Late Quaternary Variations in the South American Monsoon System as Inferred by Speleothems—New Perspectives Using the SISAL Database
Abstract
:1. Introduction
2. Assessing SISAL_v1 for South America
3. Results and Discussion
3.1. Pleistocene South American Monsoon System Variability as Recorded by Speleothem δ18O Time Series
3.1.1. Insolation Forced Changes of the SAMS
3.1.2. Millennial-Scale Climate Events
3.2. Holocene Variations of the South American Monsoon System as Recorded by Speleothem δ18O Time Series
3.2.1. Insolation Driven Holocene δ18O Records
3.2.2. Dipole of Holocene δ18O Values
3.2.3. Holocene Variations of the South Atlantic Convergence Zone
3.3. Variations of the South American Monsoon System during the Last 2 kyrs as Recorded by Speleothem δ18O Time Series
4. Conclusions and Outlook
4.1. Summary on South American Monsoon System Variability
4.2. Outlook and Potentials for Future Speleothem-Based Empirical Research
4.3. Next Steps and Potentials for SISAL-Based Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and dynamics of the intertropical convergence zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Vera, C.; Higgins, W.; Amador, J.; Ambrizzi, T.; Garreaud, R.; Gochis, D.; Gutzler, D.; Lettenmaier, D.; Marengo, J.; Mechoso, C.R.; et al. Toward a Unified View of the American Monsoon Systems. J. Clim. 2006, 19, 4977–5000. [Google Scholar] [CrossRef]
- Atsawawaranunt, K.; Comas-Bru, L.; Amirnezhad Mozhdehi, S.; Deininger, M.; Harrison, S.P.; Baker, A.; Boyd, M.; Kaushal, N.; Ahmad, S.M.; Ait Brahim, Y.; et al. The SISAL database: A global resource to document oxygen and carbon isotope records from speleothems. Earth Syst. Sci. Data 2018, 10, 1687–1713. [Google Scholar] [CrossRef]
- Atsawawaranunt, K.; Harrison, S.; Comas Bru, L. SISAL (Speleothem Isotopes Synthesis and AnaLysis Working Group) Database Version 1.0. 2018. Available online: http://researchdata.reading.ac.uk/139/ (accessed on 4 October 2018).
- Comas-Bru, L.; Harrison, S. SISAL: Bringing Added Value to Speleothem Research. Quaternary 2019. accepted for publication. [Google Scholar] [CrossRef]
- Chen, Z.; Auler, A.S.; Bakalowicz, M.; Drew, D.; Griger, F.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Richts, A.; Stevanovic, Z.; et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 2017, 25, 771–785. [Google Scholar] [CrossRef]
- Vuille, M.; Burns, S.J.; Taylor, B.L.; Cruz, F.W.; Bird, B.W.; Abbott, M.B.; Kanner, L.C.; Cheng, H.; Novello, V.F. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Clim. Past 2012, 8, 1309–1321. [Google Scholar] [CrossRef]
- Cruz, F.W.; Vuille, M.; Burns, S.J.; Wang, X.; Cheng, H.; Werner, M.; Lawrence Edwards, R.; Karmann, I.; Auler, A.S.; Nguyen, H. Orbitally driven east–west antiphasing of South American precipitation. Nat. Geosci. 2009, 2, 210–214. [Google Scholar] [CrossRef]
- Bernal, J.P.; Cruz, F.W.; Stríkis, N.M.; Wang, X.; Deininger, M.; Catunda, M.C.A.; Ortega-Obregón, C.; Cheng, H.; Edwards, R.L.; Auler, A.S. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil. Earth Planet. Sci. Lett. 2016, 450, 186–196. [Google Scholar] [CrossRef]
- Cruz, F.W.; Burns, S.J.; Karmann, I.; Sharp, W.D.; Vuille, M.; Cardoso, A.O.; Ferrari, J.A.; Dias, P.L.S.; Viana, O. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 2005, 434, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Auler, A.S.; Edwards, R.L.; Cheng, H.; Ito, E.; Solheid, M. Interhemispheric anti-phasing of rainfall during the last glacial period. Quat. Sci. Rev. 2006, 25, 3391–3403. [Google Scholar] [CrossRef]
- Wang, X.; Auler, A.S.; Edwards, R.L.; Cheng, H.; Ito, E.; Wang, Y.; Kong, X.; Solheid, M. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Reuter, J.; Stott, L.; Khider, D.; Sinha, A.; Cheng, H.; Edwards, R.L. A new perspective on the hydroclimate variability in northern South America during the Little Ice Age. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Apaéstegui, J.; Cruz, F.W.; Vuille, M.; Fohlmeister, J.; Espinoza, J.C.; Sifeddine, A.; Strikis, N.; Guyot, J.L.; Ventura, R.; Cheng, H.; et al. Precipitation changes over the eastern Bolivian Andes inferred from speleothem (δ18O) records for the last 1400 years. Earth Planet. Sci. Lett. 2018, 494, 124–134. [Google Scholar] [CrossRef]
- Lachniet, M.S.; Burns, S.J.; Piperno, D.R.; Asmerom, Y.; Polyak, V.J.; Moy, C.M.; Christenson, K. A 1500-year El Niño/Southern Oscillation and rainfall history for the Isthmus of Panama from speleothem calcite. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Cheng, H.; Sinha, A.; Cruz, F.W.; Wang, X.; Edwards, R.L.; d’Horta, F.M.; Ribas, C.C.; Vuille, M.; Stott, L.D.; Auler, A.S. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 2013, 4, 1411. [Google Scholar] [CrossRef] [PubMed]
- Van Breukelen, M.R.; Vonhof, H.B.; Hellstrom, J.C.; Wester, W.C.G.; Kroon, D. Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet. Sci. Lett. 2008, 275, 54–60. [Google Scholar] [CrossRef]
- Novello, V.F.; Vuille, M.; Cruz, F.W.; Stríkis, N.M.; de Paula, M.S.; Edwards, R.L.; Cheng, H.; Karmann, I.; Jaqueto, P.F.; Trindade, R.I.F.; et al. Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites. Sci. Rep. 2016, 6, 24762. [Google Scholar] [CrossRef] [PubMed]
- Novello, V.F.; Cruz, F.W.; Karmann, I.; Burns, S.J.; Stríkis, N.M.; Vuille, M.; Cheng, H.; Lawrence Edwards, R.; Santos, R.V.; Frigo, E.; et al. Multidecadal climate variability in Brazil’s Nordeste during the last 3000 years based on speleothem isotope records. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Kanner, L.C.; Burns, S.J.; Cheng, H.; Edwards, R.L.; Vuille, M. High-resolution variability of the South American summer monsoon over the last seven millennia: Insights from a speleothem record from the central Peruvian Andes. Quat. Sci. Rev. 2013, 75, 1–10. [Google Scholar] [CrossRef]
- Novello, V.F.; Cruz, F.W.; Vuille, M.; Stríkis, N.M.; Edwards, R.L.; Cheng, H.; Emerick, S.; de Paula, M.S.; Li, X.; Barreto, E.d.S.; et al. A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Sci. Rep. 2017, 7, 44267. [Google Scholar] [CrossRef] [PubMed]
- Novello, V.F.; Cruz, F.W.; Moquet, J.S.; Vuille, M.; Paula, M.S.; Nunes, D.; Edwards, R.L.; Cheng, H.; Karmann, I.; Utida, G.; et al. Two Millennia of South Atlantic Convergence Zone Variability Reconstructed From Isotopic Proxies. Geophys. Res. Lett. 2018, 45, 5045–5051. [Google Scholar] [CrossRef]
- Stríkis, N.M.; Cruz, F.W.; Cheng, H.; Karmann, I.; Edwards, R.L.; Vuille, M.; Wang, X.; de Paula, M.S.; Novello, V.F.; Auler, A.S. Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil. Geology 2011, 39, 1075–1078. [Google Scholar] [CrossRef]
- Stríkis, N.M.; Cruz, F.W.; Barreto, E.A.S.; Naughton, F.; Vuille, M.; Cheng, H.; Voelker, A.H.L.; Zhang, H.; Karmann, I.; Edwards, R.L.; et al. South American monsoon response to iceberg discharge in the North Atlantic. Proc. Natl. Acad. Sci. USA 2018, 115, 3788–3793. [Google Scholar] [CrossRef] [PubMed]
- Stríkis, N.M.; Chiessi, C.M.; Cruz, F.W.; Vuille, M.; Cheng, H.; Souza Barreto, E.A.; Mollenhauer, G.; Kasten, S.; Karmann, I.; Edwards, R.L. Timing and structure of Mega-SACZ events during Heinrich Stadial 1. Geophys. Res. Lett. 2015, 42, 5477–5484. [Google Scholar] [CrossRef]
- Schimpf, D.; Kilian, R.; Kronz, A.; Simon, K.; Spotl, C.; Worner, G.; Deininger, M.; Mangini, A. The significance of chemical, isotopic, and detrital components in three coeval stalagmites from the superhumid southernmost Andes (53 degrees S) as high-resolution palaeo-climate proxies. Quat. Sci. Rev. 2011, 30, 443–459. [Google Scholar] [CrossRef]
- Kanner, L.C.; Burns, S.J.; Cheng, H.; Edwards, R.L. High-Latitude Forcing of the South American Summer Monsoon During the Last Glacial. Science 2012, 335, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Apaéstegui, J.; Cruz, F.W.; Sifeddine, A.; Vuille, M.; Espinoza, J.C.; Guyot, J.L.; Khodri, M.; Strikis, N.; Santos, R.V.; Cheng, H.; et al. Hydroclimate variability of the northwestern Amazon Basin near the Andean foothills of Peru related to the South American Monsoon System during the last 1600 years. Clim. Past 2014, 10, 1967–1981. [Google Scholar] [CrossRef]
- Wang, X.; Edwards, R.L.; Auler, A.S.; Cheng, H.; Kong, X.; Wang, Y.; Cruz, F.W.; Dorale, J.A.; Chiang, H.-W. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 2017, 541, 204. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.W.; Burns, S.J.; Karmann, I.; Sharp, W.D.; Vuille, M. Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth Planet. Sci. Lett. 2006, 248, 495–507. [Google Scholar] [CrossRef]
- Bustamante, M.G.; Cruz, F.W.; Vuille, M.; Apaéstegui, J.; Strikis, N.; Panizo, G.; Novello, F.V.; Deininger, M.; Sifeddine, A.; Cheng, H.; et al. Holocene changes in monsoon precipitation in the Andes of NE Peru based on δ18O speleothem records. Quat. Sci. Rev. 2016, 146, 274–287. [Google Scholar] [CrossRef]
- Wortham, B.E.; Wong, C.I.; Silva, L.C.R.; McGee, D.; Montañez, I.P.; Troy Rasbury, E.; Cooper, K.M.; Sharp, W.D.; Glessner, J.J.G.; Santos, R.V. Assessing response of local moisture conditions in central Brazil to variability in regional monsoon intensity using speleothem 87Sr/86Sr values. Earth Planet. Sci. Lett. 2017, 463, 310–322. [Google Scholar] [CrossRef]
- Berbery, E.H.; Barros, V.R. The Hydrologic Cycle of the La Plata Basin in South America. J. Hydrometeorol. 2002, 3, 630–645. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Anja, M.-C.; Rudolf, B.; Ziese, M. GPCC Full Data Reanalysis Version 6.0 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data; Global Precipitation Climatology Centre: Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Cruz, F.W.; Karmann, I.; Viana, O.; Burns, S.J.; Ferrari, J.A.; Vuille, M.; Sial, A.N.; Moreira, M.Z. Stable isotope study of cave percolation waters in subtropical Brazil: Implications for paleoclimate inferences from speleothems. Chem. Geol. 2005, 220, 245–262. [Google Scholar] [CrossRef]
- Karmann, I.; Cruz, F.W.; Viana, O.; Burns, S.J. Climate influence on geochemistry parameters of waters from Santana–Pérolas cave system, Brazil. Chem. Geol. 2007, 244, 232–247. [Google Scholar] [CrossRef]
- Cruz, F.W.; Burns, S.J.; Jercinovic, M.; Karmann, I.; Sharp, W.D.; Vuille, M. Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochim. Cosmochim. Acta 2007, 71, 2250–2263. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 1991, 10, 297–317. [Google Scholar] [CrossRef]
- Böhm, E.; Lippold, J.; Gutjahr, M.; Frank, M.; Blaser, P.; Antz, B.; Fohlmeister, J.; Frank, N.; Andersen, M.B.; Deininger, M. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 2015, 517, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J. Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process. Geophys. 2011, 18, 389–404. [Google Scholar] [CrossRef]
- Donohoe, A.; Marshall, J.; Ferreira, D.; Mcgee, D. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Clim. 2013, 26, 3597–3618. [Google Scholar] [CrossRef]
- Marshall, J.; Donohoe, A.; Ferreira, D.; McGee, D. The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Clim. Dyn. 2013, 42, 1967–1979. [Google Scholar] [CrossRef]
- Wang, X.; Auler, A.S.; Edwards, R.L.; Cheng, H.; Cristalli, P.S.; Smart, P.L.; Richards, D.A.; Shen, C.-C. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 2004, 432, 740. [Google Scholar] [CrossRef] [PubMed]
- North Greenland Ice Core Project Members; Andersen, K.K.; Azuma, N.; Barnola, J.M.; Bigler, M.; Biscaye, P.; Caillon, N.; Chappellaz, J.; Clausen, H.B.; Dahl-Jensen, D.; et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 2004, 431, 147–151. [Google Scholar]
- Chiang, J.C.H.; Friedman, A.R. Extratropical Cooling, Interhemispheric Thermal Gradients, and Tropical Climate Change. Annu. Rev. Earth Planet. Sci. 2012, 40, 383–412. [Google Scholar] [CrossRef]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.M.; Chappellaz, J.; et al. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science 2007, 317, 793. [Google Scholar] [CrossRef] [PubMed]
- Dansgaard, W.; Johnsen, S.J.; Clausen, H.B.; Dahl-Jensen, D.; Gundestrup, N.S.; Hammer, C.U.; Hvidberg, C.S.; Steffensen, J.P.; Sveinbjörnsdottir, A.E.; Jouzel, J.; et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 1993, 364, 218. [Google Scholar] [CrossRef]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429. [Google Scholar] [CrossRef]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Hoffmann, S.; Lotti-Bond, R.; Hajdas, I.; Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Gingele, F.X. Holocene climatic optimum in Southwest Africa—Evidence from the marine clay mineral record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 122, 77–87. [Google Scholar] [CrossRef]
- Liu, F.; Feng, Z. A dramatic climatic transition at ~4000 cal. yr BP and its cultural responses in Chinese cultural domains. Holocene 2012, 22, 1181–1197. [Google Scholar] [CrossRef]
- Cheng, H.; Fleitmann, D.; Edwards, R.L.; Wang, X.; Cruz, F.W.; Auler, A.S.; Mangini, A.; Wang, Y.; Kong, X.; Burns, S.J.; et al. Timing and structure of the 8.2 kyr B.P. event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology 2009, 37, 1007–1010. [Google Scholar] [CrossRef]
- Bird, B.W.; Abbott, M.B.; Vuille, M.; Rodbell, D.T.; Stansell, N.D.; Rosenmeier, M.F. A 2300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc. Natl. Acad. Sci. USA 2011, 108, 8583. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.W.; Burns, S.J.; Karmann, I.; Sharp, W.D.; Vuille, M.; Ferrari, J.A. A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene. Quat. Sci. Rev. 2006, 25, 2749–2761. [Google Scholar] [CrossRef]
- Jaqueto, P.; Trindade, R.I.F.; Hartmann, G.A.; Novello, V.F.; Cruz, F.W.; Karmann, I.; Strauss, B.E.; Feinberg, J.M. Linking speleothem and soil magnetism in the Pau d’Alho cave (central South America). J. Geophys. Res. Solid Earth 2016, 121, 7024–7039. [Google Scholar] [CrossRef]
- Deininger, M.; McDermott, F.; Mudelsee, M.; Werner, M.; Frank, N.; Mangini, A. Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation. Clim. Dyn. 2017, 49, 595–618. [Google Scholar] [CrossRef]
Site_name | Side_id | Country | Entity_name | Entity_id | Latitude ° N | Longitude ° E | Min Year BP | Max Year BP | Reference |
---|---|---|---|---|---|---|---|---|---|
Abissal Cave | 18 | Brazil | Abissal | 79 | −5.6 | −37.73 | 24,164 | 25,694 | [8] |
Abissal Cave | 18 | Brazil | Ale-1 | 80 | −5.6 | −37.73 | 15,057 | 17,199 | [8] |
Botuverá Cave | 144 | Brazil | BTV21a | 311 | −27.22 | −49.16 | 196 | 9211 | [9] |
Botuverá Cave | 144 | Brazil | BT2 | 312 | −27.22 | −49.16 | −55 | 116,100 | [10] |
Botuverá Cave | 144 | Brazil | BTV4A | −27.22 | −49.16 | [11] | |||
Botuverá Cave | 144 | Brazil | BTV4C | −27.22 | −49.16 | [11] | |||
Botuverá Cave | 144 | Brazil | BT3A | −27.22 | −49.16 | [12] | |||
Cascayunga Cave | Peru | CAS-A | −6.09 | −77.22 | [13] | ||||
Cascayunga Cave | Peru | CAS-D | −6.09 | −77.22 | [13] | ||||
Chiflonkhakha Cave | Bolivia | Boto1 | −18.12 | −65.77 | 234 | 375 | [14] | ||
Chiflonkhakha Cave | Bolivia | Boto3 | −18.12 | −65.77 | 180 | 1106 | [14] | ||
Chiflonkhakha Cave | Bolivia | Boto7 | −18.12 | −65.77 | 91 | 315 | [14] | ||
Chilibrillo Cave | 78 | Panama | CHIL-1 | 167 | 9.17 | −79.62 | 690 | 2180 | [15] |
Cristal Cave | Brazil | CR1 | −24.58 | −48.58 | [7] | ||||
Cueva Del Diamante | Peru | NAR-C | −5.73 | −77.5 | [16] | ||||
Cueva Del Diamante | Peru | NAR-D | −5.73 | −77.5 | [16] | ||||
Cueva Del Diamante | Peru | NAR-F | −5.73 | −77.5 | [16] | ||||
Cueva del Tigre Perdido | Peru | NC-A | −5.94 | −77.31 | [17] | ||||
Cueva del Tigre Perdido | Peru | NC-B | −5.94 | −77.31 | [17] | ||||
Curupira Cave | 35 | Brazil | CUR4 | 110 | −15.02 | −56.78 | −21 | 155 | [18] |
Diva Cave | 38 | Brazil | DV2 | 113 | −12.37 | −41.57 | 39 | 2765 | [19] |
El Condor Cave | Peru | ELC-A | −5.93 | −77.3 | [16] | ||||
El Condor Cave | Peru | ELC-B | −5.93 | −77.3 | [16] | ||||
Huagapo Cave | Peru | P00-H1 | −11.27 | −75.79 | [20] | ||||
Huagapo Cave | Peru | P09-H2 | −11.27 | −75.79 | [20] | ||||
Jaraguá Cave | 10 | Brazil | JAR7 | 55 | −21.08 | −56.58 | 5489 | 18596 | [21] |
Jaraguá Cave | 10 | Brazil | JAR14 | 56 | −21.08 | −56.58 | 15,331 | 22,305 | [21] |
Jaraguá Cave | 10 | Brazil | JAR13 | 57 | −21.08 | −56.58 | 21,852 | 27,906 | [21] |
Jaraguá Cave | Brazil | JAR4 | −21.08 | −56.58 | -50 | 760 | [22] | ||
Jaraguá Cave | Brazil | JAR1 | −21.08 | −56.58 | 499 | 1508 | [22] | ||
Lapa Doce Cave | 103 | Brazil | LD12 | 203 | −12.37 | −41.57 | −61 | 39 | [22] |
Lapa Grande | Brazil | LG3 | −14.36 | −44.28 | [23] | ||||
Lapa Grande | Brazil | LG11 | −14.36 | −44.28 | [23] | ||||
Lapa Grande | Brazil | LG12B | −14.36 | −44.28 | [24] | ||||
Lapa Grande | Brazil | LG19 | −14.36 | −44.28 | [24] | ||||
Lapa Grande | Brazil | LG25 | −14.36 | −44.28 | [24] | ||||
Lapa Sem Fim | Brazil | LSF3 | −16.26 | −44.6 | [24] | ||||
Lapa Sem Fim | Brazil | LSF9 | −16.26 | −44.6 | [24] | ||||
Lapa Sem Fim | Brazil | LSF11 | −16.26 | −44.6 | [24] | ||||
Lapa Sem Fim | Brazil | LSF13 | −16.26 | −44.6 | [24] | ||||
Lapa Sem Fim | Brazil | LSF15 | −16.26 | −44.6 | [24] | ||||
Lapa Sem Fim | Brazil | LSF16 | −16.26 | −44.6 | [24] | ||||
Lapa Sem Fim | 24 | Brazil | LSF16 | 91 | −16.15 | −44.63 | 14,373 | 18,168 | [25] |
Lapa Sem Fim | 24 | Brazil | LSF3 | 92 | −16.15 | −44.63 | 17,296 | 19,304 | [25] |
Marcelo Arévalo Cave | Chile | MA-1 | −52.68 | −73.38 | [26] | ||||
Marcelo Arévalo Cave | Chile | MA-2 | −52.68 | −73.38 | [26] | ||||
Marcelo Arévalo Cave | Chile | MA-3 | −52.68 | −73.38 | [26] | ||||
Marota Gigante Cave | Brazil | MAG | −12.58 | −41.03 | [24] | ||||
Pacupahuain Cave | Peru | P09 | −11.24 | −75.82 | [27] | ||||
Pacupahuain Cave | Peru | PH2 | −11.24 | −75.82 | [27] | ||||
Paixão Cave | Brazil | PX7 | −12.61 | −41.02 | [24] | ||||
Paixato Cave | 113 | Brazil | PX7 | 228 | −12.62 | −41.02 | 14,983 | 19,144 | [25] |
Palestina Cave | 25 | Brazil | PAL3 | 93 | −5.92 | −77.35 | 22 | 851 | [28] |
Palestina Cave | 25 | Brazil | PAL4 | 94 | −5.92 | −77.35 | 100 | 1537 | [28] |
Paraiso Cave | 3 | Brazil | PAR01 | 20 | −4.07 | −55.45 | 714 | 4812 | [29] |
Paraiso Cave | 3 | Brazil | PAR03 | 21 | −4.07 | −55.45 | −48 | 768 | [29] |
Paraiso Cave | 3 | Brazil | PAR06 | 22 | −4.07 | −55.45 | 40,683 | 44,636 | [29] |
Paraiso Cave | 3 | Brazil | PAR07 | 23 | −4.07 | −55.45 | 17,957 | 45,144 | [29] |
Paraiso Cave | 3 | Brazil | PAR08 | 24 | −4.07 | −55.45 | 26,490 | 28,444 | [29] |
Paraiso Cave | 3 | Brazil | PAR16 | 25 | −4.07 | −55.45 | 4440 | 10,927 | [29] |
Paraiso Cave | 3 | Brazil | PAR24 | 26 | −4.07 | −55.45 | 9476 | 28,286 | [29] |
Pau d’Alho Cave | 52 | Brazil | ALHO6 | 128 | −15.21 | −56.8 | 90 | 1458 | [18] |
Rainha Cave | 111 | Brazil | RN1 | 219 | −5.6 | −37.73 | 4045 | 23,890 | [8] |
Rainha Cave | 111 | Brazil | RN4 | 220 | −5.6 | −37.73 | 4393 | 17,222 | [8] |
Santana Cave | Brazil | St-8 | −24.53 | −48.73 | [30] | ||||
São Bernardo Cave | Brazil | SBE3 | −13.81 | −46.35 | −60 | 827 | [22] | ||
São Matheus Cave | Brazil | SMT5 | −13.81 | −46.35 | 749 | 1686 | [22] | ||
Shatuca Cave | Brazil | Sha-2 | −5.7 | −77.9 | [31] | ||||
Shatuca Cave | Brazil | Sha-3 | −5.7 | −77.9 | [31] | ||||
Tamboril Cave | 27 | Brazil | TM0 | 97 | −16 | −47 | −32 | 1678 | [32] |
Tamboril Cave | 27 | Brazil | TM2 | 98 | −16 | −47 | 1485 | 3847 | [32] |
Torrinha Cave | 62 | Brazil | TR5 | 146 | −12.37 | −41.57 | −57 | 76 | [19] |
Umajalanta | Bolivia | Boto10 | −18.12 | −65.77 | 604 | 1328 | [14] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deininger, M.; Ward, B.M.; Novello, V.F.; Cruz, F.W. Late Quaternary Variations in the South American Monsoon System as Inferred by Speleothems—New Perspectives Using the SISAL Database. Quaternary 2019, 2, 6. https://doi.org/10.3390/quat2010006
Deininger M, Ward BM, Novello VF, Cruz FW. Late Quaternary Variations in the South American Monsoon System as Inferred by Speleothems—New Perspectives Using the SISAL Database. Quaternary. 2019; 2(1):6. https://doi.org/10.3390/quat2010006
Chicago/Turabian StyleDeininger, Michael, Brittany Marie Ward, Valdir F. Novello, and Francisco W. Cruz. 2019. "Late Quaternary Variations in the South American Monsoon System as Inferred by Speleothems—New Perspectives Using the SISAL Database" Quaternary 2, no. 1: 6. https://doi.org/10.3390/quat2010006
APA StyleDeininger, M., Ward, B. M., Novello, V. F., & Cruz, F. W. (2019). Late Quaternary Variations in the South American Monsoon System as Inferred by Speleothems—New Perspectives Using the SISAL Database. Quaternary, 2(1), 6. https://doi.org/10.3390/quat2010006