Macroscopic Chop Mark Identification on Archaeological Bone: An Experimental Study of Chipped Stone, Ground Stone, Copper, and Bronze Axe Heads on Bone
Abstract
:1. Introduction
2. Butchery Chopping Experimental Studies—A Brief Review
2.1. Archaeological Chop Mark Experimentation
2.2. Forensic Chop Mark Experimentation
3. Materials and Methods
3.1. Replica Axe Materials
3.2. Experimental Bone Sample
3.3. Recording and Attributes of Investigation
3.4. Scale of Observation
3.5. Chop Mark Terminology
- Complete chop: a chop that severs the bone into two or more pieces [61].
- Axis/kerf line: the final penetration point of the axe into the bone surface [51].
- Fracture: breakage of the bone with no visible chop mark characteristics [52].
- Kerf fracture: fracture or breakage extending from the axis/kerf line due to wedge action [52].
- Bit: The sharpened cutting edge of a wedge-shaped impact tool (axe).
- Sheared surface: a very clean, smooth, cut surface that extends into the bone for at least 3 mm [52].
- Crushing: fractured bone surface pushed into the chop mark by the force of impact [52].
4. Experimental Tests
4.1. Test 1
4.2. Test 2
4.3. Test 3
4.4. Test 4
4.5. Test 5 and 6
4.6. Test 7
5. Experimental Chop Mark Classification
5.1. Complete Chops vs. Incomplete Chop Marks
5.2. The 5-Point Fragmentation Scale for Complete Chops
6. Experimental Results
6.1. Fragmentation Class 1
6.2. Fragmentation Class 2
6.3. Fragmentation Class 3
6.4. Fragmentation Class 4
6.5. Fragmentation Class 5
6.6. The Chipped Stone Axes (Axes 4 and 5)
6.7. The Ground Stone Axe (Axe 3)
6.8. The Copper Axe (Axe 2)
6.9. The Bronze Axe (Axe 1)
6.10. Morphological Differences between Metal and Stone Chop Marks
6.11. Criteria for Identifying Complete Chop Marks
7. The Zooarchaeological Sample
7.1. Regional Setting
7.2. EBA Anatolian Axes
7.3. The Chopped Assemblage from Göltepe
8. Discussion
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Binford, L.R. Bones: Ancient Men and Modern Myths; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Lyman, R.L. Archaeofaunas and butchery studies: A taphonomic perspective. Adv. Archaeol. Method Theory 1987, 10, 249–337. [Google Scholar]
- Seetah, K. Meat in history-the butchery trade in the Romano-British period. Food Hist. 2004, 2, 19–33. [Google Scholar] [CrossRef]
- Seetah, K. Butchery as a tool for understanding the changing view of animals: Cattle in Roman Britain. In Just Skin and Bones? New Perspectives on Human-Animal Relations in the Historical Past; British Archaeological Reports, International Series 1410; Pluskowski, A., Ed.; BAR: Oxford, UK, 2005; pp. 1–8. [Google Scholar]
- Greenfield, H.J. Slicing cut marks on animal bones: Diagnostics for identifying stone tool type and raw material. J. Field Archaeol. 2006, 31, 147–163. [Google Scholar] [CrossRef]
- Seetah, K. Multidisciplinary approach to Romano-British cattle butchery. In Integrating Zooarchaeology; Maltby, M., Ed.; Oxbow: Oxford, UK, 2006; pp. 111–118. [Google Scholar]
- Greenfield, H.J. “The Fall of the House of Flint”: A zooarchaeological perspective on the decline of chipped stone tools for butchering animals in the Bronze and Iron Ages of the southern Levant. Lithic Technol. 2013, 38, 161–178. [Google Scholar] [CrossRef]
- Beller, J.A.; Greenfield, H.J.; Levy, T.E. The butchered faunal remains from Nahal Tillah, an EB I Egypto-Levantine settlement in the southern Levant. In Archaeozoology of Southwest Asia and Adjacent Areas XIII: Proceedings of the 10th ICAZ-ASWA Conference, Nicosia, Cyprus, 4–10 June 2017; Daujat, J., Hadjikoumis, A., Berthon, R., Eds.; Lockwood Press: Columbus, OH, USA, 2022; pp. 61–80. [Google Scholar]
- Greenfield, H.J.; Brown, A. ‘Making the cut’: Changes in butchering technology and efficiency patterns from the Chalcolithic to modern Arab occupations at Tell Halif, Israel. In Bones and Identity: Zooarchaeological Approaches to Reconstructing Social and Cultural Landscapes in Southwest Asia (Proceedings of the ICAZ-SW Asia Conference, Haifa, Israel, 23–28 June 2013); Marom, N., Yeshurun, R., Weissbrod, L., Bar-Oz, G., Eds.; Oxbow Press: Oxford, UK, 2016; pp. 273–291. [Google Scholar]
- Greenfield, H.J.; Beller, J.A.; Levy, T.E. Butchering technology during the Early Bronze Age I: An examination of microscopic cut marks on animal bones from Nahal Tillah, Israel. In Tell It in Gath: Studies in the History and Archaeology of Israel. Essays in Honor of A. M. Maeir on the Occasion of his Sixtieth Birthday, Ägypten und Altes Testament. Studien zu Geschichte, Kultur und Religion Ägyptens und des Alten Testaments; Band 90; Shai, I., Chadwick, J.R., Hitchcock, L., Dagam, A., McKinny, C., Uziel, J., Eds.; Zaphon: Münster, Germany, 2018; pp. 20–40. [Google Scholar]
- Greenfield, H.J.; Beller, J.A.; Gaastra, J. Changes in butchering technology and efficiency patterns between the Early and Middle Bronze Ages from Tell Zirā’a, Jordan. In Tall Zirā‘a, The Gadara Region Project (2001–2011) Final Report: Early and Middle Bronze Age (Strata 25–17); Vieweger, D., Häser, J., Eds.; Deutsches Evangelisches Institut: Wuppertal, Germany, 2021; Volume 3. [Google Scholar]
- Courtenay, L.A.; Yravedra, J.; Aramendi, J.; Maté-González, M.Á.; Martín-Pereaf, D.M.; Uribelarreaf, D.; Baquedano, E.; González-Aguilerac, D.; Dominguez-Rodrigo, M. Cut marks and raw material exploitation in the Lower Pleistocene site of Bell’s Korongo (BK, Olduvai Gorge, Tanzania): A geometric morphometric analysis. Quat. Int. 2019, 526, 155–168. [Google Scholar] [CrossRef]
- Domínguez-Rodrigo, M. Distinguishing between apples and oranges: The application of modern cut-mark studies to the Plio-Pleistocene (a reply to Monahan). J. Hum. Evol. 1999, 37, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Rodrigo, M. On cut marks and statistical inferences: Methodological comments on Lupo & O’Connell. J. Archaeol. Sci. 2003, 30, 381–386. [Google Scholar]
- Dominguez-Rodrigo, M.; Barba, R. A study of cut marks on small-sized carcasses and its application to the study of cut-marked bones from small mammals at the FLK Zinj site. J. Taphon. 2005, 3, 121–134. [Google Scholar]
- Greenfield, H.J. The origins of metallurgy: Distinguishing stone from metal cut marks on bones from archaeological sites. J. Archaeol. Sci. 1999, 26, 797–808. [Google Scholar] [CrossRef]
- Greenfield, H.J. Distinguishing metal (steel and low-tin bronze) from stone (flint and obsidian) tool cut marks on bone: An experimental approach. In Experimental Archaeology: Replicating Past Objects, Behaviors, and Processes. British Archaeological Reports, International Series 1035; Mathieu, J.R., Ed.; Archaeopress: Oxford, UK, 2002; pp. 35–54. [Google Scholar]
- Pante, M.C.; Muttart, M.V.; Keevil, T.L.; Blumenschine, R.J.; Njau, J.K.; Merritt, S.R. A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record. J. Hum. Evol. 2017, 102, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pickering, T.R.; Hensley-Marschand, B. Cutmarks and hominid handedness. J. Archaeol. Sci. 2008, 35, 310–315. [Google Scholar] [CrossRef]
- Shipman, P. Application of scanning electron microscopy to taphonomic problems. Ann. N. Y. Acad. Sci. 1981, 375, 357–385. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Rodrigo, M.; Saladié, P.; Cáceres, I.; Huguet, R.; Yravedra, J.; Rodríguez-Hidalgo, A.; Patricia, M.; Antonio, P.; Juan, M.; Clara, G. Spilled ink blots the mind: A reply to Merrit et al. (2018) on subjectivity and bone surface modifications. J. Archaeol. Sci. 2019, 102, 80–86. [Google Scholar] [CrossRef]
- Domínguez-Rodrigo, M.; Cifuentes-Alcobendas, G.; Jiménez-García, B.; Abellán, N.; Pizarro-Monzo, M.; Organista, E.; Baquedano, E. Artificial intelligence provides greater accuracy in the classification of modern and ancient bone surface modifications. Sci. Rep. 2020, 10, 18862. [Google Scholar] [CrossRef] [PubMed]
- Yravedra, J.; Maté-González, M.Á.; Palomeque-González, J.F.; Aramendi, J.; Estaca-Gómez, V.; San Juan Blazquez, M.; García Vargas, E.; Organista, E.; González-Aguilera, D.; Arriaza, M.C. A new approach to raw material use in the exploitation of animal carcasses at BK (Upper Bed II, Olduvai Gorge, Tanzania): A micro-photogrammetric and geometric morphometric analysis of fossil cut marks. Boreas 2017, 46, 860–873. [Google Scholar] [CrossRef]
- Merritt, S.R.; Pante, M.C.; Keevil, T.L.; Njau, J.K.; Blumenschine, R.J. Don’t cry over spilled ink: Missing context prevents replication and creates the Rorschach effect in bone surface modification studies. J. Archaeol. Sci. 2019, 102, 71–79. [Google Scholar] [CrossRef]
- de Gruchy, S.; Rogers, T.L. Identifying chop marks on cremated bone: A preliminary study. J. Forensic Sci. 2002, 47, 1–4. [Google Scholar] [CrossRef]
- Tucker, B.K.; Hutchinson, D.L.; Gilliland, M.; Charles, T.M.; Daniel, H.J.; Wolfe, L.D. Microscopic characteristics of hacking trauma. J. Forensic Sci. 2001, 46, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Rodrigo, M.; Pickering, T.R.; Semaw, S.; Rogers, M.J. Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: Implications for the function of the world’s oldest stone tools. J. Hum. Evol. 2005, 48, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, L.K.; Monchot, H. Choice cuts: Hominid butchery activities at the Lower Paleolithic Site of Holon, Israel. In Archaeozoology of the Near East V: Proceedings of the Fifth International Symposium on the Archaeozoology of Southwestern Asia and Adjacent Areas held at Yarmouk University, Irbid, Jordan in 2000; Buitenhuis, H., Choyke, A.M., Mashkour, M., Al-Shiyab, A.H., Eds.; ARC: Groningen, The Netherlands, 2002; pp. 48–61. [Google Scholar]
- Perez, V.R.; Godfrey, L.R.; Nowak-Kemp, M.; Burney, D.A.; Ratsimbazafy, J.; Vasey, N. Evidence of early butchery of giant lemurs in Madagascar. J. Hum. Evol. 2005, 49, 722–742. [Google Scholar] [CrossRef] [PubMed]
- Maltby, M. Chop and change: Specialist cattle carcass processing in Roman Britain. In TRAC 2006: Proceedings of the 16th Annual Theoretical Roman Archaeology Conference, the University of Cambridge, Cambridge, UK, 24–25 March 2006; Croxford, B., Ray, N., Roth, R., Eds.; Oxbow: Oxford, UK, 2007; pp. 59–76. [Google Scholar]
- Soulier, M.-C. Exploring meat processing in the past: Insights from the Nunamiut people. PLoS ONE 2021, 16, e0245213. [Google Scholar] [CrossRef] [PubMed]
- Blasco, R.; Domínguez-Rodrigo, M.; Arilla, M.; Camarós, E.; Rosell, J. Breaking bones to obtain marrow: A comparative study between percussion by batting bone on an anvil and hammerstone percussion. Archaeometry 2014, 56, 1085–1104. [Google Scholar] [CrossRef]
- Haynes, G.; Krasinski, K.; Wojtal, P. A study of fractured Proboscidean bones in recent and fossil assemblages. J. Archaeol. Method Theory 2020, 28, 956–1025. [Google Scholar] [CrossRef]
- Pickering, T.R.; Egeland, C.P. Experimental patterns of hammerstone percussion damage on bones: Implications for inferences of carcass processing by humans. J. Archaeol. Sci. 2006, 33, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Massa, M. Early Bronze Age burial customs on the central Anatolian plateau: A view from Demircihöyük-Sarıket. Anatol. Stud. 2014, 64, 73–93. [Google Scholar] [CrossRef]
- Rosen, S.A. Arrowheads, axes, Ad Hoc, and sickles: An introduction to aspects to Lithic variability across the Near East in the Bronze and Iron Age. Lithic Technol. 2013, 38, 141–149. [Google Scholar] [CrossRef]
- Şahoğlu, V.; Tuncel, R. New insights into the Late Chalcolithic of coastal western Anatolia: A view from Bakla Tepe, Izmir. In Western Anatolia before Troy. Proto-Urbanisation in the 4th Millennium BC; Horejs, B., Mehofer, M., Eds.; Austrian Academy of Sciences Press: Vienna, Austria, 2014; pp. 65–82. [Google Scholar]
- Greenfield, H.J.; Cheney, T.; Galili, E. A taphonomic and technological analysis of the butchered animal bone remains from Atlit Yam, a submerged PPNC site off the coast of Israel. In Bones and Identity: Zooarchaeological Approaches to Reconstructing Social and Cultural Landscapes in Southwest Asia (Proceedings of the ICAZ-SW Asia Conference, Haifa, Israel, 23–28 June 2013); Marom, N., Yeshurun, R., Weissbrod, L., Bar-Oz, G., Eds.; Oxbow Press: Oxford, UK, 2016; pp. 89–112. [Google Scholar]
- Saidel, B.; Erickson-Gini, T.; Vardi, J.; Rosen, S.A.; Maher, E.F.; Greenfield, H.J. Egypt, copper, and microlithic drills: The test excavations at Rogem Be’erotayim in western Negev. Mitkufat Haeven (J. Isr. Prehist. Soc.) 2006, 36, 201–229. [Google Scholar]
- Greenfield, H.J.; Greenfield, T.L. Butchering technology in Middle Bronze Age Ashkelon. In Final Reports of the Leon Levy Expedition to Ashkelon: Ashkelon 6: The Middle Bronze Age Ramparts and Gates of the North Slope and Later Fortifications; Stager, L.E., Master, D.M., Schloen, J.D., Eds.; Harvard Semitic Museum Publications and Eisenbrauns: University Park, PA, USA, 2018; pp. 509–520. [Google Scholar]
- Greenfield, H.J.; Marciniak, A. Retention of old technologies following the end of the Neolithic: Microscopic analysis of the butchering marks on animal bones from Çatalhöyük East. World Archaeol. 2019, 51, 76–103. [Google Scholar] [CrossRef]
- Lev-Tov, J.S.E.; Killebrew, A.E.; Greenfield, H.J.; Brown, A. Puppy sacrifice and cynophagy from early Philistine Tel Miqne-Ekron contextualized. J. East. Mediterr. Archaeol. Herit. 2018, 6, 1–30. [Google Scholar] [CrossRef]
- Greenfield, H.J. Insufficient evidence for metal butchering marks at Tell el-Hesi during the Early Bronze Age: Critique of the analysis of microscopic grooves in ‘Cultural Modification Analyses on Faunal Remains in Relation to Space Use and Direct Provisioning from Field VI EBIIIA Tell el-Hesi’ by Kara Larson, James W. Hardin, and Sara Cody. Palest. Explor. Q. 2021, 160, 144–155. [Google Scholar]
- Greenfield, H.J.; Brown, A.; De Miroschedji, P. Origins of metallurgy in the southern Levant: Microscopic examination of butchering marks on animal bones at Tel Yarmuth, Israel. In Themes in Old World Zooarchaeology: From the Mediterranean to the Atlantic; Albarella, U., Detry, C., Gabriel, S., Ginja, C., Pires, A.E., Tereso, J.P., Eds.; Oxbow Books: Oxford, UK, 2021; pp. 95–107. [Google Scholar]
- Greenfield, H.J.; Chaput, T. Butchering technology at the early tin metal producing site of Göltepe. In Tin Production at Göltepe: Excavations at an Early Bronze Age Mining Town in the Central Taurus Mountains, Turkey; Yener, K.A., Ed.; Institute for Aegean Academic Press: Philadelpha, PA, USA, 2021; pp. 160–176. [Google Scholar]
- Greenfield, H.J.; Marciniak, A. The emergence and transmission of metallurgical technology for subsistence activities in daily life in northern Europe: A microscopic zooarchaeological perspective. J. Field Archael. 2021, 46, 275–288. [Google Scholar] [CrossRef]
- Greenfield, H.J. Monitoring the origins of metallurgy: An application of cut mark analysis on animals bones from the Central Balkans. Environ. Archaeol. 2000, 5, 119–132. [Google Scholar] [CrossRef]
- Olsen, S.L. The identification of stone and metal tool marks on bone artifacts. In Scanning Electron Microscopy in Archaeology. British; Archaeological Reports, International Series 452; Olsen, S.L., Ed.; BAR: Oxford, UK, 1988; pp. 337–360. [Google Scholar]
- Walker, P.L.; Long, J.C. An experimental study of the morphological characteristics of tool marks. Am. Antiq. 1977, 42, 605–616. [Google Scholar] [CrossRef]
- Gifford-Gonzalez, D.P. An Introduction to Zooarchaeology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Lewis, J.E. Identifying sword marks on bone: Criteria for distinguishing between cut marks made by different classes of bladed weapons. J. Archaeol. Sci. 2008, 35, 2001–2008. [Google Scholar] [CrossRef]
- Humphrey, J.H.; Hutchinson, D.L. Macroscopic characteristics of hacking trauma. J. Forensic Sci. 2001, 46, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Knusel, C.; Outram, A.K. Fragmentation: The zonation method applied to fragmented human remains from Archaeological and Forensic contexts. Environ. Archaeol. 2004, 9, 85–99. [Google Scholar] [CrossRef]
- Lynn, K.S.; Fairgrieve, S.I. Macroscopic analysis of axe and hatchet trauma in fleshed and defleshed mammalian long bones. J. Forensic Sci. 2009, 54, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Symes, S.A.; Chapman, E.N.; Rainwater, C.W.; Cabo, L.L.; Myster, S.M.T. Knife and Saw Toolmark Analysis in Bone: A Manual Designed for the Examination of Criminal Mutilation and Dismemberment; National Institute of Justice: Rockville, MD, USA, 2010. [Google Scholar]
- Wenham, S.J. Anatomical interpretation of Anglo-Saxon weapon injuries. In Weapons and Warfare in Anglo-Saxon England; Hawkes, S.C., Ed.; Oxford University Press: Oxford, UK, 1989; pp. 123–139. [Google Scholar]
- Hansen, S. Arsenic bronze: An archaeological introduction into a key innovation. Eurasia Antiq. 2021, 23, 139–162. [Google Scholar]
- Rosen, S.A. Lithics after the Stone Age: A Handbook of Stone Tools from the Levant; Altamira Press: Walnut Creek, CA, USA, 1997. [Google Scholar]
- Yener, K.A. (Ed.) Tin Production at Göltepe: Excavations at an Early Bronze Age Mining Town in the Central Taurus Mountains, Turkey; INSTAP (Institute for Aegean Academic Press): Philadelpha, PA, USA, 2021. [Google Scholar]
- Kononenko, N.; Torrence, R.; White, P. Unexpected uses for obsidian: Experimental replication and use-wear/residue analyses of chopping tools. J. Archaeol. Sci. 2015, 54, 254–269. [Google Scholar] [CrossRef]
- Lupo, K.D.; Fancher, J.M.; Schmitt, D.N. The taphonomy of resource intensification: Zooarchaeological implications of resource scarcity among Bofi and Aka forest foragers. J. Archaeol. Method Theory 2013, 20, 420–447. [Google Scholar] [CrossRef]
- Pickering, T.R.; Domínguez-Rodrigo, M.; Heaton, J.L.; Yravedra, J.; Barba, R.; Bunn, H.T.; Musiba, C.; Baquedano, E.; Diez-Martín, F.; Mabulla, A. Taphonomy of ungulate ribs and the consumption of meat and bone by 1.2-million-year-old hominins at Olduvai Gorge, Tanzania. J. Archaeol. Sci. 2013, 40, 1295–1309. [Google Scholar] [CrossRef]
- White, T.D. Prehistoric Cannibalism; Princeton University Press: Princeton, NJ, USA, 1992. [Google Scholar]
- Olsen, S.L.; Shipman, P. Surface modification on bone: Trampling versus butchery. J. Archaeol. Sci. 1988, 15, 535–553. [Google Scholar] [CrossRef]
- Stout, D.; Apel, J.; Commander, J.; Roberts, M. Late Acheulean technology and cognition at Boxgrove, UK. J. Archaeol. Sci. 2014, 41, 576–590. [Google Scholar] [CrossRef]
- Yener, A.K. Background. In Tin Production at Göltepe: Excavations at an Early Bronze Age Mining Town in the Central Taurus Mountains, Turkey; Yener, A.K., Ed.; INSTAP (Institute for Aegean Academic Press): Philadelpha, PA, USA, 2021; pp. 1–8. [Google Scholar]
- Earl, B.; Özbal, H. Early Bronze Age tin processing at Kestel/Göltepe, Anatolia. Archaeometry 1996, 38, 289–303. [Google Scholar] [CrossRef]
- Yener, K.A. The Domestication of Metals: The Rise of Complex Metal Industries in Anatolia; Brill: Leiden, The Netherlands, 2000. [Google Scholar]
- Yener, K.A. Summary and Conclusions. In Tin Production at Göltepe: Excavations at an Early Bronze Age Mining Town in the Central Taurus Mountains, Turkey; Yener, A.K., Ed.; INSTAP (Institute for Aegean Academic Press): Philadelpha, PA, USA, 2021; pp. 195–206. [Google Scholar]
- Yener, K.A.; Kulakoğlu, F.; Yazgan, E.; Kontani, R.; Hayakawa, Y.S.; Lehner, J.W.; Dardeniz, G.; Öztürk, G.; Johnson, M.; Kaptan, E.; et al. New tin mines and production sites near Kültepe, ancient Kanesh in Turkey: A third millennium BC highland production model. Antiquity 2015, 89, 596–612. [Google Scholar] [CrossRef]
- Yener, K.A. Excavations at Kestel Mine, Turkey: The Final Season: 1996–1997 Annual Report; The Oriental Institute of the University of Chicago: Chicago, IL, USA, 2012. [Google Scholar]
- Yener, K.A. Revisiting Kestel Mine and Göltepe: The dynamics of local provisioning of tin during the Early Bronze Age. In Ancient Mining in Turkey and the Eastern Mediterranean; Ozbal, H., Yalcin, U., Pasamehmetoglu, G., Eds.; Atilim University: Ankara, Turkey, 2008; pp. 57–64. [Google Scholar]
- Yener, K.A. Small finds. In Tin Production at Göltepe: Excavations at an Early Bronze Age Mining Town in the Central Taurus Mountains, Turkey, Yener, A.K., Ed.; INSTAP (Institute for Aegean Academic Press): Philadelpha, PA, USA, 2021; pp. 111–148. [Google Scholar]
- Yener, K.A. Horizontal Exposures at Göltepe. In Tin Production at Göltepe: Excavations at an Early Bronze Age Mining Town in the Central Taurus Mountains, Turkey; Yener, A.K., Ed.; INSTAP (Institute for Aegean Academic Press): Philadelpha, PA, USA, 2021; pp. 23–74. [Google Scholar]
- Massa, M.; McIlfatrick, O.; Fidan, E. Patterns of metal procurement, manufacture and exchange in Early Bronze Age northwestern Anatolia: Demircihüyük and beyond. Anatol. Stud. 2017, 67, 51–83. [Google Scholar] [CrossRef]
- Yakar, J. Reflections of Ancient Anatolian Society in Archaeology: From Neolithic Village Communities to EBA Towns and Polities; Homer Kitabevi: Istanbul, Turkey, 2011. [Google Scholar]
Bronze | Copper | Ground Stone | Chipped Stone (A) | Chipped Stone (B) | |
---|---|---|---|---|---|
Axe head raw material | 90% copper; 10% tin | 100% copper (cold hammered) | Fine gained basalt | Fine grained chert | Knife River Flint |
Handle raw material | Cherry | Pine | Cherry | Pine | Pine |
Haft | Pine resin, sinew, leather cord | Pine resin, sinew, leather cord | Epoxy | Sinew, leather cord | Sinew, leather cord |
Bone Sample (Taxon and Element) | Age | Size Class | Amount of Meat (mm) Covering the Bone |
---|---|---|---|
Ovis aries crania | Juvenile | Medium | 2–5 mm |
Bos taurus ribs | Young adult | Large | 5 mm |
Sus scrofa ribs | Sub-adult | Large | 10 mm |
Sus scrofa long bones | Sub-adult | Large | 20 mm |
Sus scrofa vertebrae | Sub-adult | Large | 20–25 mm |
Odocoileus virginianus long bones | Juvenile | Medium | 2–10 mm |
cBI | Species | Element | Axe Raw Material | Complete/ Incomplete | Angle of Chop | Sheared/ Not Sheared | Fragmentation Class | Degree of Crushing | Sharp/Dull |
---|---|---|---|---|---|---|---|---|---|
1 | Sus scrofa | Radius | Bronze | Complete | 90° | Sheared | 5 | None | Dull |
2 | Sus scrofa | Radius | Bronze | Complete | 90° | Not sheared | 3 | Light | Dull |
3 | Sus scrofa | Radius | Bronze | Incomplete | 90° | Surface | Surface | None | Dull |
4 | Sus scrofa | Radius | Bronze | Complete | 45° | Sheared | 4 | None | Dull |
5 | Sus scrofa | Sternum | Bronze | Complete | 45° | Sheared | 5 | None | Dull |
6 | Sus scrofa | Sternum | Bronze | Complete | 45° | Sheared | 4 | None | Dull |
7 | Sus scrofa | Rib | Bronze | Complete | 90° | Not sheared | 3 | None | Sharp |
8 | Sus scrofa | Rib | Bronze | Complete | 90° | Not sheared | 2 | None | Sharp |
9 | Sus scrofa | Rib | Bronze | Incomplete | 45° | Sheared | 4 | Light | Sharp |
10 | Sus scrofa | Rib | Bronze | Incomplete | 90° | Not sheared | 3 | None | Sharp |
11 | Sus scrofa | Rib | Bronze | Complete | 90° | Sheared | 5 | None | Sharp |
12 | Sus scrofa | Rib | Bronze | Complete | 90° | Not sheared | 3 | Sharp | |
13 | Sus scrofa | Rib | Bronze | Complete | 90° | Not sheared | 3 | None | Sharp |
14 | Sus scrofa | Rib | Bronze | Complete | 45° | Sheared | 5 | Light | Sharp |
15 | Sus scrofa | Rib | Bronze | Complete | 90° | Sheared | 5 | None | Sharp |
16 | Sus scrofa | Rib | Bronze | Complete | 45° | Sheared | 4 | Medium | Sharp |
17 | Sus scrofa | Rib | Bronze | Complete | 90° | Not sheared | 2 | Light | Sharp |
18 | Sus scrofa | Rib | Bronze | Complete | 45° | Sheared | 5 | None | Sharp |
19 | Sus scrofa | Rib | Bronze | Incomplete | 90° | Surface | Surface | None | Sharp |
52 | Bos taurus | Rib | Bronze | Incomplete | 45° | Sheared | 5 | None | Sharp |
21 | Bos taurus | Rib | Bronze | Incomplete | 90° | Not sheared | 3 | Light | Dull |
22 | Bos taurus | Rib | Bronze | Incomplete | 90° | Surface | Surface | No | Dull |
23 | Bos taurus | Rib | Bronze | Incomplete | 90° | Surface | Surface | No | Dull |
24 | Odocoileus virginiaus | Tibia | Bronze | Incomplete | 45° | Sheared | 4 | Light | Sharp |
25 | Odocoileus virginiaus | Tibia | Bronze | Complete | 90° | Not sheared | 3 | None | Sharp |
26 | Odocoileus virginiaus | Humerus | Bronze | Complete | 45° | Sheared | 5 | None | Sharp |
27 | Odocoileus virginiaus | Humerus | Bronze | Incomplete | 90° | Surface | Surface | None | Sharp |
28 | Ovis aries | Cranium | Bronze | Incomplete | 90° | Not sheared | 3 | None | Dull |
29 | Ovis aries | Cranium | Bronze | Complete | 90° | Sheared | 4 | Medium | Dull |
30 | Ovis aries | Cranium | Bronze | Complete | 90° | Not sheared | 3 | Medium | Dull |
31 | Sus scrofa | Rib | Copper | Complete | 90° | Not sheared | 3 | Light | Sharp |
32 | Sus scrofa | Rib | Copper | Complete | 90° | Not sheared | 3 | Light | Sharp |
33 | Sus scrofa | Rib | Copper | Incomplete | 45° | Sheared | 4 | Light | Sharp |
34 | Sus scrofa | Rib | Copper | Complete | 90° | Not sheared | 3 | None | Sharp |
35 | Sus scrofa | Rib | Copper | Complete | 90° | Not sheared | 2 | Light | Sharp |
36 | Sus scrofa | Rib | Copper | Incomplete | 90° | Surface | Surface | Light | Sharp |
37 | Sus scrofa | Rib | Copper | Incomplete | 45° | Surface | Surface | None | Sharp |
38 | Sus scrofa | Rib | Copper | Complete | 90° | Sheared | 4 | None | Sharp |
39 | Sus scrofa | Rib | Copper | Complete | 90° | Not sheared | 3 | Light | Sharp |
40 | Sus scrofa | Rib | Copper | Incomplete | 90° | Surface | Surface | None | Sharp |
41 | Sus scrofa | Rib | Copper | Complete | 45° | Sheared | 4 | None | Sharp |
42 | Sus scrofa | Rib | Copper | Complete | 45° | Not sheared | 2 | None | Sharp |
43 | Sus scrofa | Rib | Copper | Incomplete | 45° | Surface | Surface | None | Sharp |
44 | Sus scrofa | Rib | Copper | Complete | 45° | Sheared | 5 | None | Sharp |
45 | Sus scrofa | Rib | Copper | Complete | 45° | Sheared | 4 | None | Sharp |
46 | Sus scrofa | Rib | Copper | Complete | 45° | Not sheared | 3 | Light | Sharp |
47 | Sus scrofa | Rib | Copper | Complete | 45° | Not sheared | 2 | None | Sharp |
48 | Sus scrofa | Rib | Copper | Complete | 45° | Not sheared | 3 | None | Sharp |
49 | Sus scrofa | Ulna/radius | Copper | Incomplete | 45° | Surface | Surface | None | Dull |
50 | Bos taurus | Rib | Copper | Incomplete | 90° | Surface | Surface | Medium | Dull |
51 | Bos taurus | Rib | Copper | Incomplete | 45° | Surface | Surface | Heavy | Dull |
25 | Bos taurus | Rib | Copper | Incomplete | 90° | Surface | Surface | Heavy | Dull |
53 | Bos taurus | Rib | Copper | Incomplete | 90° | Surface | Surface | Heavy | Dull |
54 | Odocoileus virginianus | Tibia | Copper | Complete | 45° | Not sheared | 1 | Medium | Sharp |
55 | Odocoileus virginianus | Tibia | Copper | Complete | 45° | Not sheared | 1 | Light | Sharp |
56 | Odocoileus virginianus | Tibia | Copper | Incomplete | 45° | Not sheared | 3 | Medium | Sharp |
57 | Ovis aries | Cranium | Copper | Incomplete | 45° | Sheared | 4 | None | Sharp |
58 | Ovis aries | Cranium | Copper | Incomplete | 45° | Sheared | 4 | Light | Dull |
59 | Sus scrofa | Vertebra | Copper | Complete | 90° | Not sheared | 2 | Light | Dull |
60 | Sus scrofa | Vertebra | Copper | Complete | 90° | Not sheared | 3 | Light | Dull |
61 | Sus scrofa | Rib | Copper | Incomplete | 90° | Not sheared | 2 | None | Sharp |
62 | Sus scrofa | Rib | Copper | Complete | 90° | Not sheared | 2 | Light | Sharp |
63 | Sus scrofa | Rib | Copper | Complete | 90° | Not sheared | 1 | Light | Sharp |
64 | Sus scrofa | Rib | Copper | Complete | 45° | Not sheared | 1 | None | Sharp |
65 | Sus scrofa | Vertebra | Copper | Complete | 90° | Not sheared | 3 | Light | Sharp |
66 | Sus scrofa | Vertebra | Copper | Complete | 45° | Sheared | 4 | None | Sharp |
67 | Sus scrofa | Vertebra | Copper | Complete | 45° | Not sheared | 3 | Light | Sharp |
68 | Sus scrofa | Vertebra | Copper | Complete | 90° | Sheared | 5 | Light | Sharp |
69 | Sus scrofa | Vertebra | Copper | Complete | 45° | Sheared | 4 | Light | Sharp |
70 | Sus scrofa | Vertebra | Copper | Complete | 45° | Sheared | 4 | None | Sharp |
71 | Ovis aries | Cranium | Copper | Incomplete | 45° | Not sheared | 3 | None | Dull |
72 | Bos taurus | Rib | Ground stone | Incomplete | 90° | Not sheared | 2 | Heavy | Sharp |
73 | Bos taurus | Rib | Ground stone | Incomplete | 90° | Not sheared | 1 | Heavy | Sharp |
74 | Bos taurus | Rib | Ground stone | Incomplete | 90° | Not sheared | 1 | Heavy | Sharp |
75 | Bos taurus | Rib | Ground stone | Incomplete | 90° | Not sheared | 1 | Medium | Sharp |
76 | Bos taurus | Rib | Ground stone | Incomplete | 90° | Surface | Surface | None | Sharp |
77 | Sus scrofa | Vertebra | Ground stone | Complete | 45° | Not sheared | 3 | Medium | Sharp |
78 | Sus scrofa | Vertebra | Ground stone | Complete | 45° | Not sheared | 3 | Light | Sharp |
79 | Odocoileus virginianus | Radius | Ground stone | Complete | 90° | Not sheared | 2 | Medium | Dull |
80 | Odocoileus virginianus | Radius | Ground stone | Incomplete | 90° | Surface | Surface | None | Dull |
81 | Odocoileus virginianus | Radius | Ground stone | Incomplete | 90° | Surface | Surface | Light | Dull |
82 | Sus scrofa | Vertebra | Ground stone | Complete | 45° | Not sheared | 2 | None | Sharp |
83 | Sus scrofa | Vertebra | Ground stone | Complete | 45° | Not sheared | 3 | Light | Sharp |
84 | Ovis aries | Cranium | Ground stone | Incomplete | 90° | Surface | Surface | Light | Sharp |
85 | Ovis aries | Cranium | Ground stone | Incomplete | 45° | Not sheared | 3 | Light | Sharp |
86 | Ovis aries | Cranium | Ground stone | Complete | 90° | Not sheared | 3 | Light | Sharp |
87 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 2 | Light | Dull |
88 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 2 | Light | Dull |
89 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 1 | Light | Dull |
90 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 1 | Light | Dull |
91 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 1 | Heavy | Dull |
92 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 1 | Light | Dull |
93 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 1 | Medium | Dull |
94 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 1 | Medium | Dull |
95 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 2 | Heavy | Dull |
96 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 1 | Heavy | Dull |
97 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 2 | Light | Dull |
98 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 1 | Light | Dull |
99 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 3 | None | Dull |
100 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 3 | None | Dull |
101 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 2 | Light | Dull |
102 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 1 | Light | Dull |
103 | Sus scrofa | Rib | Ground stone | Incomplete | 90° | Surface | Surface | None | Dull |
104 | Sus scrofa | Rib | Ground stone | Complete | 45° | Not sheared | 3 | None | Dull |
105 | Odocoileus virginianus | Radius | Chipped stone | Complete | 90° | Not sheared | 1 | Light | Dull |
106 | Odocoileus virginianus | Radius | Chipped stone | Incomplete | 90° | Surface | Surface | None | Dull |
107 | Odocoileus virginianus | Radius | Chipped stone | Incomplete | 90° | Surface | Surface | Light | Dull |
108 | Bos taurus | Rib | Chipped stone | Incomplete | 90° | Not sheared | Surface | None | Sharp |
109 | Bos taurus | Rib | Chipped stone | Incomplete | 90° | Not sheared | Surface | None | Sharp |
110 | Bos taurus | Rib | Chipped stone | Incomplete | 90° | Not sheared | Surface | None | Sharp |
111 | Ovis aries | Cranium | Chipped stone | Incomplete | 90° | Not sheared | 3 | Medium | Sharp |
112 | Ovis aries | Cranium | Chipped stone | Complete | 90° | Not sheared | 1 | Light | Sharp |
113 | Ovis aries | Cranium | Chipped stone | Complete | 45° | Not sheared | 2 | Medium | Sharp |
114 | Cranium | Chipped stone | Complete | 90° | Not sheared | 1 | Heavy | Sharp | |
115 | Ovis aries | Cranium | Chipped stone | Incomplete | 90° | Surface | Surface | Medium | Sharp |
116 | Ovis aries | Cranium | Chipped stone | Complete | 45° | Not sheared | 2 | Light | Sharp |
117 | Ovis aries | Cranium | Chipped stone | Complete | 90° | Not sheared | 1 | Light | Sharp |
Fragmentation Class | Number of Chop Marks |
---|---|
1 | 4 |
2 | 2 |
3 | 1 |
Surface | 6 |
Total | 13 |
Fragmentation Class | Number of Chop marks |
---|---|
1 | 12 |
2 | 8 |
3 | 8 |
Surface | 4 |
Total | 32 |
Fragmentation Class | Number of Chop Marks |
---|---|
1 | 4 |
2 | 6 |
3 | 11 |
4 | 9 |
5 | 2 |
Surface | 9 |
Total | 41 |
Fragmentation Class | Number of Chop Marks |
---|---|
2 | 2 |
3 | 9 |
4 | 6 |
5 | 8 |
Surface | 5 |
Total | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okaluk, T.R.; Greenfield, H.J. Macroscopic Chop Mark Identification on Archaeological Bone: An Experimental Study of Chipped Stone, Ground Stone, Copper, and Bronze Axe Heads on Bone. Quaternary 2022, 5, 15. https://doi.org/10.3390/quat5010015
Okaluk TR, Greenfield HJ. Macroscopic Chop Mark Identification on Archaeological Bone: An Experimental Study of Chipped Stone, Ground Stone, Copper, and Bronze Axe Heads on Bone. Quaternary. 2022; 5(1):15. https://doi.org/10.3390/quat5010015
Chicago/Turabian StyleOkaluk, Tiffany R., and Haskel J. Greenfield. 2022. "Macroscopic Chop Mark Identification on Archaeological Bone: An Experimental Study of Chipped Stone, Ground Stone, Copper, and Bronze Axe Heads on Bone" Quaternary 5, no. 1: 15. https://doi.org/10.3390/quat5010015
APA StyleOkaluk, T. R., & Greenfield, H. J. (2022). Macroscopic Chop Mark Identification on Archaeological Bone: An Experimental Study of Chipped Stone, Ground Stone, Copper, and Bronze Axe Heads on Bone. Quaternary, 5(1), 15. https://doi.org/10.3390/quat5010015