Sedimentological-Geochemical Data Based Reconstruction of Climate Changes and Human Impacts from the Peat Sequence of Round Lake in the Western Foothill Area of the Eastern Carpathians, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Location
2.2. Sampling
2.3. Magnetic Susceptibility Analysis
2.4. Sedimentological Analysis and Lithological Description
2.5. Loss-On Ignition
2.6. Sample Preparation and Geochemical Analysis
2.7. Statistical Analysis and PCA
2.8. Radiocarbon Dating
2.9. Pollen Analysis
3. Results
3.1. Sedimentological Results and Undisturbed Core Sequence Description
3.2. Descriptive Statistics and PCA Analysis
3.3. Chronological Results
4. Discussion
4.1. Factors Affecting the Elemental Composition of the Round Lake
4.2. Major and Trace Element Distribution
4.3. Comparative Analyses of Geochemical and Pollen Results
4.4. Paleoenvironmental Changes during the Past 7500 Years
4.5. Paleoenvironment Changes from the Aspect of Human Impact
Age (Cal BP Years) | Age (Cal BC/AD Years) | Erosion/Peat Phases | Archeological Stage (Age) | Cultures and Phases |
---|---|---|---|---|
200–0 | 1600–2000 | strong erosion phase | Modern | Magyars |
700–200 | 1300–1800 | pond phase | Terminal Medieval | Magyars |
1000–700 | 1000–1300 AD | strong erosion phase | Medieval | Magyars |
1100–1000 | 900–1000 AD | strong erosion phase | Terminal Migration | Magyars |
1300–1100 | 700–900 AD | strong erosion phase | Migration | Avars |
1600–1300 | 400–700 AD | peat regeneration phase | Migration | Gepids, Huns. Goths |
1900–1600 | 400 BC–1400 AD | strong erosion phase | Imperial | Romans |
3100–1900 | 1100 BC–100 AD | solid but continuous erosion | Iron | Dacians, La Téne, Scytians, Prescythians, Mezőcsát |
3450–3100 | 1450–1100 | strong erosion phase | Late Bronze | Gáva, Noua |
3800–3450 | 1800–1450 | strong erosion phase | Middle Bronze III | Classical Wietenberg |
3900–3800 | 1900–1800 | peat regeneration phase | Middle Bronze II | Formative Wietenberg |
3950–3900 | 1950–1900 | strong erosion phase | Middle Bronze I | Formative Wietenberg |
4183–3950 | 2193–1950 | strong erosion phase | Early Bronze III | Gornea-Foci |
4500–4183 | 2500–2183 | peat regeneration phase within Sphagnum taxa | Early Bronze II | Schneckenberg |
4600–4500 | 2600–2500 | strong erosion phase | Early Bronze I | Globular Amphora-Late Coţofeni |
4800–4600 | 2800–2600 | strong erosion phase | Copper/Bronze | Coţofeni/Pit Grave |
5000–4800 | 3000–2800 | human impact, vegetation disturbed, erosion phase | Late Copper | Late Cucuteni B–Tripolje BIII |
6500–5000 | 4500–3000 | peat regeneration phase within Sphagnum taxa | Copper | Erősd-Cucuteni B–Tripolje BI-II |
7000–6500 | 5000–4500 | vegetation disturbed, solid erosion phase | Late Neolithic/Copper | Erősd–Precucuteni–Cucuteni A1 Tripolje A |
7500–7000 | 5500–5000 | high organic content, peat forming, solid clay inwashing phase | Middle Neolithic | Linnear Pottery |
5. Conclusions
- (1).
- The sedimentological data make clear that the sediment series with a length of 560 cm–accumulated during the last 7500 years–do not differ much in terms of grain composition, sediment samples are fairly homogeneous. Only the lake sediment samples of the medieval-modern era differed from each other, as well as the ones that indicating erosion. The peat samples formed a completely overlapping set in terms of particle composition. Sphagnum moss peat and herbaceous peat samples are completely identical in terms of sedimentology, they can only be distinguished based on their vegetation content.
- (2).
- Among the examined elements, two groups can be distinguished well. The one derived from organic material (P, S, Ca, LOI550, LOI950) and another one from minerogenic material (Si, Al, K, Mn, Fe, Ti, Zr, Cr, Rb, Sr, LOIres, MS), however, some elements are transported by vegetation (K, Cr, Rb) and groundwater (Fe, Mn) within the peat.
- (3).
- Summarizing our geohistorical studies, erosion phases can be detected at the level of 12 cultures, and these observations (and the disturbance of the forest vegetation) can also be seen in the case of similar studies about the prehistoric horizons of the Subcarpathian region of the Northern Carpathians [91]. In addition, significant differences between the human impacts can be noted for the last 2000 years due to the different history and demography of the two areas.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Verhoven, J.T.A. Nutrient dynamics in minerotrophic peat. Mires. Aquat. Bot. 1986, 25, 117–137. [Google Scholar] [CrossRef]
- Shotyk, W. Review of the inorganic geochemistry of peats and peatland waters. Earth-Sci. Rev. 1988, 25, 95–176. [Google Scholar] [CrossRef]
- Shotyk, W. Peat mires archives of atmospheric metal deposition: Geochemical assessment of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Environ. Rev. 1996, 41, 49–183. [Google Scholar]
- Shotyk, W. The chronology of anthropogenic, atmospheric Pb deposition recorded by peat cores in three minerogenic peat deposits from Switzerland. Sci. Total Environ. 2002, 292, 19–31. [Google Scholar] [CrossRef]
- Muller, J.; Wust, R.A.J.; Weiss, D.; Hu, Y. Geochemical and stratigraphic evidence of environmental change at Lynch’s Crater, Queensland, Australia. Glob. Planet. Chang. 2006, 53, 269–277. [Google Scholar] [CrossRef]
- Bindler, R. Mired in the past—Looking to the future: Geochemistry of peat and the analysis of past environmental changes. Glob. Planet. Chang. 2006, 53, 209–221. [Google Scholar] [CrossRef]
- Krumins, J.; Kuske, E.; Klavins, M. Major and Trace Element Accumulation in Fen Peat from Elki and Viki Mires in Western Latvia. Sci. J. Riga Tech. Univ. 2011, 24, 71–81. [Google Scholar]
- Tapody, R.O.; Gulyás, S.; Törőcsik, T.; Sümegi, P.; Molnár, D.; Sümegi, B.; Molnár, M. Radiocarbon-dated peat development: Anthropogenic and climatic signals in a Holocene raised mire and lake profile from the Eastern part of the Carpathian Basin. Radiocarbon 2018, 60, 1215–1226. [Google Scholar] [CrossRef]
- Fărcaş, S.; Tanţău, I.; Bodnariuc, A. The Holocene human presence in Romanian Carpathians, revealed by the palynological analysis. Wurzbg. Geogr. Manuskr. 2003, 63, 111–128. [Google Scholar]
- Fărcaş, S.I.; Tanţău, I.; Ursu, T.M.; Goslar, T.; Popescu, F.; Stoica, I.A. The study of the Late-and Postglacial dynamics of the vegetation from Pesteana, Poiana Rusca Mountains. Contrib. Bot. 2006, 41, 109–118. [Google Scholar]
- Feurdean, A.; Klotz, S.; Mosbrugger, V.; Wohlfarth, B. Pollen-based quantitative reconstructions of Holocene climate variability in NW Romania. Palaeogeogr. Palaeoclim. Palaeoecol. 2008, 260, 494–504. [Google Scholar] [CrossRef]
- Feurdean, A.N.; Willis, K.J.; Astaloş, C. Legacy of the past land-use changes and management on the ‘natural’ upland forest composition in the Apuseni Natural Park, Romania. Holocene 2009, 19, 967–981. [Google Scholar] [CrossRef]
- Feurdean, A.; Willis, K.J. Long-term variability of Abies alba in NW Romania: Implications for its conservation management. Divers. Distrib. 2008, 14, 1004–1017. [Google Scholar] [CrossRef]
- Feurdean, A.; Willis, K.J. The usefulness of a long-term perspective in assessing current forest conservation management in the Apuseni Natural Park, Romania. Ecol. Manag. 2008, 256, 421–430. [Google Scholar] [CrossRef]
- Tanţău, I.; Reille, M.; de Beaulieu, J.L.; Fărcaș, S. Late Glacial and Holocene vegetation history in the southern part of Transylvania (Romania): Pollen analysis of two sequences from Avrig. J. Quat. Sci. 2006, 21, 49–61. [Google Scholar] [CrossRef]
- Tanţău, I.; Reille, M.; de Beaulieu, J.L.; Fărcaș, S.; Brewer, S. Holocene vegetation history in Romanian Subcarpathians. Quat. Res. 2009, 72, e164–e173. [Google Scholar] [CrossRef]
- Magyari, E.; Buczkó, K.; Jakab, G.; Braun, M.; Pál, Z.; Karátson, D.; Pap, I. Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains: A multiproxy study of Holocene hydrological changes. Hydrobiologia 2009, 631, 29–63. [Google Scholar] [CrossRef]
- Magyari, E.K.; Jakab, G.; Bálint, M.; Kern, Z.; Buczkó, K.; Braun, M. Rapid vegetation response to Lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania). Quat. Sci. Rev. 2012, 35, 116–130. [Google Scholar] [CrossRef]
- Magyari, E.; Vincze, I.; Orbán, I.; Bíró, T.; Pál, I. Timing of major forest compositional changes and tree expansions in the Retezat Mts during the last 16,000 years. Quat. Int. 2018, 477, 40–58. [Google Scholar] [CrossRef]
- Grindean, R.; Tanțău, I.; Feurdean, A. 37. Doda Pilii, Apuseni Mountains (Romania). Grana 2017, 56, 478–480. [Google Scholar] [CrossRef]
- Szakács, A.; Seghedi, I. The Cilimani-Gurghiu-Harghita volcanic chain, East Carpathians, Romania: Volcanological features. Acta Vulcanol. 1995, 7, 145–153. [Google Scholar]
- Pécskay, Z.; Edelstein, O.; Seghedi Szakacs, A.; Kovacs, M.; Crihan, M.; Bernad, A. K-Ar datings of Neogene-Quaternary calc-alkaline volcanic rocks in Romania. Acta Vulcanol. 1995, 7, 53–62. [Google Scholar]
- Krézsek, C.; Filipescu, S. Middle to late Miocene sequence stratigraphy of the Transylvanian Basin (Romania). Tectonophysics 2005, 410, 437–463. [Google Scholar] [CrossRef] [Green Version]
- Krézsek, C.; Bally, A.W. The Transylvanian basin (Romania) and its relation to the Carpathian fold and thrust belt: Insights in gravitational salt tectonics. Mar. Pet. Geol. 2006, 23, 405–446. [Google Scholar] [CrossRef]
- Krézsek, C.; Filipescu, S.; Silye, L.; Maţenco, L.; Doust, H. Miocene facies associations and sedimentary evolution of the Southern Transylvanian Basin (Romania): Implications for hydrocarbon exploration. Mar. Pet. Geol. 2010, 27, 191–214. [Google Scholar] [CrossRef]
- Mac, I.; Dan, P.; Sorocovschi, V.; Maier, A.; Ciangă, N. Depresiunea Transilvaniei (chapter 5). In Geografia României, III, Carpaţii Româneşti şi Depresiunea Transilvaniei; Oancea, D., Velcea, V., Caloianu, N., Dragomirescu, Ş., Dragu, G., Mihai, E., Niculescu, G., Sencu, V., Velcea, I., Eds.; Editura Academiei: Bucureşti, Romania, 1987. [Google Scholar]
- Budui, V.; Perşoiu, I. Recognition and interpretation of paleosols sequences in a floodplain from the low tableland of Transylvania Depression, Romania. Late Pleistocene and Holocene Climatic Variability in the Carpathian-Balkan Region. Georewiev 2014, 2, 16–17. [Google Scholar]
- Veres, D.; Hutchinson, M.S.; Haliuc, A.; Frantiu, A.; Feurdean, A. Rapid shifts in environmental conditions inferred from geochemical analyses of Lake Știucii lacustrine record, Transylvanian Lowlands, Romania. Sci. Ann. Stefan Mare Univ. Suceava Geogr. Ser. 2014, 24, 181–183. [Google Scholar]
- Zemke, J.J.; Enderling, M.; Klein, A.; Skubski, M. The Influence of Soil Compaction on Runoff Formation. A Case Study Focusing on Skid Trails at Forested Andosol Sites. Geosciences 2019, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Horváth, F. Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 1993, 226, 333–357. [Google Scholar] [CrossRef]
- Bada, G.; Horváth, F.; Gerner, P.; Fejes, I. Review of the present-day geodynamics of the Pannonian basin: Progress and problems. J. Geodyn. 1999, 27, 501–527. [Google Scholar] [CrossRef]
- Horváth, F.; Musitz, B.; Balázs, A.; Végh, A.; Uhrin, A.; Nádor, A.; Koroknai, B.; Pap, N.; Tóth, T.; Wórum, G. Evolution of the Pannonian basin and its geothermal resources. Geothermics 2015, 53, 328–352. [Google Scholar] [CrossRef]
- Rosi, A.; Canavesi, V.; Segoni, S.; Dias Nery, T.; Catani, F.; Casagli, N. Landslides in the mountain region of Rio de Janeiro: A proposal for the semi-automated definition of multiple rainfall thresholds. Geosciences 2019, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Jowsey, P.C. An improved peat sampler. New Phytol. 1966, 65, 245–248. [Google Scholar] [CrossRef]
- Aaby, B.; Digerfeldt, G. 1986: Sampling techniques for lakes and mires. In Handbook of Holocene Palaeoecology and Palaeohydrology; Berglund, B.E., Ed.; John Wiley Sons: Chichester, UK, 1986; pp. 181–194. [Google Scholar]
- An, Z.; Kukla, G.J.; Porter, S.C.; Xiao, J. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat. Res. 1991, 36, 29–36. [Google Scholar] [CrossRef]
- Crowther, J. Potential magnetic susceptibility and fractional conversion studies of archaeological soils and sediments. Archaeometry 2003, 45, 685–701. [Google Scholar] [CrossRef]
- Harvey, A.M.; Foster, G.; Hannam, J.; Mather, A.E. The Tabernas alluvial fan and lake system, southeast Spain: Applications of mineral magnetic and pedogenic iron oxide analyses towards clarifying the Quaternary sediment sequences. Geomorphology 2003, 50, 151–171. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, Q.; Jackson, M.J. Paleoenvironmental significance of the magnetic fabrics in Chinese loess-paleosols since the last interglacial (<130 ka). Earth Planet. Sci. Lett. 2004, 221, 55–69. [Google Scholar]
- Dearing, J. Environmental Magnetic Susceptibility: Using the Bartington MS2 System; Chi Publ: Kenilworth, UK, 1994. [Google Scholar]
- Oldfield, F.; Thompson, R.; Barber, K.E. Changing atmospheric fallout of magnetic particles recorded in recent ombrotrophic peat sections. Science 1978, 199, 679–680. [Google Scholar] [CrossRef]
- Sun, J.; Liu, T. Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments. Earth Planet. Sci. Lett. 2000, 180, 287–296. [Google Scholar] [CrossRef]
- Balsam, W.L.; Ellwood, B.B.; Ji, J.; Williams, E.R.; Long, X.; El Hassani, A. Magnetic susceptibility as a proxy for rainfall: Worldwide data from tropical and temperate climate. Quat. Sci. Rev. 2011, 30, 2732–2744. [Google Scholar] [CrossRef]
- Long, X.; Ji, J.; Barr, V. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction. Quat. Sci. Rev. 2016, 150, 264–277. [Google Scholar] [CrossRef]
- Xiao, H.; Cheng, S.; Mao, X.; Huang, T.; Hu, Z.; Zhou, Y.; Liu, X. Characteristics of peat humification, magnetic susceptibility and trace elements of Hani peatland, northeastern China: Paleoclimatic implications: The paleoclimatic significance of peat. Atmos. Sci. Lett. 2017, 18, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Konert, M.; Vandenberghe, J. Comparison of layer grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology 1997, 44, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Troels-Smith, J. Characterization of unconsolidated sediments. Dan. Geol. Unders. 1955, 4, 10. (In Danish) [Google Scholar]
- Kershaw, A.P. A modification of the TroelsSmith system of sediment description and portrayal. Quat. Australas. 1997, 15, 63–68. [Google Scholar]
- Physical Geography. Available online: https://pg-du.org/troels-smith-scheme/ (accessed on 19 April 2021).
- Dean, W.E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment. Petrol. 1974, 44, 242–248. [Google Scholar]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolim. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Santisteban, J.I.; Mediavilla, R.; Lopez-Pamo, E.; Dabrio, C.J.; Zapata, M.B.R.; García, M.J.G.; Martínez-Alfaro, P.E. Loss on ignition: A qualitative or quantitative method for organic matter and carbonate mineral content in sediments? J. Paleolim. 2004, 32, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statisticssoftware package for education and data analysis. Palaeontol. Electron. 2001, 4, 9–18. [Google Scholar]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wold, S. Introduction to Multi- and Megavariate Data Analysis Using Projection Methods (PCA & PLS); Umetrics AB: Umea, Sweden, 1999. [Google Scholar]
- Kylander, M.E.; Martínez-Cortizas, A.; Bindler, R.; Greenwood, S.L.; Mörth, C.-M.; Rauch, S. Potentials and problems of building detailed dust records using peat archives: An example from Store Mosse (the “Great Mire”), Sweden. Geochim. Cosmochim. Acta 2016, 190, 156–174. [Google Scholar] [CrossRef]
- Hertelendi, E.; Csongor, É.; Záborszky, L.; Molnár, I.; Gál, I.; Győrffy, M.; Nagy, S. Counting system for high precision C-14 dating. Radiocarbon 1989, 32, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Hertelendi, E.; Sümegi, P.; Szöőr, G. Geochronologic and paleoclimatic characterization of Quaternary sediments in the Great Hungarian Plain. Radiocarbon 1992, 34, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Hertelendi, E.; Kalicz, N.; Raczky, P.; Horváth, F.; Veres, M.; Svingor, É.; Futó, I.; Bartosiewicz, L. Re-evaluation of the Neolithic in eastern Hungary based on calibrated radiocarbon dates. Radiocarbon 1995, 37, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Molnár, M.; Janovics, R.; Major, I.; Orsovszki, J.; Gönczi, R.; Veres, M.; Leonard, A.G.; Castle, S.M.; Lange, T.E.; Wacker, L.; et al. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 2013, 55, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 3, 457–474. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A.; Benett, K.D.; Reimer, P.J. Double the dates and go for Bayes-Impacts of model choice, dating density and quality of chronologies. Quat. Sci. Rev. 2018, 188, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.; Austin, W.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Bennett, K.D.; Willis, K.J. Terrestrial, algal, and siliceous indicators. In Tracking Environmental Change Using Lake Sediments; Smol, J.P., Birks, H.J.B., Last, W.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Volume 3, pp. 32–35. [Google Scholar]
- Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 1971, 13, 614–621. [Google Scholar]
- Moore, P.D.; Webb, J.A.; Collinson, M.E. Pollen Analysis; Blackwell Scientific Publications: Oxford, UK, 1991. [Google Scholar]
- Reille, M. Pollen et Spores d’Europe et d’Afrique du Nord; Laboratoirede Botanique Historique et Palynologie: Marseille, France, 1992. [Google Scholar]
- Reille, M. Pollen et Spores d’Europe et d’Afrique du Nord; Supplement 1; Laboratoirede Botanique Historique et Palynologie: Marseille, France, 1995. [Google Scholar]
- Reille, M. Pollen et Spores d’Europe et d’Afrique du Nord; Supplement 2; Laboratoirede Botanique Historique et Palynologie: Marseille, France, 1998. [Google Scholar]
- Sugita, S. Pollen representation of vegetation in Quaternary sediments: Theory and method in patchy vegetation. J. Ecol. 1994, 82, 881–897. [Google Scholar] [CrossRef]
- Soepboer, W.; Sugita, S.; Lotter, A.F.; van Leeuwen, J.F.N.; van der Knaap, W.O. Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau. Holocene 2007, 17, 65–77. [Google Scholar] [CrossRef]
- Jacobson, G.L.; Bradshaw, R.H.W. The selection of sites for palaeovegetational studies. Quat. Res. 1981, 16, 80–96. [Google Scholar] [CrossRef]
- Prentice, I.C. Pollen representation, source area, and basin size: Toward an unified theory of pollen analysis. Quat. Res. 1985, 23, 76–86. [Google Scholar] [CrossRef]
- Magyari, E.K.; Chapman, J.C.; Passmore, D.G.; Allen, J.R.M.; Huntley, J.P.; Huntley, B. Holocene persistence of wooded steppe in the Great Hungarian Plain. J. Biogeogr. 2010, 37, 915–935. [Google Scholar] [CrossRef]
- Magyari, E.; Shiel, R.; Passmore, D. The paleo-environment and settlement context of Polgár-10. In The Upper Tisza Project, Studies in Hungarian Landscape Archaeology, Book 4; Chapman, J., Gillings, M., Shiel, R., Gaydarska, B., Bond, C., Passmore, D., Félegyházi, E., Lumley, I., Jones, R., Edwards, J., et al., Eds.; Lowland Settlement in North East Hungary: Excavations at the Neolithic Settlement Site Polgár-10; Archaeopress: Oxford, UK, 2010. [Google Scholar]
- Bennett, K.D. PSIMPOLL—A quickBasic program that generates PostScript page description of pollen diagrams. INQUA Commission for the study of the Holocene: Working group on data handling methods. Newsletter 1992, 8, 11–12. [Google Scholar]
- Bennett, K.D. Documentation for Psimpoll 4.25 and Pscomb 1.03: C Programs for Plotting Pollen Diagrams and Analysing Pollen Data; University of Uppsala: Uppsala, Sweden, 2005. [Google Scholar]
- Sümegi, P.; Jakab, G.; Pál-Molnár, E.; Törőcsik, T.; Sümegi, B.P.; Bíró, N.; Molnár, M.; Tapody, R.O.; Benkő, E.; Sófalvi, A. Evolution history of Kerek (Round) lake at Homoródszentpál. Abstr. 18th Székelyföldi Geológus Találkozó 2016, 30–33. Available online: http://www.foldtan.ro/files/2016SzGT_Programfuzet_Kivonatkotet_WEB.pdf) (accessed on 31 May 2021). (In Hungarian).
- Gogâltan, F.; Drașovean, F. Piese preistorice din cupru şi bronz din România aflate în colecţiile British Museum, Londra I. (Prehistoric Copper and Bronze Age objects from Romania found in the collections of the British Museum in London). An. Banat. Arheol. Istor. 2015, 23, 119–150. [Google Scholar]
- Balogh, K. Szedimentológia I-II; Akadémiai Kiadó: Budapest, Hungary, 1991. [Google Scholar]
- Turer, D.; Maynard, J.B. Combining Subsidence Analysis and Detrital Modes of Sandstones to Constrain Basin History: An Example from the Eastern Pontides of Turkey. Int. Geol. Rev. 2003, 45, 329–345. [Google Scholar] [CrossRef]
- Gorham, E.; Janssens, J. The distribution and accumulation of chemical elements in five peat cores from the midcontinent to the eastern coast of North America. Wetlands 2005, 25, 259–278. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Batty, L.C.; Younger, P.L. Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: Effects of metal and nutrient uptake. Environ. Pollut. 2004, 132, 85–93. [Google Scholar] [CrossRef]
- Cushing, E.J. Evidence for differential pollen preservation in late Quaternary sediments in Minnesota. Rev. Palaeobot. Palynol. 1967, 4, 87–101. [Google Scholar] [CrossRef]
- Bradshaw, R. Spatial scale in the pollen record. In Modelling Ecological Change; Harris, D.E., Kenneth, D.T., Eds.; Perspectives from Neoecology, Palaeoecology and Environmental Archaeology; Routledge: Abingdon, UK, 1991; pp. 41–52. [Google Scholar]
- Edwards, K.J. Using space in cultural palynology: The value of the off-site pollen record. In Modelling Ecological Change; Harris, D.E., Kenneth, D.T., Eds.; Perspectives from Neoecology, Palaeoecology and Environmental Archaeology; Routledge: Abingdon, UK, 1991; pp. 61–74. [Google Scholar]
- Edwards, K.J. Models of mid-Holocene forest farming for north-west Europe. In Climate Change and Human Impact on the Landscape; Chamgbers, F.M., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 133–145. [Google Scholar]
- Willis, K.J.; Sümegi, P.; Braun, M.; Bennett, K.D.; Tóth, A. Prehistoric land degradation in Hungary: Who, how and why? Antiquity 1998, 72, 101–113. [Google Scholar] [CrossRef]
- Braun, M.; Sümegi, P.; Tóth, A.; Willis, K.J.; Szalóki, I.; Margitai, Z.; Somogyi, A. Reconstruciton of long-term environmental changes at Kelemér, in Hungary. In Environmental Archaeology in North-Eastern Hungary. Varia Archaeologica Hungarica Sorozat, XIX. Kötet; Gál, E., Juhász, I., Sümegi, P., Eds.; MTA Régészeti Intézet: Budapest, Hungary, 2005; pp. 25–38. [Google Scholar]
- Braun, M.; Hubay, K.; Magyari, E.; Veres, D.; Papp, I.; Bálint, M. Using linear discriminant analysis (LDA) of bulk lake sediment geochemical data to reconstruct lateglacial climate changes in the South Carpathian Mountains. Quat. Int. 2013, 293, 114–122. [Google Scholar] [CrossRef]
- Sümegi, P.; Magyari, E.; Dániel, P.; Molnár, M.; Törőcsik, T. 28,000, year record of environmental change in SE Hungary: Terrestrial response to Dansgaard-Oeshger cycles and Heinrich-events. Quat. Int. 2013, 278, 34–50. [Google Scholar] [CrossRef]
- Magyari, E.; Kunes, P.; Jakab, G.; Sümegi, P.; Pelánková, B.; Schabitz, F.; Braun, M.; Chytry, M. Late Pleniglacial vegetation in eastern-central Europe: Are there modern analogues in Siberia? Quat. Sci. Rev. 2014, 95, 60–79. [Google Scholar] [CrossRef]
- Feurdean, A.; Perşoiu, A.; Tanţău, I.; Stevens, T.; Magyari, E.K.; Onac, B.P.; Marković, S.; Andrič, M.; Connor, S.; Fărcaş, S.; et al. Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quat. Sci. Rev. 2014, 106, 206–224. [Google Scholar] [CrossRef] [Green Version]
- Willis, K.J.; Sümegi, P.; Braun, M.; Tóth, A. The Late Quaternary environmental history of Bátorliget, N.E. Hungary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 118, 25–47. [Google Scholar] [CrossRef]
- Willis, K.J.; Braun, M.; Sümegi, P.; Tóth, A. Does soil change cause vegetation change or vice, versa? A temporal perspective from Hungary. Ecology 1997, 78, 740–750. [Google Scholar] [CrossRef]
- Barrow, C.J. Land Degradation: Development and Breakdown of Terrestrial Environments; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Ellis, S.; Mellor, A. Soils and Environment; Routledge: London, UK, 1995; p. 364. [Google Scholar]
- Huisman, D.J.; Kiden, P. A geochemical record of Late Cenozoic sedimentation history in the southern Netherlands. Geol. En Mijnb. 1997, 76, 277–291. [Google Scholar] [CrossRef]
- Birks, H.J.B. Late-Quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to northwest Europe. In Handbook of Holocene Palaeoecology and Palaeohydrology; Berglund, B.E., Ed.; John Wiley & Sons: New York, NY, USA, 1986; pp. 3–65. [Google Scholar]
- Pennington, W. Lags in adjustment of vegetation to climate caused by the pace of soil development: Evidence from Britain. Vegetatio 1986, 67, 105–118. [Google Scholar] [CrossRef]
- Amador, J.A.; Richany, G.H.; Jones, R.D. Phosphate uptake by neutral peats of the Florida Everglades. Soil Sci. 1992, 153, 463–470. [Google Scholar] [CrossRef]
- Amador, J.A.; Jones, R.D. Nutrient limitations on mi-crobial reproduction in peat soils with different total phos-phorus content. Soil Biol. Biochem. 2013, 25, 793–801. [Google Scholar] [CrossRef]
- Damman, A.W.H. Distribution and movement of elements in ombrotrophic peat mires. Oikos 1978, 30, 480–495. [Google Scholar] [CrossRef]
- Braun, M.; Sümegi, P.; Szűcs, L.; Szöőr, G. A kállósemjéni Nagy–Mohos láp fejlődéstörténete (Lápképződés emberi hatásra és az ősláp hipotézis). Jósa András Múzeum Évkönyve 1993, 33–35, 335–366. (In Hungarian) [Google Scholar]
- Sümegi, P. The results of paleoenvironmental reconstruction and comparative geoarcheological analysis for the examined area. In The Geohistory of Bátorliget Marshland; Sümegi, P., Gulyás, S., Eds.; Archaeolingua Press: Budapest, Hungary, 2004; pp. 301–348. [Google Scholar]
- Sümegi, P. Régészeti Geológia—Tudományos Interdiszciplinák Találkozása [Archaeogeology—Encounter of Scientific Interdisciples]. Habilitation Thesis, Szegedi Tudományegyetem, Szeged, Hungary, 2003. (In Hungarian). [Google Scholar]
- Dániel, P. Geochemical analysis. In The Geohistory of Bátorliget Marshland; Sümegi, P., Gulyás, S., Eds.; Archaeolingua Press: Budapest, Hungary, 2004; pp. 52–57. [Google Scholar]
- Engström, D.R.; Wright, H.E., Jr. Chemical stratigraphy of lake sediments as a record of environmental change. In Lake Sediments and Environmental History. Studies in Paleolimnology and Paleoecology; Haworth, E.Y., Lund, J.W.G., Eds.; Leicester University Press: Leicester, England, 1984; pp. 11–67. [Google Scholar]
- Magyari, E.; Jakab, G.; Rudner, E.; Sümegi, P. Palynological and plant macrofossil data on Late Pleistocene short-term climatic oscillations in NE-Hungary. Acta Palaeobot. Suppl. 1999, 2, 491–502. [Google Scholar]
- Magyari, E.; Jakab, G.; Sümegi, P. Holocene vegetation dynamics in the Bereg Plain, NE Hungary—The Báb-tava pollen and plant macrofossil record. Acta GeogrDebrecina 2008, 42, 39–56. [Google Scholar]
- Sümegi, P.; Jakab, G.; Majkut, P.; Törőcsik, T.; Zatyko, C. Middle Age paleoecological and paleoclimatological reconstruction in the Carpathian Basin. Idojaras 2009, 113, 265–298. [Google Scholar]
- Masi, A.; Sadori, L.; Balossi Restelli, F.; Baneschi, I.; Zanchetta, G. Stable carbon isotope analysis as a crop management indicator at Arslantepe (Malatya, Turkey) during the Late Chalcolithic and Early Bronze Age. Vege. Hist. Archaeobot. 2014, 23, 751–760. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. Holocene 2011, 21, 163–171. [Google Scholar] [CrossRef]
- Prentice, I.C.; Webb, T., III. Pollen percentages, tree abundances and the Fagerlind effect. J. Quat. Sci. 1986, 1, 35–43. [Google Scholar] [CrossRef]
- Prentice, I.C.; Cramer, W.; Harrison, S.P.; Leemans, R.; Monserud, R.A.; Solomon, A.M. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 1992, 19, 117–134. [Google Scholar] [CrossRef]
- Prentice, I.C.; Guiot, J.; Huntley, B.; Jolly, D.; Cheddadi, R. Reconstructing biomes from palaeoecological data: A general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 1996, 12, 185–194. [Google Scholar] [CrossRef]
- Voosen, P. New geological age comes under fire. Science 2018, 361, 537–538. [Google Scholar] [CrossRef]
- Gibbons, A. How the Akkadian empire was hung out to dry. Science 1993, 261, 985. [Google Scholar] [CrossRef]
- Staubwasser, M.; Sirocko, F.; Grootes, P.M.; Segl, M. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys. Res. Lett. 2003, 30, 1425. [Google Scholar] [CrossRef] [Green Version]
- Li, C.H.; Li, Y.X.; Zheng, Y.F.; Yu, S.Y.; Tang, L.Y.; Li, B.B.; Cui, Q.Y. A high-resolution pollen record from East China reveals a large climate variability near the Northgrippian–Meghalayan boundary (around 4200 years ago) exerted societal collapse. Palaeogeogr. Palaeoecol. Palaeoclimatol. 2018, 512, 156–165. [Google Scholar] [CrossRef]
- Gronenborn, D.; Strien, H.C.; Dietrich, S.; Sirocko, F. Adaptive cycles’ and climate fluctuations: A case study from Linear Pottery Culture in western Central Europe. J. Archaeol. Sci. 2014, 51, 73–83. [Google Scholar] [CrossRef]
- Gronenborn, D. Climate fluctuations, human migrations, and the spread of farming in western Eurasia—Refining the argument. In Climate and Cultural Change in Prehistoric Europe and the Near East. 8.2 Ka Climate Event and Archaeology in the Ancient Near East (Conference); Biehl, P.F., Nieuwenhuyse, O., Eds.; Institute for European and Mediterranean Archaeology Distinguished Monograph Series; State University of New York Press: Albany, NY, USA, 2016; pp. 211–236. [Google Scholar]
- Gronenborn, D.; Strien, H.C.; Lemmen, C. Population dynamics, social resilience strategies, and Adaptive Cycles in early farming societies of SW Central Europe. Quat. Int. 2017, 446, 54–65. [Google Scholar] [CrossRef]
- Allcock, S. Long-term socio-environmental dynamics and adaptive cycles in Cappadocia, Turkey during the Holocene. Quat. Int. 2017, 446, 66–82. [Google Scholar] [CrossRef]
- Gulyás, S.; Sümegi, P. Riparian environment in shaping social and economic behavior during the first phase of the evolution of Late Neolithic tell complexes in SE Hungary (6th/5th millennia BC). J. Archaeol. Sci. 2011, 38, 2683–2695. [Google Scholar] [CrossRef]
- Gulyás, S.; Sümegi, P. Farming and/or foraging? New environmental data to the life and economic transformation of Late Neolithic tell communities (Tisza Culture) in SE Hungary. J. Archaeol. Sci. 2011, 38, 3323–3339. [Google Scholar] [CrossRef]
- Schöll-Barna, G.; Demény, A.; Serlegi, G.; Fábián, S.; Sümegi, P.; Fórizs, I.; Bajnóczi, B. ClimaticvariabilityintheLateCopperAge: Stableisotopefluctuationof 95 prehistoric Unio pictorum (Unionidae) shells from Lake Balaton (Hungary). J. Paleolimnol. 2012, 47, 87–100. [Google Scholar] [CrossRef]
- Demény, A.; Kern, Z.; Czuppon, G.; Németh, A.; Schöll-Barna, G.; Siklósy, Z.; Bondár, M. Middle Bronze Age humidity and temperature variations, and societal changes in East-Central Europe. Quat. Int. 2019, 504, 80–95. [Google Scholar] [CrossRef] [Green Version]
- Brookins, D.G. Eh–pH Diagrams for Geochemistry; Springer: New York, NY, USA, 1988. [Google Scholar]
- Steinmann, P.; Shotyk, W. Chemical composition, pH, and redox state of sulfur and iron in complete vertical porewater profiles from two Sphagnum peat mires, Jura Mountains, Switzerland. Geochim. Cosmochim. Acta 1997, 61, 1143–1163. [Google Scholar] [CrossRef]
- Chesworth, W.; Martínez-Cortizas, A.; García-Rodeja, E. Peatlands, Evolution and Records of Environmental and Climate Changes; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Muller, J.; Kylander, M.; Martinez-Cortizas, A.; Wüst, R.A.J.; Weiss, D.; Blake, K.; Coles, B.; Garcia-Sanchez, R. The use of principle component analyses in characterising trace and major elemental distribution in a 55 kyr peat deposit in tropical Australia: Implications to paleoclimate. Geochim. Cosmochim. Acta 2008, 72, 449–463. [Google Scholar] [CrossRef]
- Megonigal, J.P.; Hines, M.E.; Vischer, P.T. Anaerobic metabolism: Linkages to trace gases and aerobic processes. In Treatise on Geochemistry, Vol. 8 Biogeochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 317–442. [Google Scholar]
- Tebo, B.M.; Bargar, J.R.; Clement, B.C.; Dick, G.J.; Murray, K.J.; Parker, D.; Verity, R.; Webb, S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287–328. [Google Scholar] [CrossRef] [Green Version]
- Schittek, K.; Kock, S.T.; Lücke, A.; Hense, J.; Ohlendorf, C.; Kulemeyer, J.J.; Lupo, L.C.; Schäbitz, F. A high-altitude peatland record of environmental changes inthe NW Argentine Andes (24 S) over the last 2100 years. Clim. Past 2016, 12, 1165–1180. [Google Scholar] [CrossRef] [Green Version]
- Heathwaite, A.L.; Burt, T.P. The evidence for past and present erosion in the Slapton catchment. In Past and Present Soil Erosion: Archaeological and Geographical Perspectives; Bell, M., Boardman, J., Eds.; Oxbow Books: Oxford, UK, 1992. [Google Scholar]
- Mirehian, D.; Enea, S.C. The pre-Cucuteni-Cucuteni/Tripolye cultural complex between the west and the east. Rev. Arheol. 2013, 9, 30–47. [Google Scholar]
- Bolohan, N. All in one Issues of methodology, paradigms and radiocarbon datings concerning the outer eastern Carpathian area. In Signa Praehistorica: Studia in Honorem Magistri Attila László Septuagesimo Anno; Bolohan, N., Florica, M., Tencariu, F.A., Eds.; Alex. I. Cuza University Press: Iasi, Romania, 2010; pp. 229–245. [Google Scholar]
- Ciugudean, H. Eneoliticul Final în Transilvania şi Banat: Cultura Coţofeni; Bibliotheca Historica et Archaeologica Banatica: Timişoara, Romania, 2000; p. 124. [Google Scholar]
- Ciugudean, H. The copper metallurgy in the Coţofeni culture (Transylvania and Banat). Apulum 2002, 39, 95–106. [Google Scholar]
- Collis, J. The European Iron Age; Batsford: London, UK, 1984; p. 192. [Google Scholar]
- Cosma, C. Avar warriors in Transylvania, Sătmar and Maramureș, Crișana and Banat. Archaeological landmarks on the political status of western Romania in the Avar Khaganate. In Warriors, Weapons, and Harness from the 5th–10th Centuries in the Carpathian Basin; Cosma, C., Ed.; Mega Publishing House: Kolozsvár, Romania, 2015; pp. 251–280. [Google Scholar]
- Dumitrescu, V.; Bolomey, A.; Mogoşanu, F. The prehistory of Romania from the earliest times to 1000 B.C. In The Prehistory of the Balkans and the Middle East and the Aegean World, Tenth to Eight Centuries B.C; Boardman, J., Edwards, I.E.S., Hammond, N.G.L., Sollberger, E., Eds.; Cambridge University Press: Cambridge, England, 1982; pp. 1–74. [Google Scholar]
- Dumitroaia, G. Comunităţi preistorice din Nord-Estul Romăniei (de la cultura Cucuteni pană in bronzul mijlociu) (Prehistoric communities from Northeast Romania from Cucuteni Culture to the Bronze Age). In Piatra Neamt: Muzeul de Istorie Piatra Neamt; Constantin Matasă: Piatra Neamt, Romania, 2000; p. 335. [Google Scholar]
- Gáll, E. The Avar conquest and what followed. Some ideas on the process of ‘avarisation’of Transylvanian Basin (6th‒7th centuries). In Series Patrimonium Archaeologicum Transylvanicum Volume 7; Romanian Academy Institute of Archaeology and Art History Cluj-Napoca: Cluj-Napoca, Romania, 2014; pp. 295–327. [Google Scholar]
- Harper, T.K. The effect of climatic variability on population dynamics of the Cucuteni-Tripolye cultural complex and the rise of the Western Tripolye giant-settlements. Chronika 2013, 3, 28–46. [Google Scholar]
- Härke, H. Early Iron Age Hill settlement in west Central Europe: Patterns and developments. Oxf. J. Archaeol. 1982, 1, 187–212. [Google Scholar] [CrossRef]
- Lazarovici, C.M. New data regarding the chronology of the Precucuteni, Cucuteni and Horodiştea-Erbiceni cultures. In Studies in Chronology and Cultural Development of the SE and Central Europe in Earlier Prehistory Presented to Juraj Pavúk on the Occasion of His 75 Birthday; Kalábková, P., Kovár, B., Pavúk, P., Suteková, J., Eds.; PANTA REI; Studia Archaeologica et Medievalia, XI; Publishing House, Comenius University in Bratislava and Archaeological Center: Olomouc—Bratislava, Czech Republic, 2010; pp. 91–114. [Google Scholar]
- Mantu, C.M. Metode de cercetare şi tehnici de datare pentru determinarea cronologiei culturii Cucuteni (Research methods and dating techniques for the Cucuteni culture chronology determination). Ph.D. Thesis, Alex. I. Cuza University, Iasi, Romanian, 1996. (In Romanian). [Google Scholar]
- Mantu, C.M. Cultura Cucuteni, Evoluţie, Cronologie, Legături (The Cucuteni Culture. Evolution, Chronology, Links); Muzeul de Istorie Piatra Neamt: Piatra Neamt, Romania, 1998; p. 324. [Google Scholar]
- Palincaş, N. Body and Social Order in Middle Bronze Age Transylvania (Central Romania, c. 1900−1450 BC). Eur. J. Archaeol. 2014, 17, 301–328. [Google Scholar] [CrossRef]
- Palincaş, N.; Rotea, M.; Sava, T.B.; Sava, G.O.; Gâza, O.; Bodea, M.; David, C. Revisiting the Radiocarbon-Based Chronology of the Wietenberg Culture (Middle Bronze Age Transylvania): A Debate of Supra-Regional Relevance. In Bridging Science and Heritage in the Balkans; Palincaş, N., Ponta, C.C., Eds.; ArcheoPress: Oxford, UK, 2019; pp. 38–51. [Google Scholar]
- Wells, P.S. The Iron Age. In European Prehistory: A Survey (Interdisciplinary Contributions to Archaeology); Milisauskas, S., Ed.; Springer: New York, NY, USA, 2010; pp. 405–464. [Google Scholar]
- Walker, M.J.; Berkelhammer, M.; Björck, S.; Cwynar, L.C.; Fisher, D.A.; Long, A.J.; Lowe, J.J.; Newnham, R.M.; Rasmussen, S.O.; Weiss, H. Formal Subdivision of the Holocene Series/Epoch: A Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy. J. Quat. Sci. 2012, 27, 649–659. [Google Scholar] [CrossRef]
- Walker, M.J.C.; Gibbard, P.; Berkelhammer, M.; Björck, S.; Cwynar, L.C.; Fisher, D.; Long, A.; Lowe, J.; Newnham, R.; Rasmussen, S.; et al. Formal Subdivision of the Holocene Series/Epoch: 1st International Congress on Stratigraphy (STRATI); Springer: Cham, Switzerland, 2014; pp. 983–987. [Google Scholar]
- László, A. Az Erősd-Cucuteni Kultúra Időrendjéről. Dolgozatok az Erdélyi Múzeum Érem-és Régiségtárából. Új sorozat, (I). 2006. Available online: https://eda.eme.ro/handle/10598/29213 (accessed on 31 May 2021). (in Hungarian).
- László, A. Ásatások az Erősdi Őstelepen. Dolgozatok az Erdélyi Múzeum Érem-és Régiségtárából. 1914. Available online: http://epa.oszk.hu/01500/01580/00010/pdf/279-386.pdf (accessed on 31 May 2021). (in Hungarian).
- Bondár, M. Prehistoric Wagon Models in the Carpathian Basin (3500–1500 BC); Archaeolingua Series Minor, 32; Archaeolingua Press: Budapest, Hungary, 2012; p. 135. [Google Scholar]
- Mackereth, F.J.H. Some chemical observations in post-glacial lake sediments. Proc. R. Acad. Sci. 1966, 250, 165–213. [Google Scholar]
- Sztáncsuj, S.J.; Körösfői, Z. Késő rézkori telepnyomok Fiatfalva-Alsó-Kövesföld lelőhelyen. In ‘Kutatások a Nagy-Küküllő Felső Folyása Mentén’, Molnár István Múzeum Kiadványai, I.; Körösfői, Z., Ed.; István Molnár Museum: Székelykeresztúr, Romania, 2009; pp. 15–36. [Google Scholar]
- Kelemen, I.A. Fiatfalva-Alsó-Kövesföld lelőhely rézkori (Coţofeni 1 kultúra) gödör állatcsontleleteinek archaeozoológiai elemzése. In ‘Kutatások a Nagy-Küküllő Felső folyása Mentén’, Molnár István Múzeum Kiadványai, I.; Körösfői, Z., Ed.; István Molnár Museum: Székelykeresztúr, Romania, 2009; pp. 38–40. [Google Scholar]
- Horváth, T. Hajdúnánás–Tedej–Lyukas-halom—An interdisciplinary survey of a typical kurgan from the Great Hungarian Plain region: A case study. The revision of the kurgans from the territory of Hungary). In Kurgan Studies. An. Environmental and Archaeological Multiproxy Study of Burial Mounds in the Eurasian Steppe Zone; Pető, Á., Barczi, A., Eds.; British Archaeological Reports International Series 2238; Archaeopress: Oxford, UK, 2011; pp. 71–131. [Google Scholar]
- Gerling, C.; Bánffy, E.; Dani, J.; Kohler, K.; Kulcsár, G.; Pike, A.; Szeverényi, V.; Heyd, V. Immigration and transhumance in the Early Bronze Age Carpathian Basin: The occupants of a kurgan. Antiquity 2012, 86, 1097–1111. [Google Scholar] [CrossRef]
- Szilágyi, G.; Sümegi, P.; Gulyás, S.; Molnár, D. Revision of the Age of Construction Phases of a Mound Dated to the Late Copper–Early Bronze Age in Eastern Hungary Relying on 14C-Based Chronologies. Radiocarbon 2018, 60, 1403–1412. [Google Scholar] [CrossRef]
- Szilágyi, G.; Náfrádi, K.; Sümegi, P. A preliminary chronological study to understand the construction phases of a Late Copper–Early Bronze Age kurgan (kunhalom). Cent. Eur. Geol. 2019, 62, 1–29. [Google Scholar] [CrossRef]
- Diaconescu, D. Step by Steppe: Yamnaya culture in Transylvania. Praehist. Z. 2020, 95, 17–47. [Google Scholar] [CrossRef]
- Gazdapusztai, G. Chronologische Fragen in der Alfölder Gruppe der Kurgan-Kultur [Chronological questions in the Kurgan Culture group of the Great Hungarian Plain]. MFMÉ 1968, 2, 91–100. [Google Scholar]
- Ecsedy, I. The People of the Pit-Grave Kurgans in Eastern Hungary—Fontes Archaeologici Hungaricae; Akadémiai Kiadó: Budapest, Hungary, 1979; p. 147. [Google Scholar]
- Quinn, C.; Ciugudean, H. Settlement placement and socio-economic priorities: Dynamic landscapes in Bronze Age Transylvania. J. Archaeol. Sci. Rep. 2018, 19, 936–948. [Google Scholar] [CrossRef]
- Angedent, A. A Kora Középkor; Szent István Társulat: Budapest, Hungary, 2008. [Google Scholar]
- Náfrádi, K.; Jakab, G.; Sümegi, P.; Szelepcsényi, Z.; Törőcsik, T. Future climate impacts in woodland and forest steppe based on Holocene paleoclimatic trends, paleobotanical change in central part of the Carpathian Basin (Hungary). Am. J. Plant. Sci. 2013, 4, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
- Bóna, I. Daciától Erdőelvéig. A népvándorlás kora Erdélyben. In Erdély története I.; Makkai, L., Mócsy, A., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1986; pp. 271–286. (In Hungarian) [Google Scholar]
- Daim, F. Avars and Avar Archaeology: An Introduction. In Regna and Gentes. The Relationship between Late Antique and Early Medieval Peoples and Kingdoms in the Transformation of the Roman World; Goetz, H.W., Jarnut, J., Pohl, W., Eds.; Brill Publishing House: Leiden, The Netherlands, 2003; pp. 463–570. [Google Scholar]
- Törőcsik, T.; Sümegi, P. Pollen-based reconstruction of the plant cultivation in the Carpathian Basin from the Migration Age to the end of the Medieval Age. Archeometriai Műhely 2019, XVI/3, 245–269. [Google Scholar]
- Ürmösi, J. 44 év a Lelkipásztori és Szövetkezeti Munkamezőn; Unpublished Work; Cluj-Napoca, Romania, 1949; pp. 3–5. (In Hungarian) [Google Scholar]
- Balázsi, D. Cooperatives in the valley of Nicou-Alb in the first half of the 20th century. In A Csíki Székely Múzeum Évkönyve 5. Régészet, történettudományok; Lóránt, D., Ed.; Pro-Print Könyvkiadó: Csíkszereda, Romania, 2009; pp. 131–196. (In Hungarian) [Google Scholar]
Depth (cm) | Troels-Smith Category | Munsell Color Category | Color | Structure | Age (Cal BP Years) |
---|---|---|---|---|---|
15–0 | Lc1As3 | 10 YR 4/4 | greyish red | poliedric soil | 0 |
102–15 | Lc1As3 | 10 YR 3/2 | reddish grey | laminated lake mud | 600–0 |
198–102 | Lc1Th1As1 | 10 YR 3/3 | dark brown | carbonaceus pelitic sediment | 2400–600 |
254–198 | Th2Lc1As1 | 10 YR 3/2 | blackish brown | carbonaceus pelitic sediment | 3400–2400 |
260–254 | Th3Lc1 | 10 YR 3/1 | dark grey | herbaceus peat | 3450–3400 |
284–260 | Th2Lc1As1 | 10 YR 3/2 | blackish brown | carbonaceus pelitic sediment | 3800–3450 |
290–284 | Th3As1 | 10 YR 3/1 | dark grey | herbaceus peat | 3900–3800 |
292–290 | Th2Lc1As1 | 10 YR 3/2 | blackish brown | carbonaceus pelitic sediment | 3950–3900 |
320–292 | Th3As1 | 10 YR 3/1 | dark grey | herbaceus peat | 4150–3950 |
362–320 | Tb3As1 | 10 YR 2/2 | dark brown | moss peat | 4500–4150 |
366–362 | Th2Lc1As1 | 10 YR 3/2 | blackish brown | carbonaceus pelitic sediment | 4600–4500 |
384–366 | Th3Lc1 | 10 YR 3/1 | reddish brown | herbaceus peat | 4800–4600 |
392–384 | Th2Lc1As1 | 10 YR 3/2 | blackish brown | carbonaceus pelitic sediment | 5000–4800 |
510–392 | Th3As1 | 10 YR 3/1 | reddish brown | herbaceus peat | 6500–5000 |
530–510 | Tb3As1 | 10 YR 2/2 | dark brown | moss peat | 7000–6500 |
530–560 | Th3As1 | 10 YR 3/1 | reddish brown | herbaceus peat | 7500–7000 |
Total Section (0–560 cm) | Lake Phase (0–104 cm) | Peat Phase (104–560 cm) | |
---|---|---|---|
Si (%) | 16.61 | 27.40 | 14.06 |
Al (%) | 4.84 | 7.52 | 4.21 |
Fe (%) | 3.78 | 4.87 | 3.52 |
K (%) | 1.04 | 1.71 | 0.88 |
Ca (%) | 0.87 | 0.67 | 0.91 |
Ti (ppm) | 3067.48 | 5504.38 | 2491.48 |
S (%) | 0.13 | 0.00 | 0.16 |
P (%) | 0.06 | 0.00 | 0.07 |
Mn (ppm) | 124.97 | 348.07 | 72.24 |
Cr (ppm) | 90.45 | 106.74 | 85.95 |
Rb (ppm) | 72.66 | 113.26 | 63.06 |
Zr (ppm) | 72.54 | 161.83 | 51.43 |
Sr (ppm) | 66.33 | 95.17 | 59.51 |
Variables | PC 1 | PC 2 |
---|---|---|
Al | 0.85128 | 0.22037 |
Si | 0.92565 | 0.32804 |
S | −0.53187 | 0.65016 |
P | 0.24036 | 0.79389 |
K | 0.91266 | 0.3497 |
Ca | −0.13402 | 0.81413 |
Ti | 0.92628 | 0.25136 |
Cr | 0.74713 | 0.5794 |
Mn | 0.84944 | −0.2622 |
Fe | 0.77234 | 0.50753 |
Rb | 0.90968 | 0.28342 |
Sr | 0.89265 | 0.32182 |
Zr | 0.97298 | −0.063781 |
MS | 0.92041 | −0.15484 |
LOI550 | −0.94313 | 0.025909 |
LOI950 | −0.72301 | 0.17593 |
LOIres | 0.94396 | −0.031808 |
Clay | −0.57733 | 0.21615 |
Fine silt | −0.78114 | 0.36674 |
Coarse silt | 0.68392 | −0.28212 |
Vf sand | 0.80249 | −0.37068 |
Fine sand | 0.77815 | −0.38445 |
M. sand | 0.7565 | −0.39059 |
Lab Code | Material | Depth (cm) | 14C Age yr (BP) | ± | cal yr BP | ± | AD/BC Years |
---|---|---|---|---|---|---|---|
DeA-11893 | charcoal | 59 | 230 | 21 | 227 | 72 | 1643–1799 AD |
D-AMS 015575 | charcoal | 100 | 566 | 22 | 584 | 53 | 1303–1419 AD |
DeA-13155 | peat | 140 | 1084 | 24 | 998 | 34 | 894–1013 AD |
DeA-11892 | peat | 199 | 1869 | 26 | 1799 | 74 | 77–222 AD |
DeA-11891 | peat | 211 | 2528 | 25 | 2621 | 123 | 794–547 BC |
DeA-12029 | peat | 231 | 2947 | 28 | 3089 | 86 | 1054–1226 BC |
D-AMS 015574 | peat | 236 | 3015 | 26 | 3207 | 127 | 1131–1385 BC |
DeA-13157 | peat | 320 | 3799 | 28 | 4183 | 53 | 4283–4090 BC |
D-AMS 015577 | peat | 416 | 4602 | 28 | 5269 | 179 | 3141–3499 BC |
DeA-11889 | peat | 489 | 5615 | 31 | 6386 | 76 | 4361–4512 BC |
DeA-11888 | peat | 511 | 5916 | 33 | 6742 | 90 | 4713–4892 BC |
D-AMS 015576 | peat | 560 | 6575 | 29 | 7495 | 65 | 5480–5610 BC |
Al | Si | P | S | K | Ca | Ti | Cr | Mn | Fe | Rb | Sr | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Si | 0.913 | |||||||||||
P | −0.513 | −0.472 | ||||||||||
S | −0.704 | −0.626 | 0.896 | |||||||||
K | 0.877 | 0.967 | −0.455 | −0.560 | ||||||||
Ca | −0.456 | −0.352 | 0.905 | 0.873 | −0.325 | |||||||
Ti | 0.844 | 0.946 | −0.448 | −0.567 | 0.965 | −0.310 | ||||||
Cr | 0.787 | 0.766 | −0.324 | −0.446 | 0.788 | −0.243 | 0.777 | |||||
Mn | 0.683 | 0.798 | −0.417 | −0.528 | 0.794 | −0.270 | 0.855 | 0.604 | ||||
Fe | 0.777 | 0.759 | −0.339 | −0.558 | 0.712 | −0.234 | 0.661 | 0.679 | 0.568 | |||
Rb | 0.932 | 0.911 | −0.602 | −0.746 | 0.901 | −0.520 | 0.857 | 0.775 | 0.679 | 0.816 | ||
Sr | 0.710 | 0.879 | −0.360 | −0.482 | 0.861 | −0.178 | 0.867 | 0.607 | 0.768 | 0.678 | 0.764 | |
Zr | 0.897 | 0.925 | −0.616 | −0.780 | 0.880 | −0.516 | 0.883 | 0.712 | 0.747 | 0.771 | 0.952 | 0.819 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapody, R.O.; Sümegi, P.; Molnár, D.; Karlik, M.; Törőcsik, T.; Cseh, P.; Makó, L. Sedimentological-Geochemical Data Based Reconstruction of Climate Changes and Human Impacts from the Peat Sequence of Round Lake in the Western Foothill Area of the Eastern Carpathians, Romania. Quaternary 2021, 4, 18. https://doi.org/10.3390/quat4020018
Tapody RO, Sümegi P, Molnár D, Karlik M, Törőcsik T, Cseh P, Makó L. Sedimentological-Geochemical Data Based Reconstruction of Climate Changes and Human Impacts from the Peat Sequence of Round Lake in the Western Foothill Area of the Eastern Carpathians, Romania. Quaternary. 2021; 4(2):18. https://doi.org/10.3390/quat4020018
Chicago/Turabian StyleTapody, Réka Orsolya, Pál Sümegi, Dávid Molnár, Máté Karlik, Tünde Törőcsik, Péter Cseh, and László Makó. 2021. "Sedimentological-Geochemical Data Based Reconstruction of Climate Changes and Human Impacts from the Peat Sequence of Round Lake in the Western Foothill Area of the Eastern Carpathians, Romania" Quaternary 4, no. 2: 18. https://doi.org/10.3390/quat4020018
APA StyleTapody, R. O., Sümegi, P., Molnár, D., Karlik, M., Törőcsik, T., Cseh, P., & Makó, L. (2021). Sedimentological-Geochemical Data Based Reconstruction of Climate Changes and Human Impacts from the Peat Sequence of Round Lake in the Western Foothill Area of the Eastern Carpathians, Romania. Quaternary, 4(2), 18. https://doi.org/10.3390/quat4020018