrossRef]
- Tóth, O.; Sipos, G.; Kiss, T.; Bartyik, T. Variation of OSL residual doses in terms of coarse and fine grain modern sediments along the Hungarian section of the Danube. Geochronometria 2017, 44, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Tóth, O.; Sipos, G.; Kiss, T.; Bartyik, T. Dating the Holocene incision of the Danube in Southern Hungary. J. Environ. Geogr. 2017, 10, 53–59. [Google Scholar] [CrossRef]
Sample | Depth (cm) | Lab Code | Material | 14C Ages | Calibrated Ages (cal BP) | Reference | ||
---|---|---|---|---|---|---|---|---|
BP | +/−1σ | Mean | +/−2σ Error | |||||
1 | 16–20 | D-AMS 4172 | Granaria frumentum | 10,986 | 57 | 12,914 | 164 | [5] |
2 | 60–64 | DeA-11787 | Trochulus hispidus | 12,891 | 46 | 15,413 | 180 | this study |
3 | 100–104 | D-AMS 4173 | Granaria frumentum | 13,561 | 41 | 16,371 | 158 | [5] |
4 | 148–152 | DeA-1467 | Trochulus hispidus | 14,498 | 81 | 17,678 | 314 | [5] |
5 | 200–204 | DeA-11908 | Trochulus hispidus | 14,891 | 53 | 18,211 | 118 | this study |
6 | 248–252 | DeA-11907 | Trochulus hispidus | 16,133 | 63 | 19,465 | 176 | [5] |
7 | 272–276 | DeA-20947 | Fruticicola fruticum | 16,541 | 54 | 19,985 | 100 | this study |
8 | 300–304 | DeA-11906 | Trochulus hispidus | 16,628 | 63 | 20,094 | 208 | [5] |
9 | 400–404 | D-AMS 4174 | Columella columella | 17,150 | 50 | 20,702 | 172 | [5] |
10 | 448–452 | DeA-11905 | Trochulus hispidus | 17,368 | 63 | 20,954 | 180 | [5] |
11 | 500–504 | DeA-11903 | Vallonia tenuilabris | 17,858 | 64 | 21,688 | 298 | [5] |
12 | 548–552 | DeA-11904 | Trochulus hispidus | 17,870 | 71 | 21,705 | 312 | [5] |
13 | 548–552 | DeA-11902 | Granaria frumentum | 17,935 | 66 | 21,810 | 308 | this study |
14 | 588–592 | Dea-1466 | Columella columella | 18,528 | 121 | 22,476 | 308 | this study |
15 | 600–604 | DeA-11901 | Euconulus fulvus | 18,942 | 71 | 22,851 | 238 | [5] |
16 | 648–652 | DeA-11900 | Chondrula tridens | 19,288 | 72 | 23,247 | 376 | this study |
17 | 700–704 | DeA-11860 | Chondrula tridens | 20,193 | 93 | 24,244 | 324 | [5] |
18 | 748–752 | DeA-11898 | Trochulus hispidus | 20,503 | 75 | 24,674 | 330 | this study |
19 | 748–752 | DeA-11896 | Chondrula tridens | 20,544 | 79 | 24,741 | 314 | this study |
20 | 800–804 | DeA-20943 | Trochulus hispidus | 20,509 | 72 | 24,686 | 320 | this study |
21 | 892–896 | Dea-1465 | Chondrula tridens | 21,266 | 159 | 25,577 | 358 | this study |
22 | 896–900 | DeA-11895 | Chondrula tridens | 21,381 | 82 | 25,753 | 178 | [5] |
23 | 900–904 | DeA-11897 | Granaria frumentum | 21,415 | 86 | 25,778 | 162 | this study |
24 | 900–904 | DeA-19221 | soil organic matter | 21,899 | 126 | 26,155 | 280 | this study |
25 | 904–908 | DeA-8796 | Granaria frumentum | 21,518 | 98 | 25,838 | 144 | this study |
26 | 900–908 | Deb-3104 * | Pinus charcoal | 21,937 | 252 | 26,259 | 566 | [5] |
27 | 908–912 | DeA-8799 | Granaria frumentum | 21,968 | 84 | 26,183 | 244 | this study |
28 | 920–924 | DeA-11861 | Granaria frumentum | 22,062 | 106 | 26,255 | 342 | [5] |
29 | 924–928 | DeA-20946 | Chondrula tridens | 22,066 | 82 | 26,249 | 300 | this study |
30 | 948–952 | D-AMS 005122 | Granaria frumentum | 23,636 | 104 | 27,781 | 176 | this study |
31 | 952–956 | DeA-11790 | Planorbis planorbis | 23,899 | 102 | 28,030 | 322 | this study |
32 | 996–1000 | D-AMS 004636 | Granaria frumentum | 34,654 | 264 | 39,843 | 602 | [5] |
Sample Code | Depth (cm) | OSL | |||
---|---|---|---|---|---|
Aliquots | De(Gy) | Dose Rate(Gy/ka) | Age (ky) | ||
HU110101-03 | 1050 | 15/17 | 67.46 ± 14.9 | 2.39 ± 0.08 * | 28.16 ± 1.89 |
HU110103 | 1000 | 7/24 | 18.12 ± 7.26 | 2.72 ± 0.14 | 6.64 ± 1.88 |
HU110119 | 840 | 3/6 | 58.01 ± 15.13 | 2.39 ± 0.08 * | 24.21 ± 3.74 |
HU110135 | 670 | 12/24 | 18.99 ± 10.96 | 2.50 ± 0.14 | 7.59 ± 1.34 |
HU110139 | 610 | 1/6 | 14.39 ± 1.63 | 2.39 ± 0.08 * | 6.01 ± 0.71 |
HU110147 | 520 | 10/15 | 14.33 ± 5.79 | 2.39 ± 0.08 * | 5.98 ± 0.93 |
HU110165 | 340 | 13/22 | 33.73 ± 8.83 | 2.37 ± 0.13 | 14.22 ± 1.26 |
HU110169 | 300 | 5/6 | 54.33 ± 9.90 | 2.39 ± 0.08 * | 22.68 ± 2.014 |
HU110187 | 70 | 11/12 | 5.21 ± 6.26 | 2.39 ± 0.08 * | 2.17 ± 0.63 |
HU110189 | 50 | 3/6 | 11.04 ± 2.14 | 2.39 ± 0.08 * | 4.61 ± 0.54 |
HU110190 | 40 | 5/24 | 9.70 ± 16.05 | 2.17 ± 0.11 | 4.45 ± 2.79 |
Sample Code | Depth (cm) | pIRIRSL50 (UNC) | pIRIRSL290 (UNC) | ||||||
---|---|---|---|---|---|---|---|---|---|
Aliquots | De (Gy) | Dose Rate (Gy/ka) | Age (ky) | Aliquots | De (Gy) | Dose Rate (Gy/ka) | Age (ky) | ||
HU110101 | 1020 | 6/6 | 65.75 ± 2.71 | 2.18 ± 0.09 * | 30.16 ± 1.35 | 6/6 | 66.56 ± 3.01 | 2.18 ± 0.09 * | 30.51 ± 1.38 |
HU110102 | 1010 | 5/6 | 92.34 ± 34.39 | 2.18 ± 0.09 | 42.36 ± 7.27 | 5/6 | 81.01 ± 19.74 | 2.18 ± 0.09 | 37.14 ± 1.72 |
HU110103 | 1000 | 6/6 | 84.32 ± 11.16 | 3.17 ± 0.15 | 26.93 ± 2.05 | 6/6 | 79.54 ± 11.28 | 3.17 ± 0.15 | 25.10 ± 1.99 |
HU110110 | 930 | 6/6 | 61.36 ± 10.47 | 3.35 ± 0.16 | 18.28 ± 1.56 | 6/6 | 60.58 ± 10.01 | 3.35 ± 0.16 | 18.04 ± 1.67 |
HU110120 | 830 | 6/6 | 56.40 ± 8.26 | 3.01 ± 0.14 | 18.69 ± 1.447 | 6/6 | 53.93 ± 7.24 | 3.01 ± 0.14 | 17.87 ± 7.34 |
HU110121 | 820 | 6/6 | 55.87 ± 4.84 | 3.01 ± 0.15 * | 18.51 ± 1.12 | 6/6 | 57.01 ± 5.72 | 3.01 ± 0.15 * | 18.89 ± 1.28 |
HU110135 | 670 | 6/6 | 44.18 ± 2.81 | 2.90 ± 0.14 | 15.22 ± 0.87 | 6/6 | 43.04 ± 2.76 | 2.90 ± 0.14 | 14.83 ± 0.87 |
HU110140 | 600 | 6/6 | 52.13 ± 5.15 | 2.75 ± 0.10 ** | 18.90 ± 1.03 | 6/6 | 51.32 ± 4.79 | 2.75 ± 0.10 ** | 18.60 ± 0.97 |
HU110145 | 540 | 5/6 | 56.83 ± 3.21 | 2.78 ± 0.13 | 20.43 ± 1.15 | 5/6 | 56.72 ± 3.21 | 2.78 ± 0.13 | 20.39 ± 1.15 |
HU110150 | 490 | 6/6 | 47.71 ± 3.4 | 2.72 ± 0.14 | 17.53 ± 1.01 | 6/6 | 50.36 ± 2.98 | 2.72 ± 0.14 | 18.50 ± 1.03 |
HU110151 | 480 | 6/6 | 45.64 ± 7.27 | 2.72 ± 0.15 * | 16.77 ± 1.37 | 6/6 | 53.28 ± 3.17 | 2.72 ± 0.15 * | 19.58 ± 1.11 |
HU110160 | 390 | 5/6 | 42.97 ± 3.33 | 2.73 ± 0.14 | 15.68 ± 0.96 | 5/6 | 47.00 ± 3.24 | 2.73 ± 0.14 | 17.15 ± 1.05 |
HU110165 | 340 | 6/6 | 41.51 ± 1.6 | 2.74 ± 0.13 | 15.14 ± 0.79 | 6/6 | 46.23 ± 1.02 | 2.74 ± 0.13 | 16.87 ± 0.86 |
HU110170 | 290 | 6/6 | 48.41 ± 3.55 | 2.75 ± 0.10 ** | 17.55 ± 2.93 | 6/6 | 46.46 ± 3.73 | 2.75 ± 0.10 ** | 16.84 ± 0.92 |
HU110175 | 215 | 6/6 | 38.98 ± 1.29 | 2.8 ± 0.13 | 13.92 ± 0.71 | 6/6 | 37.82 ± 3.26 | 2.8 ± 0.13 | 13.50 ± 0.89 |
HU110181 | 130 | 6/6 | 30.38 ± 1.35 | 2.75 ± 0.10 ** | 11.01 ± 0.45 | 6/6 | 29.53 ± 1.16 | 2.75 ± 0.10 ** | 10.70 ± 0.43 |
HU110185 | 90 | 6/6 | 35.39 ± 2.65 | 2.13 ± 0.09 | 16.54 ± 0.92 | 6/6 | 34.53 ± 3.21 | 2.13 ± 0.09 | 16.14 ± 1 |
HU110190 | 40 | 6/6 | 12.46 ± 1.21 | 2.48 ± 0.11 | 5.01 ± 0.30 | 6/6 | 12.16 ± 1.06 | 2.48 ± 0.11 | 4.88 ± 0.29 |
Site | Country | Period | Dating Method | Age 1 (y) | Age 2 (y) | Depth 1 (cm) | Depth 2 (cm) | Timespan (y) | Thickness (cm) | Sedimentation Time (y/cm) | From Modelled Values of Entire Profile (1 cm) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Krems-Wachtberg | Austria | MIS 2 | IRSL | 28,300 | 21,500 | 580 | 110 | 6800 | 470 | 14.5 | n.a | Lomax et al., 2014 [42] |
Tokaj | Hungary | MIS 2 | OSL | 26,800 | 21,200 | 510 | 50 | 5600 | 460 | 12.2 | n.a | Schatz et al., 2012 [43] |
Süttő | Hungary | MIS 2 | 14C | 27,900 | 21,600 | 625 | 280 | 6300 | 345 | 18.3 | n.a | Novothny et al., 2011 [47] |
Dunaszekcső | Hungary | MIS 2 | 14C | 28,132 | 23,419 | 686 | 250 | 4713 | 436 | 10.8 | 11.7 | Újvári et al., 2017 [4] |
Titel | Serbia | MIS 2 | OSL | 24,350 | 20,230 | 390 | 150 | 4120 | 240 | 17.2 | n.a | Perić et al., 2019 [44] |
Surduk 2 | Serbia | MIS 2 | OSL | 28,100 | 19,700 | 363 | 209 | 8400 | 154 | 54.5 | n.a | Fenn et al., 2020 [59] |
Madaras | Hungary | MIS 2 | 14C | 28,119 | 21,005 | 922 | 435 | 7114 | 487 | 14.6 | 11.6 | Sümegi et al., 2020 [5] |
Madaras | Hungary | MIS 2 | 14C | 26,994 | 21,001 | 996 | 440 | 5993 | 556 | 10.8 | 10.8 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sümegi, P.; Molnár, D.; Gulyás, S.; Stevens, T.; Makó, L.; Cseh, P.; Molnár, M.; Fitzsimmons, K.; Nett, J.J.; Hlavatskyi, D.; et al. Comparison of High-Resolution 14C and Luminescence-Based Chronologies of the MIS 2 Madaras Loess/Paleosol Sequence, Hungary: Implications for Chronological Studies. Quaternary 2022, 5, 47. https://doi.org/10.3390/quat5040047
Sümegi P, Molnár D, Gulyás S, Stevens T, Makó L, Cseh P, Molnár M, Fitzsimmons K, Nett JJ, Hlavatskyi D, et al. Comparison of High-Resolution 14C and Luminescence-Based Chronologies of the MIS 2 Madaras Loess/Paleosol Sequence, Hungary: Implications for Chronological Studies. Quaternary. 2022; 5(4):47. https://doi.org/10.3390/quat5040047
Chicago/Turabian StyleSümegi, Pál, Dávid Molnár, Sándor Gulyás, Thomas Stevens, László Makó, Péter Cseh, Mihály Molnár, Kathryn Fitzsimmons, Janina J. Nett, Dmytro Hlavatskyi, and et al. 2022. "Comparison of High-Resolution 14C and Luminescence-Based Chronologies of the MIS 2 Madaras Loess/Paleosol Sequence, Hungary: Implications for Chronological Studies" Quaternary 5, no. 4: 47. https://doi.org/10.3390/quat5040047
APA StyleSümegi, P., Molnár, D., Gulyás, S., Stevens, T., Makó, L., Cseh, P., Molnár, M., Fitzsimmons, K., Nett, J. J., Hlavatskyi, D., & Lehmkuhl, F. (2022). Comparison of High-Resolution 14C and Luminescence-Based Chronologies of the MIS 2 Madaras Loess/Paleosol Sequence, Hungary: Implications for Chronological Studies. Quaternary, 5(4), 47. https://doi.org/10.3390/quat5040047