Speleothem Records from the Eastern Part of Europe and Turkey—Discussion on Stable Oxygen and Carbon Isotopes
Abstract
:1. Introduction
2. Study Region and Local Climate
3. “Eastern Europe and Turkey” Records in SISAL_v1
3.1. Spatial Distribution of Speleothem Records
3.2. Temporal Distribution of Speleothem Records
4. Environmental Controls on δ13C and δ18O Values in the Eastern Part of Europe and Turkey
4.1. Availability of Cave Monitoring Data
4.2. Environmental Controls on Speleothem δ18O
4.3. Environmental Controls on Speleothem δ13C
5. Regional Patterns in Carbon- and Oxygen Isotope Records
5.1. Major Patterns of Speleothem δ13c and δ18o Records in the Eastern Part of Europe and Turkey from the Sisal_V1 Database
5.2. Assessment of Spatial Patterns of Speleothem δ18O in the Holocene
6. Stable Isotopic Composition of Fluid Inclusions of Speleothems from South East Europe and Turkey to Complement Paleoenvironmental Implications of δ18Ospel
7. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cvijić, J. Das Karstphänomen: Versuch Einer Morphologischen Monographie. Ph.D. Thesis, Universität Wien, Vienna, Austria, 1983. [Google Scholar]
- Cvijic, J. Hydrographie souterraine et évolution morphologique du karst. Rev. Géographie Alp. 1918, 6, 375–426. [Google Scholar] [CrossRef]
- von Terzaghi, C. Beitrag zur Hydrographie und Morphologie des Kroatischen Karstes; Buchdruckerei des Franklin-vereins: Budapest, Hungary, 1913. [Google Scholar]
- Gabrovšek, F. 60 years of Karst Research Institute ZRC SAZU: The insider’s story of Who is Who at the Karst Research Institute. Acta Carsologica 2007, 36, 353–355. [Google Scholar] [CrossRef]
- Racoviţă, G. The Founder of Biospeleology and World’s First Speleological Institute. In Cave and Karst Systems of Romania; Ponta, G.M.L., Onac, B.P., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–3. [Google Scholar]
- Surić, M. Submarine karst of Croatia-evidence of former lower sea levels. Acta Carsologica 2002, 31, 89–98. [Google Scholar] [CrossRef]
- Surić, M. Speleothem-based Quaternary research in Croatian karst—A review. Quat. Int. 2018, 490, 113–122. [Google Scholar] [CrossRef]
- Nita, D.; Richards, D.; Surić, M.; De Waele, J. MC-ICPMS U-Th age determinations on altered submerged speleothems from Croatia. In Proceedings of the NSF Workshop “Sea-level Changes into MIS 5: From observations to prediction”, Palma de Mallorca, Spain, 10–14 April 2012. [Google Scholar]
- Surić, M.; Richards, D.A.; Hoffmann, D.L.; Tibljaš, D.; Juračić, M. Sea-level change during MIS 5a based on submerged speleothems from the eastern Adriatic Sea (Croatia). Mar. Geol. 2009, 262, 62–67. [Google Scholar] [CrossRef]
- Warken, S.F.; Fohlmeister, J.; Schröder-Ritzrau, A.; Constantin, S.; Spötl, C.; Gerdes, A.; Esper, J.; Frank, N.; Arps, J.; Terente, M.; et al. Reconstruction of late Holocene autumn/winter precipitation variability in SW Romania from a high-resolution speleothem trace element record. Earth Planet. Sci. Lett. 2018, 499, 122–133. [Google Scholar] [CrossRef]
- Demény, A.; Kern, Z.; Czuppon, G.; Németh, A.; Schöll-Barna, G.; Siklósy, Z.; Leél-Őssy, S.; Cook, G.; Serlegi, G.; Bajnóczi, B.; et al. Middle Bronze Age humidity and temperature variations, and societal changes in East-Central Europe. Quat. Int. 2019, 504, 80–95. [Google Scholar] [CrossRef] [Green Version]
- Ünal-İmer, E.; Shulmeister, J.; Zhao, J.-X.; Uysal, I.T.; Feng, Y.-X. High-resolution trace element and stable/radiogenic isotope profiles of late Pleistocene to Holocene speleothems from Dim Cave, SW Turkey. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 452, 68–79. [Google Scholar] [CrossRef]
- Finné, M.; Bar-Matthews, M.; Holmgren, K.; Sundqvist, H.S.; Liakopoulos, I.; Zhang, Q. Speleothem evidence for late Holocene climate variability and floods in Southern Greece. Quat. Res. 2014, 81, 213–227. [Google Scholar] [CrossRef]
- Siklósy, Z.; Demény, A.; Vennemann, T.W.; Pilet, S.; Kramers, J.; Leél-Őssy, S.; Bondár, M.; Shen, C.-C.; Hegner, E. Bronze Age volcanic event recorded in stalagmites by combined isotope and trace element studies. Rapid Commun. Mass Spectrom. 2009, 23, 801–808. [Google Scholar] [CrossRef]
- Badertscher, S.; Borsato, A.; Frisia, S.; Cheng, H.; Edwards, R.L.; Tüysüz, O.; Fleitmann, D. Speleothems as sensitive recorders of volcanic eruptions—The Bronze Age Minoan eruption recorded in a stalagmite from Turkey. Earth Planet. Sci. Lett. 2014, 392, 58–66. [Google Scholar] [CrossRef]
- Siklósy, Z.; Kern, Z.; Demeny, A.; Pilet, S.; Leel-Ossy, S.; Lin, K.; Shen, C.-C.; Széles, E.; Breitner, D. Speleothems and pine trees as sensitive indicators of environmental pollution—A case study of the effect of uranium-ore mining in Hungary. Appl. Geochem. 2011, 26, 666–678. [Google Scholar] [CrossRef]
- Pazdur, A.; Pazdur, M.F.; Pawlyta, J.; Górny, A.; Olszewski, M. Paleoclimatic Implications of Radiocarbon Dating Of Speleothems from the Cracow-Wieluń Upland, Southern Poland. Radiocarbon 1995, 37, 103–110. [Google Scholar] [CrossRef]
- Genty, D.; Vokal, B.; Obelic, B.; Massault, M. Bomb 14C time history recorded in two modern stalagmites—Importance for soil organic matter dynamics and bomb 14C distribution over continents. Earth Planet. Sci. Lett. 1998, 160, 795–809. [Google Scholar] [CrossRef]
- Lauritzen, S.-E.; Onac, B.P. Isotopic stratigraphy of a last interglacial stalagmite from northwestern Romania: Correlation with the deep-sea record and northern-latitude speleothem. J. Caves Karst Stud. 1999, 61, 22–29. [Google Scholar]
- Comas-Bru, L.; Harrison, S.P. SISAL: Bringing Added Value to Speleothem Research. Quaternary 2019, 2, 7. [Google Scholar] [CrossRef]
- Perșoiu, A.; Onac, B.P.; Wynn, J.G.; Blaauw, M.; Ionita, M.; Hansson, M. Holocene winter climate variability in Central and Eastern Europe. Sci. Rep. 2017, 7, 1196. [Google Scholar] [CrossRef]
- Johnston, V.E.; McDermott, F.; Tămaş, T. A radiocarbon dated bat guano deposit from N.W. Romania: Implications for the timing of the Little Ice Age and Medieval Climate Anomaly. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 291, 217–227. [Google Scholar] [CrossRef]
- Forray, F.L.; Onac, B.P.; Tanţău, I.; Wynn, J.G.; Tămaş, T.; Coroiu, I.; Giurgiu, A.M. A Late Holocene environmental history of a bat guano deposit from Romania: An isotopic, pollen and microcharcoal study. Quat. Sci. Rev. 2015, 127, 141–154. [Google Scholar] [CrossRef]
- Cleary, D.M.; Onac, B.P.; Tanţău, I.; Forray, F.L.; Wynn, J.G.; Ionita, M.; Tămaş, T. A guano-derived δ13C and δ15N record of climate since the Medieval Warm Period in north-west Romania. J. Quat. Sci. 2018, 33, 677–688. [Google Scholar] [CrossRef]
- Harmon, R.S.; Schwarcz, H.P. Changes of 2H and 18O enrichment of meteoric water and Pleistocene glaciation. Nature 1981, 290, 125–128. [Google Scholar] [CrossRef]
- Yonge, C.J. Stable isotope Studies of Water Extracted from Speleothems. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 1982. [Google Scholar]
- Demény, A.; Czuppon, G.; Kern, Z.; Leél-Őssy, S.; Németh, A.; Szabó, M.; Tóth, M.; Wu, C.-C.; Shen, C.-C.; Molnár, M.; et al. Recrystallization-induced oxygen isotope changes in inclusion-hosted water of speleothems—Paleoclimatological implications. Quat. Int. 2016, 415, 25–32. [Google Scholar] [CrossRef]
- McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Atsawawaranunt, K.; Comas-Bru, L.; Amirnezhad Mozhdehi, S.; Deininger, M.; Harrison, S.P.; Baker, A.; Boyd, M.; Kaushal, N.; Ahmad, S.M.; Ait Brahim, Y.; et al. The SISAL database: A global resource to document oxygen and carbon isotope records from speleothems. Earth Syst. Sci. Data 2018, 10, 1687–1713. [Google Scholar] [CrossRef]
- Atsawawaranunt, K.; Harrison, S.; Comas-Bru, L. SISAL (Speleothem Isotopes Synthesis and AnaLysis Working Group) Database Version 1.0, 1st ed.; University of Reading: Reading, UK, 2018. [Google Scholar]
- Lechleitner, F.A.; Amirnezhad-Mozhdehi, S.; Columbu, A.; Comas-Bru, L.; Labuhn, I.; Pérez-Mejías, C.; Rehfeld, K. The Potential of Speleothems from Western Europe as Recorders of Regional Climate: A Critical Assessment of the SISAL Database. Quaternary 2018, 1, 30. [Google Scholar] [CrossRef]
- Kottek, M.G.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Mätlik, O.; Post, P. Synoptic weather types that have caused heavy precipitation in Estonia in the period 1961–2005. Est. J. Eng. 2008, 14, 195–208. [Google Scholar] [CrossRef]
- Gómez-Hernández, M.; Drumond, A.; Gimeno, L.; Garcia-Herrera, R. Variability of moisture sources in the Mediterranean region during the period 1980–2000. Water Resour. Res. 2013, 49, 6781–6794. [Google Scholar] [CrossRef]
- Krklec, K.; Domínguez-Villar, D.; Lojen, S. The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe. J. Hydrol. 2018, 561, 810–821. [Google Scholar] [CrossRef]
- Ciric, D.; Nieto, R.; Losada, L.; Drumond, A.; Gimeno, L. The Mediterranean Moisture Contribution to Climatological and Extreme Monthly Continental Precipitation. Water 2018, 10, 519. [Google Scholar] [CrossRef]
- Bădăluță, C.-A.; Perșoiu, A.; Ionita, M.; Nagavciuc, V.; Bistricean, P.-I. Stable isotope-based investigation of moisture sources and their role in river and groundwater recharge in the NE Carpathian Mountains, East-Central Europe. Isot. Health Environ. Stud. 2019, 55, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Fleitmann, D.; Cheng, H.; Badertscher, S.; Edwards, R.L.; Mudelsee, M.; Göktürk, O.M.; Fankhauser, A.; Pickering, R.; Raible, C.C.; Matter, A.; et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Göktürk, O.M.; Fleitmann, D.; Badertscher, S.; Cheng, H.; Edwards, R.L.; Leuenberger, M.; Fankhauser, A.; Tüysüz, O.; Kramers, J. Climate on the southern Black Sea coast during the Holocene: Implications from the Sofular Cave record. Quat. Sci. Rev. 2011, 30, 2433–2445. [Google Scholar] [CrossRef]
- Hartmann, A.; Gleeson, T.; Rosolem, R.; Pianosi, F.; Wada, Y.; Wagener, T. A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean. Geosci. Model Dev. 2015, 8, 1729–1746. [Google Scholar] [CrossRef] [Green Version]
- Rudzka, D.; McDermott, F.; Surić, M. A late Holocene climate record in stalagmites from Modrič Cave (Croatia). J. Quat. Sci. 2012, 27, 585–596. [Google Scholar] [CrossRef]
- Finné, M.; Holmgren, K.; Shen, C.-C.; Hu, H.-M.; Boyd, M.; Stocker, S. Late Bronze Age climate change and the destruction of the Mycenaean Palace of Nestor at Pylos. PLoS ONE 2017, 12, e0189447. [Google Scholar] [CrossRef] [PubMed]
- Psomiadis, D.; Dotsika, E.; Albanakis, K.; Ghaleb, B.; Hillaire-Marcel, C. Speleothem record of climatic changes in the northern Aegean region (Greece) from the Bronze Age to the collapse of the Roman Empire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 489, 272–283. [Google Scholar] [CrossRef]
- Ünal-İmer, E.; Shulmeister, J.; Zhao, J.-X.; Tonguç Uysal, I.; Feng, Y.-X.; Duc Nguyen, A.; Yüce, G. An 80 kyr-long continuous speleothem record from Dim Cave, SW Turkey with paleoclimatic implications for the Eastern Mediterranean. Sci. Rep. 2015, 5, 13560. [Google Scholar] [CrossRef]
- Kacanski, A.; Carmi, I.; Shemesh, A.; Kronfeld, J.; Yam, R.; Flexer, A. Late Holocene Climatic Change in the Balkans: Speleothem Isotopic Data from Serbia. Radiocarbon 2001, 43, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Drăguşin, V.; Staubwasser, M.; Hoffmann, D.L.; Ersek, V.; Onac, B.P.; Veres, D. Constraining Holocene hydrological changes in the Carpathian–Balkan region using speleothem δ18O and pollen-based temperature reconstructions. Clim. Past 2014, 10, 1363–1380. [Google Scholar] [CrossRef]
- Onac, B.P.; Constantin, S.; Lundberg, J.; Lauritzen, S.-E. Isotopic climate record in a Holocene stalagmite from Ursilor Cave (Romania). J. Quat. Sci. 2002, 17, 319–327. [Google Scholar] [CrossRef]
- Demény, A.; Kern, Z.; Czuppon, G.; Németh, A.; Leél-Őssy, S.; Siklósy, Z.; Lin, K.; Hu, H.-M.; Shen, C.-C.; Vennemann, T.W.; et al. Stable isotope compositions of speleothems from the last interglacial—Spatial patterns of climate fluctuations in Europe. Quat. Sci. Rev. 2017, 161, 68–80. [Google Scholar] [CrossRef]
- Koltai, G.; Spötl, C.; Shen, C.-C.; Wu, C.-C.; Rao, Z.; Palcsu, L.; Kele, S.; Surányi, G.; Bárány-Kevei, I. A penultimate glacial climate record from southern Hungary. J. Quat. Sci. 2017, 32, 946–956. [Google Scholar] [CrossRef]
- Chen, Z.; Auler, A.S.; Bakalowicz, M.; Drew, D.; Griger, F.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Richts, A.; Stevanovic, Z.; et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 2017, 25, 771–785. [Google Scholar] [CrossRef]
- Regattieri, E.; Zanchetta, G.; Isola, I.; Bajo, P.; Perchiazzi, N.; Drysdale, R.N.; Boschi, C.; Hellstrom, J.C.; Francke, A.; Wagner, B. A MIS 9/MIS 8 speleothem record of hydrological variability from Macedonia (F.Y.R.O.M.). Glob. Planet. Chang. 2018, 162, 39–52. [Google Scholar] [CrossRef]
- Lončar, N.; Bar-Matthews, M.; Avalon, A.; Surić, M.; Faivre, S. Early and mid-holocene environmental conditions in the eastern Adriatic recorded in speleotherms from Mala Špilja cave and Velika Špilja cave (Mljet island, Croatia). Acta Carsologica 2017, 46, 229–249. [Google Scholar] [CrossRef]
- Chiarini, V.; Couchoud, I.; Drysdale, R.; Bajo, P.; Milanolo, S.; Frisia, S.; Greig, A.; Hellstrom, J.; De Waele, J. Petrographical and geochemical changes in Bosnian stalagmites and their palaeo-environmental significance. Int. J. Speleol. 2017, 46, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Benson, A.; Hoffmann, D.L.; Bella, P.; Drury, A.J.; Hercman, H.; Atkinson, T.C. Building robust age models for speleothems—A case-study using coeval twin stalagmites. Quat. Geochronol. 2018, 43, 83–90. [Google Scholar] [CrossRef]
- Staubwasser, M.; Drăgușin, V.; Onac, B.P.; Assonov, S.; Ersek, V.; Hoffmann, D.L.; Veres, D. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proc. Natl. Acad. Sci. USA 2018, 115, 9116–9121. [Google Scholar] [CrossRef] [Green Version]
- Urban, J.; Margielewski, W.; Žák, K.; Hercman, H.; Sujka, G.; Mleczek, T. The calcareous speleothems in the pseudokarst Jaskinia Słowiańska-Drwali cave, Beskid Niski Mts., Poland. Nat. Conserv. 2007, 63, 119–128. [Google Scholar]
- Lindgren, A.; Hugelius, G.; Kuhry, P.; Christensen, T.R.; Vandenberghe, J. GIS-based Maps and Area Estimates of Northern Hemisphere Permafrost Extent during the Last Glacial Maximum. Permafr. Periglac. Process. 2016, 27, 6–16. [Google Scholar] [CrossRef]
- Szewczyk, J. The deep-seated lowland relict permafrost from the Suwałki region (NE Poland)—Analysis of conditions of its development and preservation. Geol. Q. 2017, 61, 845–858. [Google Scholar] [CrossRef]
- Błaszczyk, M.; Hercman, H.; Pawlak, J.; Gąsiorowski, M.; Matoušková, Š.; Aninowska, M.; Kicińska, D.; Tyc, A. Low to middle Pleistocene paleoclimatic record from the Kraków-Częstochowa Upland (Poland) based on isotopic and calcite fabrics analyses. Geochronometria 2018, 45, 185–197. [Google Scholar] [CrossRef]
- Majorowicz, J. Permafrost at the Ice Base of Recent Pleistocene Glaciations–Inferences from Borehole Temperature Profiles. Bull. Geogr. 2012, 5, 7–28. [Google Scholar] [CrossRef]
- Koit, O. The distribution and development of karst in Estonia. Dyn. Environ. 2019, 39. in press. [Google Scholar]
- Eensaar, J.; Pani, T.; Gaskov, M.; Sepp, H.; Kirsimae, K. Stable isotope composition of hypogenic speleothem calcite in Kalana (Estonia) as a record of microbial methanotrophy and fluid evolution. Geol. Mag. 2017, 154, 57–67. [Google Scholar] [CrossRef]
- Heinsalu, Ü. Stalaktiidid Eestis. Eest. Lood. 1984, 1, 36–39. [Google Scholar]
- Tămaş, T.; Onac, B.P.; Bojar, A.-V. Lateglacial-Middle Holocene stable isotope records in two coeval stalagmites from the Bihor Mountains, NW Romania. Geol. Q. 2005, 49, 185–194. [Google Scholar]
- Constantin, S.; Bojar, A.-V.; Lauritzen, S.-E.; Lundberg, J. Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: A speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 243, 322–338. [Google Scholar] [CrossRef]
- Pawlak, J.; Hercman, H. Numerical correlation of speleothem stable isotope records using a genetic algorithm. Quat. Geochronol. 2016, 33, 1–12. [Google Scholar] [CrossRef]
- Jex, C.N.; Baker, A.; Eden, J.M.; Eastwood, W.J.; Fairchild, I.J.; Leng, M.J.; Thomas, L.; Sloane, H.J. A 500 yr speleothem-derived reconstruction of late autumn–winter precipitation, northeast Turkey. Quat. Res. 2011, 75, 399–405. [Google Scholar] [CrossRef]
- Rowe, P.J.; Mason, J.E.; Andrews, J.E.; Marca, A.D.; Thomas, L.; van Calsteren, P.; Jex, C.N.; Vonhof, H.B.; Al-Omari, S. Speleothem isotopic evidence of winter rainfall variability in northeast Turkey between 77 and 6 ka. Quat. Sci. Rev. 2012, 45, 60–72. [Google Scholar] [CrossRef]
- Badertscher, S.; Fleitmann, D.; Cheng, H.; Edwards, R.L.; Göktürk, O.M.; Zumbühl, A.; Leuenberger, M.; Tüysüz, O. Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. Nat. Geosci. 2011, 4, 236–239. [Google Scholar] [CrossRef]
- Constantin, S.; Lauritzen, S.E.; Lundberg, J. New data on the chronology of the Termination II and paleoclimate during MIS-5, based on the study of a stalagmite from Closani Cave (SW Romania). Arch. Clim. Chang. Karst Karst Waters Inst. Spec. Publ. 2006, 10, 98–100. [Google Scholar]
- Tămaş, T.; Bojar, A.-V.; Constantin, S.; Lauritzen, S.-E. The δ18O record of a Holocene stalagmite from V11 Cave, NW Romania. Studia UBB 2007, 57, 77–79. [Google Scholar]
- Demény, A.; Czuppon, G.; Siklósy, Z.; Leél-Őssy, S.; Lin, K.; Shen, C.-C.; Gulyás, K. Mid-Holocene climate conditions and moisture source variations based on stable H, C and O isotope compositions of speleothems in Hungary. Quat. Int. 2013, 293, 150–156. [Google Scholar] [CrossRef]
- Siklósy, Z.; Demény, A.; Szenthe, I.; Leél-Őssy, S.; Pilet, S.; Lin, Y.; Shen, C.-C. Reconstruction of climate variation for the last millennium in the Bükk Mountains, northeast Hungary, from a stalagmite record. Q. J. Hung. Meteorol. Serv. 2009, 113, 245–263. [Google Scholar]
- Demény, A.; Németh, A.; Kern, Z.; Czuppon, G.; Molnár, M.; Leél-Őssy, S.; Óvári, M.; Stieber, J. Recently forming stalagmites from the Baradla Cave and their suitability assessment for climate–proxy relationships. Cent. Eur. Geol. 2017, 60, 1–34. [Google Scholar] [CrossRef]
- Siklósy, Z.; Demény, A.; Leél-Őssy, S.; Szenthe, I.; Lauritzen, S.-E.; Shen, C.-C. A cseppkövek kormeghatározása és azok paleoklimatológiai jelentősége. Földtani Közlöny 2011, 141, 1–100. [Google Scholar]
- Onac, B.P.; Lauritzen, S. The Climate of the Last 150,000 Years Recorded Inspeleothems: Preliminary Results from North-Western Romania. Theor. Appl. Karstol. 1996, 9, 9–21. [Google Scholar]
- Constantin, S.; Lauritzen, S.-E. Speleothem datings in SW Romania. Theor. Appl. Karstol. 1998, 11–12, 35–45. [Google Scholar]
- Surić, M.; Lončarić, R.; Lončar, N.; Bočić, N.; Bajo, P.; Columbu, A.; Drysdale, R.N.; Hellstrom, J.C. Eastern Adriatic Paleoenvironmental Changes Recorded from MIS 10 to the Recent in the Modrič Cave (Croatia) Speleothems–Preliminary Report; Climate Change: The Karst Record. 8th International Conference KR8; University of Texas: Austin, TX, USA, 2017; p. 105. [Google Scholar]
- Demény, A.; Leél-Őssy, S.; Shen, C.-C.; Surányi, G. Middle Pleistocene Speleothem Record from the Baradla Cave, Northeast Hungary. Geophys. Res. Abstr. 2018, 20, EGU2018-8894. [Google Scholar]
- Hellstrom, J.; Pickering, R. Recent advances and future prospects of the U–Th and U–Pb chronometers applicable to archaeology. J. Archaeol. Sci. 2015, 56, 32–40. [Google Scholar] [CrossRef]
- Richards, D.A.; Bottrell, S.H.; Cliff, R.A.; Ströhle, K.; Rowe, P.J. U-Pb dating of a speleothem of Quaternary age. Geochim. Cosmochim. Acta 1998, 62, 3683–3688. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar] [CrossRef]
- Heinrich, H. Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean During the Past 130,000 Years. Quat. Res. 1988, 29, 142–152. [Google Scholar] [CrossRef]
- Spötl, C.; Mattey, D. Stable isotope microsampling of speleothems for palaeoenvironmental studies: A comparison of microdrill, micromill and laser ablation techniques. Chem. Geol. 2006, 235, 48–58. [Google Scholar] [CrossRef]
- Hellstrom, J. Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. J. Anal. At. Spectrom. 2003, 18, 1346–1351. [Google Scholar] [CrossRef]
- Drăguşin, V.; Balan, S.; Blamart, D.; Forray, F.L.; Marin, C.; Mirea, I.; Nagavciuc, V.; Orăşeanu, I.; Perşoiu, A.; Tîrlă, L.; et al. Transfer of environmental signals from the surface to the underground at Ascunsă Cave, Romania. Hydrol. Earth Syst. Sci. 2017, 21, 5357–5373. [Google Scholar] [CrossRef]
- Riechelmann, D.F.C.; Schröder-Ritzrau, A.; Scholz, D.; Fohlmeister, J.; Spötl, C.; Richter, D.K.; Mangini, A. Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site. J. Hydrol. 2011, 409, 682–695. [Google Scholar] [CrossRef]
- Surić, M.; Lončarić, R.; Lončar, N.; Buzjak, N.; Bajo, P.; Drysdale, R.N. Isotopic characterization of cave environments at varying altitudes on the eastern Adriatic coast (Croatia)—Implications for future speleothem-based studies. J. Hydrol. 2017, 545, 367–380. [Google Scholar] [CrossRef]
- Surić, M.; Lončarić, R.; Bočić, N.; Lončar, N.; Buzjak, N. Monitoring of selected caves as a prerequisite for the speleothem-based reconstruction of the Quaternary environment in Croatia. Quat. Int. 2018, 494, 263–274. [Google Scholar] [CrossRef]
- Surić, M.; Roller-Lutz, Z.; Mandić, M.; Bronić, I.K.; Juračić, M. Modern C, O, and H isotope composition of speleothem and dripwater from Modrič Cave, eastern Adriatic coast (Croatia). Int. J. Speleol. 2010, 39, 91–97. [Google Scholar] [CrossRef]
- Ersek, V.; Onac, B.P.; Perșoiu, A. Kinetic processes and stable isotopes in cave dripwaters as indicators of winter severity. Hydrol. Process. 2018, 32, 2856–2862. [Google Scholar] [CrossRef] [Green Version]
- Czuppon, G.; Bočić, N.; Buzjak, N.; Óvári, M.; Molnár, M. Monitoring in the Barać and Lower Cerovačka caves (Croatia) as a basis for the characterization of the climatological and hydrological processes that control speleothem formation. Quat. Int. 2018, 494, 52–65. [Google Scholar] [CrossRef]
- Czuppon, G.; Demény, A.; Leél-Őssy, S.; Óvari, M.; Molnár, M.; Stieber, J.; Kiss, K.; Kármán, K.; Surányi, G.; Haszpra, L. Cave monitoring in the Béke and Baradla caves (Northeastern Hungary): Implications for the conditions for the formation cave carbonates. Int. J. Speleol. 2018, 47, 13–28. [Google Scholar] [CrossRef]
- Fehér, K.; Kovács, J.; Márkus, L.; Borbás, E.; Tanos, P.; Hatvani, I.G. Analysis of drip water in an urban karst cave beneath the Hungarian capital (Budapest). Acta Carsologica 2016, 45, 213–231. [Google Scholar] [CrossRef]
- Domínguez-Villar, D.; Lojen, S.; Krklec, K.; Kozdon, R.; Edwards, R.L.; Cheng, H. Ion microprobe δ18O analyses to calibrate slow growth rate speleothem records with regional δ18O records of precipitation. Earth Planet. Sci. Lett. 2018, 482, 367–376. [Google Scholar] [CrossRef]
- LeGrande, A.N.; Schmidt, G.A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R.; Klein, B.; Kushnir, Y.; Roether, W.; Wernli, H.; Yam, R.; Shemesh, A. Isotope composition of air moisture over the Mediterranean Sea: An index of the air-sea interaction pattern. Tellus B 2003, 55, 953–965. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trigo, R.M.; Osborn, T.J.; Corte-Real, J.M. The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Clim. Res. 2002, 20, 9–17. [Google Scholar] [CrossRef]
- Bojar, A.-V.; Ottner, F.; Bojar, H.-P.; Grigorescu, D.; Perşoiu, A. Stable isotope and mineralogical investigations on clays from the Late Cretaceous sequences, Haţeg Basin, Romania. Appl. Clay Sci. 2009, 45, 155–163. [Google Scholar] [CrossRef]
- Vystavna, Y.; Holko, L.; Hejzlar, J.; Perșoiu, A.; Graham, N.D.; Juras, R.; Huneau, F.; Gibson, J. Isotopic response of run-off to forest disturbance in small mountain catchments. Hydrol. Process. 2018, 32, 3650–3661. [Google Scholar] [CrossRef]
- Gat, J.R.; Mook, W.G.; Meijer, H.A. Environmental Isotopes in the Hydrological Cycle, 2nd ed.; International Atomic Energy Agency: Paris, France, 2001; Volume 2, p. 73. [Google Scholar]
- Baker, A.; Hartmann, A.; Duan, W.; Hankin, S.; Comas-Bru, L.; Cuthbert, M.O.; Treble, P.C.; Banner, J.; Genty, D.; Baldini, L.M.; et al. Global analysis reveals climatic controls on the oxygen isotope composition of cave drip water. Nat. Commun. 2019, 10, 2984. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Global Network of Isotopes in Precipitation. The GNIP Database. Available online: http://www.isohis.iaea.org (accessed on 12 December 2015).
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 2009, 78, 28–41. [Google Scholar] [CrossRef]
- Comas-Bru, L.; Hernández, A. Reconciling North Atlantic climate modes: Revised monthly indices for the East Atlantic and the Scandinavian patterns beyond the 20th century. Earth Syst. Sci. Data 2018, 10, 2329–2344. [Google Scholar] [CrossRef]
- O’Neil, J.R.; Taylor, H.P. Oxygen isotope equilibrium between muscovite and water. J. Geophys. Res. 1969, 74, 6012–6022. [Google Scholar] [CrossRef] [Green Version]
- Jex, C.N.; Baker, A.; Fairchild, I.J.; Eastwood, W.J.; Leng, M.J.; Sloane, H.J.; Thomas, L.; Bekaroğlu, E. Calibration of speleothem δ18O with instrumental climate records from Turkey. Glob. Planet. Chang. 2010, 71, 207–217. [Google Scholar] [CrossRef]
- Baldini, L.M.; McDermott, F.; Foley, A.M.; Baldini, J.U.L. Spatial variability in the European winter precipitation δ18O-NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Comas-Bru, L.; McDermott, F.; Werner, M. The effect of the East Atlantic pattern on the precipitation δ18O-NAO relationship in Europe. Clim Dyn. 2016, 47, 2059–2069. [Google Scholar] [CrossRef]
- Daëron, M.; Guo, W.; Eiler, J.; Genty, D.; Blamart, D.; Boch, R.; Drysdale, R.; Maire, R.; Wainer, K.; Zanchetta, G. 13C18O clumping in speleothems: Observations from natural caves and precipitation experiments. Geochim. Cosmochim. Acta 2011, 75, 3303–3317. [Google Scholar] [CrossRef]
- Hendy, C.H. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochim. Cosmochim. Acta 1971, 35, 801–824. [Google Scholar] [CrossRef]
- Mickler, P.J.; Stern, L.A.; Banner, J.L. Large kinetic isotope effects in modern speleothems. GSA Bull. 2006, 118, 65–81. [Google Scholar] [CrossRef]
- Dorale, J.A.; Liu, Z. Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. J. Cave Karst Stud. 2009, 71, 73–80. [Google Scholar]
- Deininger, M.; Ward, B.M.; Novello, V.F.; Cruz, F.W. Late Quaternary Variations in the South American Monsoon System as Inferred by Speleothems—New Perspectives using the SISAL Database. Quaternary 2019, 2, 6. [Google Scholar] [CrossRef]
- Burstyn, Y.; Martrat, B.; Lopez, J.F.; Iriarte, E.; Jacobson, M.J.; Lone, M.A.; Deininger, M. Speleothems from the Middle East: An Example of Water Limited Environments in the SISAL Database. Quaternary 2019, 2, 16. [Google Scholar] [CrossRef]
- Hughes, P.D.; Woodward, J.C.; van Calsteren, P.C.; Thomas, L.E. The glacial history of the Dinaric Alps, Montenegro. Quat. Sci. Rev. 2011, 30, 3393–3412. [Google Scholar] [CrossRef]
- Hughes, P.D.; Woodward, J.C.; van Calsteren, P.C.; Thomas, L.E.; Adamson, K.R. Pleistocene ice caps on the coastal mountains of the Adriatic Sea. Quat. Sci. Rev. 2010, 29, 3690–3708. [Google Scholar] [CrossRef]
- Camuera, J.; Jiménez-Moreno, G.; Ramos-Román, M.J.; García-Alix, A.; Toney, J.L.; Anderson, R.S.; Jiménez-Espejo, F.; Bright, J.; Webster, C.; Yanes, Y.; et al. Vegetation and climate changes during the last two glacial-interglacial cycles in the western Mediterranean: A new long pollen record from Padul (southern Iberian Peninsula). Quat. Sci. Rev. 2019, 205, 86–105. [Google Scholar] [CrossRef]
- Isola, I.; Zanchetta, G.; Drysdale, R.N.; Regattieri, E.; Bini, M.; Bajo, P.; Hellstrom, J.C.; Baneschi, I.; Lionello, P.; Woodhead, J.; et al. The 4.2 ka event in the central Mediterranean: New data from a Corchia speleothem (Apuan Alps, central Italy). Clim. Past 2019, 15, 135–151. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- McDermott, F.; Atkinson, T.C.; Fairchild, I.J.; Baldini, L.M.; Mattey, D.P. A first evaluation of the spatial gradients in δ18O recorded by European Holocene speleothems. Glob. Planet. Chang. 2011, 79, 275–287. [Google Scholar] [CrossRef]
- Poage, M.A.; Chamberlain, C.P. Empirical Relationships Between Elevation and the Stable Isotope Composition of Precipitation and Surface Waters: Considerations for Studies of Paleoelevation Change. Am. J. Sci. 2001, 301, 1–15. [Google Scholar] [CrossRef]
- Krajcar-Bronić, I.; Horvatinčić, N.; Obelić, B. Two decades of environmental isotope records in Croatia: Reconstruction of the past and prediction of future levels. Radiocarbon 1998, 40, 399–416. [Google Scholar] [CrossRef]
- Vreča, P.; Bronić, I.K.; Horvatinčić, N.; Barešić, J. Isotopic characteristics of precipitation in Slovenia and Croatia: Comparison of continental and maritime stations. J. Hydrol. 2006, 330, 457–469. [Google Scholar] [CrossRef]
- Hunjak, T.; Lutz, H.O.; Roller-Lutz, Z. Stable isotope composition of the meteoric precipitation in Croatia. Isot. Environ. Health Stud. 2013, 49, 336–345. [Google Scholar] [CrossRef]
- Mezga, K.; Urbanc, J.; Cerar, S. The isotope altitude effect reflected in groundwater: A case study from Slovenia. Isot. Environ. Health Stud. 2014, 50, 33–51. [Google Scholar] [CrossRef]
- Dotsika, E.; Lykoudis, S.; Poutoukis, D. Spatial distribution of the isotopic composition of precipitation and spring water in Greece. Glob. Planet. Chang. 2010, 71, 141–149. [Google Scholar] [CrossRef]
- Primavera, M.; D’Oronzo, C.; Muntoni, I.M.; Radina, F.; Fiorentino, G. Environment, crops and harvesting strategies during the II millennium BC: Resilience and adaptation in socio-economic systems of Bronze Age communities in Apulia (SE Italy). Quat. Int. 2017, 436, 83–95. [Google Scholar] [CrossRef]
- Drake, B.L. The influence of climatic change on the Late Bronze Age Collapse and the Greek Dark Ages. J. Archaeol. Sci. 2012, 39, 1862–1870. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Kern, Z.; Leél-Őssy, S.; Demény, A. Speleothem stable isotope records for east-central Europe: Resampling sedimentary proxy records to obtain evenly spaced time series with spectral guidance. Earth Syst. Sci. Data 2018, 10, 139–149. [Google Scholar] [CrossRef]
- Deininger, M.; McDermott, F.; Mudelsee, M.; Werner, M.; Frank, N.; Mangini, A. Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation. Clim. Dyn. 2017, 49, 595–618. [Google Scholar] [CrossRef]
Site_name | Site_id | Country | Latitude (° N) | Longitude (° E) | Elevation m amsl | Entity_name | Entity_id | Min. Year (BP) | Max. Year (BP) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Dim Cave (1) | 79 | Turkey | 36.53 | 32.11 | 232 | Dim-E2 | 168 | 9738 | 13,094 | [44] |
Dim-E3 | 169 | 12,575 | 89,714 | |||||||
Dim-E4 | 170 | 12,020 | 14,555 | |||||||
Mavri Trypa Cave (2) | 156 | Greece | 36.74 | 21.76 | 70 | S1 | 347 | 1296 | 4687 | [42] |
Kapsia Cave (3) | 44 | 37.62 | 22.35 | 700 | GK-09-02 | 120 | 1115 | 2904 | [13] | |
Akcakale Cave (4) | Turkey | 40.45 | 39.54 | 2p | [67] | |||||
Karaca Cave (5) | 40.54 | 39.40 | 1536 | K1 | [68] | |||||
Skala Marion Cave (6) | 56 | Greece | 40.64 | 24.51 | 41 | MAR_L | 136 | 1481 | 5534 | [43] |
— (7) | Macedonia | 41.22 | 20.91 | 1130 | OH2 | [51] | ||||
Sofular Cave (8) | 141 | Turkey | 41.42 | 31.93 | 700 | So-1 | 305 | −56 | 50,275 | [38] |
SO-2 | [38] | |||||||||
SO-17 | [69] | |||||||||
Mala Splilja Cave (9) | Croatia | 42.76 | 17.48 | 60 | MSM-1 | [52] | ||||
Velika Spilja Cave (10) | 42.77 | 17.47 | 90 | VSM-1 | [52] | |||||
Mračna Cave (11) | Bosnia and Herzegovina | 43.77 | 18.89 | 597 | BS14, BS15 | [53] | ||||
Modrič Cave (12) | 86 | Croatia | 44.26 | 15.54 | 32 | MOD-22 | 179 | −58 | 1637 | [41] |
Ceremosnja Cave (13) | 76 | Serbia | 44.40 | 21.65 | 530 | CC-1 | 165 | −48 | 2426 | [45] |
Poleva Cave (14) | Romania | 44.42 | 21.44 | 390 | PP-10 | [65] | ||||
Ascunsă Cave (15) | 72 | 45.00 | 22.60 | 1050 | POM2 | 161 | −32 | 8169 | [46] | |
POM1 | [55] | |||||||||
Cloşani Cave (16) | 45.07 | 22.79 | 433 | C09-2 | [10] | |||||
C-6 | [70] | |||||||||
Postojna Cave (17) | 88 | Slovenia | 45.77 | 14.20 | 529 | POS-STM-4 | 181 | −46 | 8 | [18] |
Trio Cave (18) | 90 | Hungary | 46.11 | 18.15 | 275 | Trio | 183 | 3028 | 4711 | [11] |
Abaliget Cave (19) | 31 | 46.13 | 18.12 | 209 | ABA_1 | 105 | 123,303 | 143,456 | [49] | |
ABA_2 | 106 | 140,274 | 160,598 | |||||||
V11 Cave (20) | Romania | 46.50 | 22.70 | 1254 | S139 | [71] | ||||
S22, S117 | [64] | |||||||||
Urşilor Cave (21) | 91 | 46.55 | 22.57 | 482 | PU-2 | 184 | −50 | 7068 | [47] | |
Lithophagus Cave (22) | 46.83 | 22.60 | LFG-2 | [19] | ||||||
Tăuşoare Cave (23) | 47.43 | 24.51 | 950 | T-1152 | [55] | |||||
Leany Cave (24) | 84 | Hungary | 47.70 | 18.84 | 420 | Leany | 177 | 4739 | 10,543 | [72] |
Kiskőhát Shaft (25) | 48.07 | 20.49 | 915 | Kiskőhát | [73] | |||||
Baradla Cave (26) | 71 | 48.47 | 20.50 | 375 | BAR-II#B | 160 | 108,758 | 128,125 | [74] | |
BAR-II#L | 159 | 109,194 | 129,003 | [74] | ||||||
NU2 | [74] | |||||||||
Demänovská Cave of Liberty/Demianova Cave System (27) | Slovakia | 48.98 | 19.57 | HcH2A | [54] | |||||
HcH2B | ||||||||||
JS7 | [66] | |||||||||
JMr 14 | ||||||||||
Jaskyňa Slowianska Drwali Cave (28) | Poland | 49.50 | 21.70 | 420 | Sample 2 | [56] | ||||
Wierna Cave (29) | 50.65 | 19.40 | 385 | JWi2 | [17] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kern, Z.; Demény, A.; Perşoiu, A.; Hatvani, I.G. Speleothem Records from the Eastern Part of Europe and Turkey—Discussion on Stable Oxygen and Carbon Isotopes. Quaternary 2019, 2, 31. https://doi.org/10.3390/quat2030031
Kern Z, Demény A, Perşoiu A, Hatvani IG. Speleothem Records from the Eastern Part of Europe and Turkey—Discussion on Stable Oxygen and Carbon Isotopes. Quaternary. 2019; 2(3):31. https://doi.org/10.3390/quat2030031
Chicago/Turabian StyleKern, Zoltán, Attila Demény, Aurel Perşoiu, and István Gábor Hatvani. 2019. "Speleothem Records from the Eastern Part of Europe and Turkey—Discussion on Stable Oxygen and Carbon Isotopes" Quaternary 2, no. 3: 31. https://doi.org/10.3390/quat2030031
APA StyleKern, Z., Demény, A., Perşoiu, A., & Hatvani, I. G. (2019). Speleothem Records from the Eastern Part of Europe and Turkey—Discussion on Stable Oxygen and Carbon Isotopes. Quaternary, 2(3), 31. https://doi.org/10.3390/quat2030031