A Top-to-Bottom Luminescence-Based Chronology for the Post-LGM Regression of a Great Basin Pluvial Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Field Methods
2.3. Shoreline Interpretation
2.4. Laboratory Methods
3. Results
3.1. Surveying
3.2. Spatial Analysis
3.3. Sedimentology and Stratigraphy
3.4. Luminescence Dating
4. Discussion
4.1. Shoreline Chronology
4.2. Comparison with Other Records and Paleoclimate Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poage, M.; Chamberlain, C. Stable isotopic evidence for a pre-Middle Miocene rain shadow in the western Basin and Range: Implications for the paleotopography of the Sierra Nevada. Tectonics 2002, 21, 16-1–16-10. [Google Scholar] [CrossRef]
- Mifflin, M.D.; Wheat, M.M. Pluvial Lakes and Estimated Pluvial Climates of Nevada; Nevada Bureau of Mines and Geology: Reno, NV, USA, 1979; Volume 94. [Google Scholar]
- Gilbert, G.K. Lake Bonneville; U. S. Geological Survey: Reston, VA, USA, 1890; p. 438.
- Russell, I.C. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada; U. S. Geological Survey: Reston, VA, USA, 1885; p. 288.
- Adams, K.D.; Wesnousky, S.G. Shoreline processes and the age of the Lake Lahontan highstand in the Jessup Embayment, Nevada. Geol. Soc. Am. Bull. 1998, 110, 1318–1332. [Google Scholar] [CrossRef]
- Benson, L.V.; Lund, S.P.; Smoot, J.P.; Rhode, D.E.; Spencer, R.J.; Verosub, K.L.; Louderback, L.A.; Johnson, C.A.; Rye, R.O.; Negrini, R.M. The rise and fall of Lake Bonneville between 45 and 10.5 ka. Quat. Int. 2011, 235, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Reheis, M.C. Extent of Pleistocene Lakes in the Western Great Basin; U. S. Geological Survey: Reston, VA, USA, 1999.
- Menking, K.M.; Anderson, R.Y.; Shafike, N.G.; Syed, K.H.; Allen, B.D. Wetter or colder during the Last Glacial Maximum? Revisiting the pluvial lake question in southwestern North America. Quatern.Res. 2004, 62, 280–288. [Google Scholar] [CrossRef]
- Hudson, A.M.; Hatchett, B.J.; Quade, J.; Boyle, D.P.; Bassett, S.D.; Ali, G.; Marie, G. North-south dipole in winter hydroclimate in the western United States during the last deglaciation. Sci. Rep. 2019, 9, 4826. [Google Scholar] [CrossRef] [Green Version]
- Oster, J.L.; Ibarra, D.E.; Winnick, M.J.; Maher, K. Steering of westerly storms over western North America at the last glacial maximum. Nat. Geosci. 2015, 8, 201–205. [Google Scholar] [CrossRef]
- Asmerom, Y.; Polyak, V.J.; Burns, S.J. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nat. Geosci. 2010, 3, 114–117. [Google Scholar] [CrossRef]
- Wagner, J.D.M.; Cole, J.E.; Beck, J.W.; Patchett, P.J.; Henderson, G.M.; Barnett, H.R. Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nat. Geosci. 2010, 3, 110–113. [Google Scholar] [CrossRef]
- Munroe, J.S.; Laabs, B.J. Latest Pleistocene history of pluvial Lake Franklin, northeastern Nevada, USA. Geol. Soc. Am. Bull. 2013, 125, 322–342. [Google Scholar] [CrossRef] [Green Version]
- Munroe, J.S.; Laabs, B.J. Temporal correspondence between pluvial lake highstands in the southwestern US and Heinrich Event 1. J. Quat. Sci. 2013, 28, 49–58. [Google Scholar] [CrossRef]
- Sharp, R.P. Pleistocene glaciation in the Ruby-East Humboldt Range, northeastern Nevada with abstract in German by Kurt E. Lowenstein. J. Geomorphol. 1938, 1, 296–323. [Google Scholar]
- Munroe, J.S.; Bigl, M.F.; Silverman, A.E.; Laabs, B.J. Records of late Quaternary environmental change from high-elevation lakes in the Ruby Mountains and East Humboldt Range, Nevada. In From Saline to Freshwater: The Diversity of Western Lakes in Space and Time; Geological Society of America Special Paper 536; Starratt, S.W., Rosen, M.R., Eds.; Geological Society of America: Boulder, CO, USA, 2019. [Google Scholar]
- Atwood, G. Geomorphology applied to flooding problems of closed-basin lakes … specifically Great Salt Lake, Utah. In Geomorphology and Natural Hazards; Morisawa, M., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 197–219. ISBN 978-0-444-82012-9. [Google Scholar]
- Atwood, G.; Wambeam, T.J.; Anderson, N.J. Chapter 1—The Present as a Key to the Past: Paleoshoreline Correlation Insights from Great Salt Lake. In Developments in Earth Surface Processes; Oviatt, C.G., Shroder, J.F., Eds.; Elsevier: Amsterdam, Netherlands, 2016; Volume 20, pp. 1–27. [Google Scholar]
- Blott, S.J.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Buylaert, J.-P.; Murray, A.S.; Thomsen, K.J.; Jain, M. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiat. Meas. 2009, 44, 560–565. [Google Scholar] [CrossRef]
- Huntley, D.J.; Lamothe, M. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can. J. Earth Sci. 2001, 38, 1093–1106. [Google Scholar] [CrossRef]
- Adamiec, G.; Aitken, M.J. Dose-rate conversion factors: Update. Anc. Tl 1998, 16, 37–50. [Google Scholar]
- Durcan, J.A.; King, G.E.; Duller, G.A. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quat. Geochronol. 2015, 28, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Kreutzer, S.; Schmidt, C.; Fuchs, M.C.; Dietze, M.; Fischer, M.; Fuchs, M. Introducing an R package for luminescence dating analysis. Anc. Tl 2012, 30, 1–8. [Google Scholar]
- Galbraith, R.F.; Roberts, R.G.; Laslett, G.; Yoshida, H.; Olley, J.M. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, northern Australia: Part I, experimental design and statistical models*. Archaeometry 1999, 41, 339–364. [Google Scholar] [CrossRef]
- Smith, K.M.; McBride, J.H.; Nelson, S.T.; Keach, R.W.; Hudson, S.M.; Tingey, D.G.; Rey, K.A.; Carling, G.T. An integrated high-resolution geophysical and geologic visualization of a Lake Bonneville shoreline deposit (Utah, USA). Interpretation 2019, 7, T265–T282. [Google Scholar] [CrossRef]
- Bond, G.C.; Heinrich, H.; Broecker, W.S.; Labeyrie, L.D.; McManus, J.; Andrews, J.; Huon, S.; Jantschik, R.; Clasen, S.; Simet, C.; et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 1992, 360, 245–249. [Google Scholar] [CrossRef]
- Hemming, S.R. Heinrich events; massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 2004, 42, RG1005.1–RG1005.43. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Egger, A.E.; Ibarra, D.E.; Widden, R.; Langridge, R.M.; Marion, M.; Hall, J. Influence of pluvial lake cycles on earthquake recurrence in the northwestern Basin and Range, USA. Geol. Soc. Am. Spec. Pap. 2018, 536, 1–28. [Google Scholar]
- Benson, L.; Smoot, J.; Lund, S.; Mensing, S.; Foit Jr, F.; Rye, R. Insights from a synthesis of old and new climate-proxy data from the Pyramid and Winnemucca lake basins for the period 48 to 11.5 cal ka. Quat. Int. 2013, 310, 62–82. [Google Scholar] [CrossRef] [Green Version]
- Munroe, J.S.; Laabs, B.J.C.; Oviatt, C.G.; Jewell, P.W. New Investigations of Pleistocene Pluvial and Glacial Records from the Northeastern Great Basin. In Sixth International Limnogeology Congress—Field Trip Guidebook, Reno, Nevada, June 15–19, 2015; Rosen, M.R., Ed.; USGS: Reston, VA, USA, 2015; pp. 1–60. [Google Scholar]
- Oviatt, C.G. The Gilbert Episode in the Great Salt Lake Basin, Utah; Utah Geological Survey: Salt Lake City, UT, USA, 2014. [Google Scholar]
- Diffenbaugh, N.S.; Ashfaq, M.; Shuman, B.; Williams, J.W.; Bartlein, P.J. Summer aridity in the United States: Response to mid-Holocene changes in insolation and sea surface temperature. Geophys. Res. Lett. 2006, 33, L22712. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Harrison, S.P. Mid-Holocene monsoons: A multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks. Clim. Dyn. 2012, 39, 1457–1487. [Google Scholar] [CrossRef] [Green Version]
- Metcalfe, S.E.; Barron, J.A.; Davies, S.J. The Holocene history of the North American Monsoon: ‘known knowns’ and ‘known unknowns’ in understanding its spatial and temporal complexity. Quat. Sci. Rev. 2015, 120, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Louderback, L.A.; Rhode, D.E. 15,000 Years of vegetation change in the Bonneville basin: The Blue Lake pollen record. Special Theme: Modern Analogues in Quaternary Palaeoglaciological Reconstruction (pp. 181–260). In Proceedings of the XVII INQUA Congress Special Session, Cairns, Australia, 28 July–3 August 2007; Volume 28, pp. 308–326. [Google Scholar]
Sample Name | Lake Elevation | Lake Area | Relative to Maximum | Rate of Change | Sample Latitude | Sample Longitude |
---|---|---|---|---|---|---|
-- | (m) | (km2) | (%) | (km2/vertical m) | (degrees) | (degrees) |
TOBAR-5665 | 1725 | 740.4 | 100.0 | -- | 40.881585 | −114.857772 |
TOBAR-5662 | 1724 | 727.1 | 98.2 | 13.3 | 40.881158 | −114.857718 |
TOBAR-5658 | 1723 | 712.5 | 96.2 | 14.0 | 40.880439 | −114.857809 |
TOBAR-5650 | 1721 | 683.4 | 92.3 | 14.3 | 40.877918 | −114.853494 |
TOBAR-5648 | 1720 | 666.8 | 90.1 | 14.7 | 40.877243 | −114.852123 |
TOBAR-5645 | 1718 | 625.3 | 84.5 | 16.4 | 40.876165 | −114.849399 |
TOBAR-5636 | 1717 | 605.6 | 81.8 | 16.9 | 40.873733 | −114.853863 |
TOBAR-5630 | 1715 | 563.7 | 76.1 | 17.7 | 40.874223 | −114.846076 |
TOBAR-5626 | 1713 | 509.4 | 68.8 | 19.3 | 40.871935 | −114.845358 |
TOBAR-5620 | 1712 | 484.5 | 65.4 | 19.7 | 40.872932 | −114.840278 |
Sample | Lake Elevation (m) | Depth (cm) | Aliquots (nacc/ntot) | Dose Rate (Gy/ka) | 2σ (Gy/ka) | Internal Dose Rate (Gy/ka) | 2σ (Gy/ka) | Over Dispersion (%) | CAM (ka) | 2σ (ka) | MAM3 (ka) | 2σ (ka) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feldspar PIRIR | ||||||||||||
VT-3-crest | 1725 | 75 | 44/300 | 1.83 | 0.09 | 0.67 | 0.21 | 0 | 17.6 | 1.9 | 17.6 | 2.9 |
TBR5665 | 1725 | 50 | 47/300 | 2.62 | 0.10 | 0.67 | 0.22 | 0 | 15.9 | 1.6 | 15.9 | 3.2 |
TBR5648 | 1720 | 95 | 55/240 | 1.94 | 0.07 | 0.67 | 0.21 | 0 | 15.2 | 1.5 | 14.0 | 2.0 |
TBR5636 | 1717 | 45 | 38/120 | 2.15 | 0.08 | 0.67 | 0.21 | 0 | 14.9 | 1.7 | 14.3 | 2.0 |
TBR5630 | 1715 | 80 | 36/240 | 2.39 | 0.09 | 0.67 | 0.21 | 1 | 11.6 | 1.5 | 11.6 | 2.1 |
TBR5626 | 1713 | 65 | 32/180 | 2.58 | 0.09 | 0.67 | 0.21 | 0 | 11.9 | 1.6 | 11.9 | 2.5 |
TBR56 20 | 1712 | 70 | 32/120 | 2.76 | 0.10 | 0.67 | 0.21 | 0 | 9.5 | 1.4 | 9.5 | 2.4 |
Quartz SAR | ||||||||||||
TBR5665 | 1725 | 50 | 15/420 | 2.62 | 0.10 | 0.00 | NA | 28 | 16.5 | 3.4 | 11.9 | 4.9 |
TBR5620 | 1712 | 70 | 19/600 | 2.75 | 0.10 | 0.00 | NA | 40 | 9.9 | 2.2 | 5.9 | 2.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munroe, J.S.; Walcott, C.K.; Amidon, W.H.; Landis, J.D. A Top-to-Bottom Luminescence-Based Chronology for the Post-LGM Regression of a Great Basin Pluvial Lake. Quaternary 2020, 3, 11. https://doi.org/10.3390/quat3020011
Munroe JS, Walcott CK, Amidon WH, Landis JD. A Top-to-Bottom Luminescence-Based Chronology for the Post-LGM Regression of a Great Basin Pluvial Lake. Quaternary. 2020; 3(2):11. https://doi.org/10.3390/quat3020011
Chicago/Turabian StyleMunroe, Jeffrey S., Caleb K. Walcott, William H. Amidon, and Joshua D. Landis. 2020. "A Top-to-Bottom Luminescence-Based Chronology for the Post-LGM Regression of a Great Basin Pluvial Lake" Quaternary 3, no. 2: 11. https://doi.org/10.3390/quat3020011
APA StyleMunroe, J. S., Walcott, C. K., Amidon, W. H., & Landis, J. D. (2020). A Top-to-Bottom Luminescence-Based Chronology for the Post-LGM Regression of a Great Basin Pluvial Lake. Quaternary, 3(2), 11. https://doi.org/10.3390/quat3020011