A Window into Africa’s Past Hydroclimates: The SISAL_v1 Database Contribution
Abstract
:1. Introduction
2. Key Climate Drivers Across Africa
3. Distribution of Speleothem Isotopic Records in Space and Time
3.1. Northern Africa: Egypt, Libya, Tunisia, Algeria, Morocco
3.2. Eastern Africa, Arabia and Madagascar
3.2.1. Southern Arabian Peninsula
3.2.2. Mainland Eastern Africa
3.2.3. Madagascar
3.3. Southern Africa
3.3.1. The Summer Rainfall Region
3.3.2. Year-Round Rainfall Region
4. New Insights from the SISAL_v1 Database
4.1. Regional Speleothem Age Distributions
4.2. Pan African Ranges of δ18O and δ13C
5. Discussion of Future Research Directions
- Interhemispheric teleconnection vs. see-saw: Paleoclimate proxy records from southern and eastern Africa show a complex pattern with some southern hemisphere sites suggesting wet phases during northern hemisphere warm intervals, while others suggest that northern hemisphere cold phases were wet in southern/southeastern Africa [15,164,165,166].
- Africa is home to the origins of humanity, in both early hominin evolution and the beginnings of cultural modernity: Speleothems from palaeoanthropological and archaeological sites, preserving remains and artefacts of early hominins, as well as modern humans, have been used for dating and the reconstruction of climates [10,30,59,167,168]. Further studies can improve our understanding of the interactions between early hominins and modern humans and their environments, their ability to adapt to climatic variations and the conditions leading to migrations such as the dispersal out of Africa.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atsawawaranunt, K.; Harrison, S.; Comas Bru, L. SISAL (Speleothem Isotopes Synthesis and Analysis Working Group) Database Version 1.0. 2018. Available online: http://researchdata.reading.ac.uk/139/ (accessed on 10 May 2018).
- Atsawawaranunt, K.; Comas-Bru, L.; Amirnezhad Mozhdehi, S.; Deininger, M.; Harrison, S.P.; Baker, A.; Boyd, M.; Kaushal, N.; Ahmad, S.M.; Ait Brahim, Y.; et al. The SISAL database: A global resource to document oxygen and carbon isotope records from speleothems. Earth Syst. Sci. Data 2018, 10, 1687–1713. [Google Scholar] [CrossRef]
- Chen, Z.; Auler, A.S.; Bakalowicz, M.; Drew, D.; Griger, F.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Richts, A.; Stevanovic, Z.; et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 2017, 25, 771–785. [Google Scholar] [CrossRef]
- UNEP. Africa: Atlas of Our Changing Environment; Division of Early Warning and Assessment (DEWA); United Nations Environment Programme (UNEP): New York, NY, USA, 2008; ISBN 978-92-807-2871-2. [Google Scholar]
- Talma, A.S.; Vogel, J.C. Late Quaternary Paleotemperatures derived from a Speleothem from Cango Caves, Cape Province, South Africa. Quat. Res. 1992, 37, 203–213. [Google Scholar] [CrossRef]
- Talma, A.S.; Vogel, J.C.; Partridge, T.C. Isotopic contents of some Transvaal speleothems and their palaeoclimatic significance. S. Afr. J. Sci. 1974, 70, 135–140. [Google Scholar]
- Woodhead, J.; Hellstrom, J.; Maas, R.; Drysdale, R.; Zanchetta, G.; Devine, P.; Taylor, E. U-Pb geochronology of speleothems by MC-ICPMS. Quat. Geochronol. 2006, 1, 208–221. [Google Scholar] [CrossRef]
- Walker, J.; Cliff, R.A.; Latham, A.G. U-Pb isotopic age of the StW 573 hominid from Sterkfontein, South Africa. Science 2006, 314, 1592–1594. [Google Scholar] [CrossRef] [PubMed]
- Pickering, R.; Herries, A.I.R.; Woodhead, J.D.; Hellstrom, J.C.; Green, H.E.; Paul, P.; Ritzman, T.; Strait, D.S.; Schoville, B.J.; Hancox, P.J. U-Pb dated flowstones restrict South African early hominin record to dry climate phases. Nature 2019, 565, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Hopley, P.J.; Weedon, G.P.; Marshall, J.D.; Herries, A.I.R.; Latham, A.G.; Kuykendall, K.L. High- and low-latitude orbital forcing of early hominin habitats in South Africa. Earth Planet. Sci. Lett. 2007, 256, 419–432. [Google Scholar] [CrossRef]
- Hopley, P.J.; Marshall, J.D.; Weedon, G.P.; Latham, A.G.; Herries, A.I.R.; Kuykendall, K.L. Orbital forcing and the spread of C4 grasses in the late Neogene: Stable isotope evidence from South African speleothems. J. Hum. Evol. 2007, 53, 620–634. [Google Scholar] [CrossRef] [PubMed]
- Asrat, A.; Baker, A.; Mohammed, M.U.; Leng, M.J.; Calsteren, P.V.; Smith, C. A high-resolution multi-proxy stalagmite record from Mechara, Southeastern Ethiopia: Palaeohydrological implications for speleothem palaeoclimate reconstruction. J. Quat. Sci. 2007, 22, 53–63. [Google Scholar] [CrossRef]
- Brook, G.A.; Cowart, J.B.; Brandt, S.A.; Scott, L. Quaternary climatic change in southern and eastern Africa during the last 300 ka: The evidence from caves in Somalia and the Transvaal region of South Africa. Z. Geomorphol. 1997, 108, 15–48. [Google Scholar]
- Burns, S.J.; Godfrey, L.R.; Faina, P.; McGee, D.; Hardt, B.; Ranivoharimanana, L.; Randrianasy, J. Rapid human-induced landscape transformation in Madagascar at the end of the first millennium of the Common Era. Quat. Sci. Rev. 2016, 134, 92–99. [Google Scholar] [CrossRef]
- Scroxton, N.; Burns, S.J.; McGee, D.; Hardt, B.; Godfrey, L.R.; Ranivoharimanana, L.; Faina, P. Hemispherically in-phase precipitation variability over the last 1700 years in a Madagascar speleothem record. Quat. Sci. Rev. 2017, 164, 25–36. [Google Scholar] [CrossRef]
- Voarintsoa, N.R.G.; Wang, L.; Railsback, L.B.; Brook, G.A.; Liang, F.; Cheng, H.; Edwards, R.L. Multiple proxy analyses of a U/Th-dated stalagmite to reconstruct paleoenvironmental changes in northwestern Madagascar between 370 CE and 1300 CE. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 469, 138–155. [Google Scholar] [CrossRef]
- Voarintsoa, N.R.G.; Railsback, L.B.; Brook, G.A.; Wang, L.; Kathayat, G.; Cheng, H.; Li, X.; Edwards, R.L.; Rakotondrazafy, A.F.M.; Madison Razanatseheno, M.O. Three distinct Holocene intervals of stalagmite deposition and nondeposition revealed in NW Madagascar, and their paleoclimate implications. Clim. Past 2017, 13, 1771–1790. [Google Scholar] [CrossRef]
- Brook, G.A.; Rafter, M.A.; Railsback, L.B.; Sheen, S.-W.; Lundberg, J. A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe Cave, Madagascar. Holocene 1999, 9, 695–705. [Google Scholar] [CrossRef]
- Voarintsoa, N.R.G.; Brook, G.A.; Liang, F.; Marais, E.; Hardt, B.; Cheng, H.; Edwards, R.L.; Railsback, L.B. Stalagmite multi-proxy evidence of wet and dry intervals in northeastern Namibia: Linkage to latitudinal shifts of the Inter-Tropical Convergence Zone and changing solar activity from AD 1400 to 1950. Holocene 2017, 27, 384–396. [Google Scholar] [CrossRef]
- Baker, A.; Asrat, A.; Fairchild, I.J.; Leng, M.J.; Thomas, L.; Widmann, M.; Jex, C.N.; Dong, B.; van Calsteren, P.; Bryant, C. Decadal-scale rainfall variability in Ethiopia recorded in an annually laminated, Holocene-age, stalagmite. Holocene 2010, 20, 827–836. [Google Scholar] [CrossRef]
- Railsback, L.B.; Brook, G.A.; Liang, F.; Voarintsoa, N.R.G.; Cheng, H.; Edwards, R.L. A multi-proxy climate record from a northwestern Botswana stalagmite suggesting wetness late in the Little Ice Age (1810–1820 CE) and drying thereafter in response to changing migration of the tropical rain belt or ITCZ. Palaeogeogr. Palaeoclimatolol. Palaeoecol. 2018, 506, 139–153. [Google Scholar] [CrossRef]
- Vogel, J.C.; Kronfeld, J. Calibration of Radiocarbon Dates for the Late Pleistocene using U/Th Dates of Stalagmites. Radiocarbon 1997, 39, 27–32. [Google Scholar] [CrossRef]
- Vogel, J.C. 14C Variations during the Upper Pleistocene. Radiocarbon 1983, 25, 213–218. [Google Scholar] [CrossRef]
- Van Rampelbergh, M.; Fleitmann, D.; Verheyden, S.; Cheng, H.; Edwards, L.; De Geest, P.; DeVleeschouwer, D.; Burns, S.J.; Matter, A.; Claeys, P.; et al. Mid- to late Holocene Indian Ocean Monsoon variability recorded in four speleothems from Socotra Island, Yemen. Quat. Sci. Rev. 2013, 65, 129–142. [Google Scholar] [CrossRef]
- Repinski, P.; Holmgren, K.; Lauritzen, S.-E.; Lee-Thorp, J.A. A late Holocene climate record from a stalagmite, Cold Air Cave, Northern Province, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 150, 269–277. [Google Scholar] [CrossRef]
- Holmgren, K.; Karlén, W.; Svanered, O.; Lauritzen, S.-E.; Lee-Thorp, J.A.; Partridge, T.C.; Piketh, S.; Tyson, P.D. A 3000-year high-resolution stalagmite-based record of palaeoclimate for northeastern South Africa. Holocene 1999, 9, 295–309. [Google Scholar] [CrossRef]
- Stevenson, C.; Lee-Thorp, J.A.; Holmgren, K. A 3000-year isotopic record from a stalagmite in Cold Air Cave, Makapansgat Valley, Northern Province. S. Afr. J. Sci. 1999, 95, 46–48. [Google Scholar]
- Brook, G.A. Stratigraphic evidence of quaternary climatic change at Echo Cave, Transvaal, and a paleoclimatic record for Botswana and northeastern South Africa. Catena 1982, 9, 343–351. [Google Scholar] [CrossRef]
- Holmgren, K.; Lee-Thorp, J.A.; Cooper, G.R.J.; Lundblad, K.; Partridge, T.C.; Scott, L.; Sithaldeen, R.; Talma, A.S.; Tyson, P.D. Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quat. Sci. Rev. 2003, 22, 2311–2326. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Marean, C.W.; Jacobs, Z.; Karkanas, P.; Fisher, E.C.; Herries, A.I.R.; Brown, K.S.; Williams, H.M.; Bernatchez, J.A.; Ayalon, A.; et al. A high resolution and continuous isotopic speleothem record of paleoclimate and paleoenvironment from 90–53 ka from Pinnacle Point on the south coast of South Africa. Quat. Sci. Rev. 2010, 29, 2131–2145. [Google Scholar] [CrossRef]
- Slettern, H.R.; Railsback, L.B.; Liang, F.; Brook, G.A.; Marais, E.; Hardt, B.F.; Cheng, H.; Edwards, R.L. A petrographic and geochemical record of climate change over the last 4600 years from a northern Namibia stalagmite, with evidence of abruptly wetter climate at the beginning of southern Africa’s Iron Age. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 376, 149–162. [Google Scholar] [CrossRef]
- Railsback, L.B.; Brook, G.A.; Liang, F.; Marais, E.; Cheng, H.; Edwards, R. A multi-proxy stalagmite record from northwestern Namibia of regional drying with increasing global-scale warmth over the last 47 kyr: The interplay of a globally shifting ITCZ with regional currents, winds, and rainfall. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 461, 109–121. [Google Scholar] [CrossRef]
- Burns, S.J.; Fleitmann, D.; Mudelsee, M.; Neff, U.; Matter, A.; Mangini, A. A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from south Oman. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Fleitmann, D.; Burns, S.J.; Mangini, A.; Mudelsee, M.; Kramers, J.; Villa, I.; Neff, U.; Al-Subbary, A.A.; Buettner, A.; Hippler, D.; et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat. Sci. Rev. 2007, 26, 170–188. [Google Scholar] [CrossRef]
- Cooke, H.J.; Verhagen, B.T. The dating of cave development—An example from Botswana. In Proceedings of the 7th International Speleological Congress Sheffield, England, UK, 10–17 September 1977; pp. 122–124. [Google Scholar]
- Cooke, H.J. The Palaeoclimatic Significance of Caves and Adjacent Landforms in Western Ngamiland, Botswana. Geogr. J. 1975, 141, 430–444. [Google Scholar] [CrossRef]
- Shaw, P.A.; Cooke, H.J. Geomorphic evidence for the late Quaternary palaeoclimates of the middle Kalahari of northern Botswana. Catena 1986, 13, 349–359. [Google Scholar] [CrossRef]
- Heine, K. On the ages of humid Late Quaternary phases in southern African arid areas (Namibia, Botswana). Palaeoecol. Afr. Surround. Isl. 1992, 23, 149–164. [Google Scholar]
- Brook, G.A.; Burney, D.A.; Cowart, J.B. Desert paleoenvironmental data from cave speleothems with examples from the Chihuahuan, Solmali-Chalbi, and Kalahari deserts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1990, 76, 311–329. [Google Scholar] [CrossRef]
- Pickering, R.; Hancox, P.J.; Lee-Thorp, J.A.; Grün, R.; Graham, E.M.; McCulloch, M.T.; Berger, L.R. Stratigraphy, U-Th chronology, and paleoenvironments at Gladysvale Cave: Insights into the climatic control of South African hominin-bearing cave deposits. J. Hum. Evol. 2007, 53, 602–619. [Google Scholar] [CrossRef] [PubMed]
- Asrat, A.; Baker, A.; Leng, M.J.; Hellstrom, J.; Mariethozm, G.; Boomer, I.; Yu, D.; Jex, C.N.; Gunn, J. Paleoclimate change in Ethiopia around the last interglacial derived from annually-resolved stalagmite evidence. Quat. Sci. Rev. 2018, 202, 197–210. [Google Scholar] [CrossRef]
- Wassenburg, J.A.; Dietrich, S.; Fietzke, J.; Fohlmeister, J.; Jochum, K.P.; Scholz, D.; Richter, D.K.; Sabaoui, A.; Spötl, C.; Lohmann, G.; et al. Reorganization of the North Atlantic Oscillation during early Holocene deglaciation. Nat. Geosci. 2016, 9, 602. [Google Scholar] [CrossRef]
- Wassenburg, J.A.; Immenhauser, A.; Richter, D.K.; Jochum, K.P.; Fietzke, J.; Deininger, M.; Goos, M.; Scholz, D.; Sabaoui, A. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence. Geochim. Cosmochim. Acta 2012, 92, 23–47. [Google Scholar] [CrossRef]
- Ruan, J.; Kherbouche, F.; Genty, D.; Blamart, D.; Cheng, H.; Dewilde, F.; Hachi, S.; Edwards, R.; Régnier, E.; Michelot, J.-L. Evidence of a prolonged drought ca. 4200 yr BP correlated with prehistoric settlement abandonment from the Gueldaman GLD1 cave, Northern Algeria. Clim. Past 2016, 12, 1–14. [Google Scholar] [CrossRef]
- Neff, U.; Burns, S.J.; Mangini, A.; Mudelsee, M.; Fleitmann, D.; Matter, A. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 2001, 411, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Burns, S.J.; Fleitmann, D.; Matter, A.; Neff, U.; Mangini, A. Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology 2001, 29, 623–626. [Google Scholar] [CrossRef]
- Fleitmann, D.; Burns, S.J.; Neff, U.; Mangini, A.; Matter, A. Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems. Quat. Res. 2003, 60, 223–232. [Google Scholar] [CrossRef]
- Burns, S.J.; Matter, A.; Frank, N.; Mangini, A. Speleothem-based paleoclimate record from northern Oman. Geology 1998, 26, 499. [Google Scholar] [CrossRef]
- Ait Brahim, Y.; Cheng, H.; Sifeddine, A.; Wassenburg, J.A.; Cruz, F.W.; Khodri, M.; Sha, L.; Pérez-Zanón, N.; Beraaouz, E.H.; Apaéstegui, J.; et al. Speleothem records decadal to multidecadal hydroclimate variations in southwestern Morocco during the last millennium. Earth Planet. Sci. Lett. 2017, 476, 1–10. [Google Scholar] [CrossRef]
- Lundblad, K.; Holmgren, K. Palaeoclimatological survey of stalagmites from coastal areas in Tanzania. Geogr. Ann. Ser. A Phys. Geogr. 2005, 87, 125–140. [Google Scholar] [CrossRef]
- Genty, D.; Blamart, D.; Ghaleb, B.; Plagnes, V.; Causse, C.; Bakalowicz, M.; Zouari, K.; Chkir, N.; Hellstrom, J.; Wainer, K.; et al. Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles-comparison with Chinese and South Hemisphere stalagmites. Quat. Sci. Rev. 2006, 25, 2118–2142. [Google Scholar] [CrossRef]
- Holmgren, K.; Karlén, W.; Shaw, P.A. Paleoclimatic Significance of the Stable Isotopic Composition and Petrology of a Late Pleistocene Stalagmite from Botswana. Quat. Res. 1995, 43, 320–328. [Google Scholar] [CrossRef]
- Holmgren, K.; Lauritzen, S.-E.; Possnert, G. 230Th/234U and 14C dating of a late Pleistocene stalagmite in Lobatse II Cave, Botswana. Quat. Sci. Rev. 1994, 13, 111–119. [Google Scholar] [CrossRef]
- Goslar, T.; Hercman, H.; Pazdur, A. Comparison of U-Series and Radiocarbon Dates of Speleothems. Radiocarbon 2000, 42, 403–414. [Google Scholar] [CrossRef]
- Hennig, G.J.; Grün, R.; Brunnacker, K. Speleothems, travertines, and paleoclimates. Quat. Res. 1983, 20, 1–29. [Google Scholar] [CrossRef]
- Shakun, J.D.; Burns, S.J.; Fleitmann, D.; Kramers, J.; Matter, A.; Al-Subary, A. A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen. Earth Planet. Sci. Lett. 2007, 259, 442–456. [Google Scholar] [CrossRef]
- Burns, S.J.; Fleitmann, D.; Matter, A.; Kramers, J.; Al-Subbary, A.A. Indian Ocean Climate and an Absolute Chronology over Dansgaard/Oeschger Events 9 to 13. Science 2003, 301, 1365–1367. [Google Scholar] [CrossRef] [PubMed]
- Fleitmann, D.; Burns, S.J.; Pekala, M.; Mangini, A.; Al-Subbary, A.; Al-Aowah, M.; Kramers, J.; Matter, A. Holocene and Pleistocene pluvial periods in Yemen, southern Arabia. Quat. Sci. Rev. 2011, 30, 783–787. [Google Scholar] [CrossRef]
- Braun, K.; Bar-Matthews, M.; Matthews, A.; Ayalon, A.; Cowling, R.M.; Karkanas, P.; Fisher, E.C.; Dyez, K.A.; Zilberman, T.; Marean, C.W. Late Pleistocene records of speleothem stable isotopic compositions from Pinnacle Point on the South African south coast show close climate connection with rainfall in the interior. Quat. Res. 2018, 1–24. [Google Scholar] [CrossRef]
- Fleitmann, D.; Burns, S.J.; Mudelsee, M.; Neff, U.; Kramers, J.; Mangini, A.; Matter, A. Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman. Science 2003, 300, 1737–1739. [Google Scholar] [CrossRef] [PubMed]
- Geyh, M.A.; Heine, K. Several distinct wet periods since 420 ka in the Namib Desert inferred from U-series dates of speleothems. Quat. Res. 2014, 81, 381–391. [Google Scholar] [CrossRef]
- Green, H.; Pickering, R.; Drysdale, R.N.; Johnson, B.C.; Hellstrom, J.C.; Wallace, M. Evidence for global teleconnections in a late Pleistocene speleothem record of water balance and vegetation change at Sudwala Cave, South Africa. Quat. Sci. Rev. 2015, 110, 114–130. [Google Scholar] [CrossRef]
- Hoffmann, D.L.; Rogerson, M.; Spötl, C.; Luetscher, M.; Vance, D.; Osborne, A.H.; Fello, N.M.; Moseley, G.E. Timing and causes of North African wet phases during MIS 3 and implications for Modern Human migration. Nat. Sci. Rep. 2016, 6, 36367. [Google Scholar] [CrossRef] [PubMed]
- Rifai, R.I. Reconstruction of the Middle Pleistocene climate of south Mediterranean using the Wadi Sannur speleothem, eastern Desert, Egypt. Carbonates Evaporites 2007, 22, 73. [Google Scholar] [CrossRef]
- El-Shenawy, M.I.; Kim, S.-T.; Schwarcz, H.P.; Asmerom, Y.; Polyak, V.J. Speleothem evidence for the greening of the Sahara and its implications for the early human dispersal out of sub-Saharan Africa. Quat. Sci. Rev. 2018, 188, 67–76. [Google Scholar] [CrossRef]
- Holzkämper, S.; Holmgren, K.; Lee-Thorp, J.A.; Talma, A.S.; Mangini, A.; Partridge, T.C. Late Pleistocene stalagmite growth in Wolkberg Cave, South Africa. Earth Planet. Sci. Lett. 2009, 282, 212–221. [Google Scholar] [CrossRef]
- Brook, G.A.; Scott, L.; Railsback, L.B.; Goddard, E.A. A 35 ka pollen and isotope record of environmental change along the southern margin of the Kalahari from a stalagmite and animal dung deposits in Wonderwerk Cave, South Africa. J. Arid Environ. 2010, 74, 870–884. [Google Scholar] [CrossRef]
- Chase, B.M.; Chevalier, M.; Boom, A.; Carr, A.S. The dynamic relationship between temperate and tropical circulation systems across South Africa since the last glacial maximum. Quat. Sci. Rev. 2017, 174, 54–62. [Google Scholar] [CrossRef]
- Di Nezio, P.N.; Timmermann, A.; Tierney, J.E.; Jin, F.-F.; Otto-Bliesner, B.; Rosenbloom, N.; Mapes, B.; Neale, R.; Ivanovic, R.F.; Montenegro, A. The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanography 2016, 31, 866–894. [Google Scholar] [CrossRef]
- Dezfuli, A.K.; Zaitchik, B.F.; Gnanadesikan, A. Regional atmospheric circulation and rainfall variability in south equatorial Africa. J. Clim. 2015, 28, 809–818. [Google Scholar] [CrossRef]
- Knippertz, P.; Christoph, M.; Speth, P. Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorol. Atmos. Phys. 2003, 83, 67–88. [Google Scholar] [CrossRef]
- Rohling, E.J.; Marino, G.; Grant, K.M. Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Sci. Rev. 2015, 143, 62–97. [Google Scholar] [CrossRef]
- Raicich, F.; Pinardi, N.; Navarra, A. Teleconnections between Indian monsoon and Sahel rainfall and the Mediterranean. Int. J. Climatol. 2003, 23, 173–186. [Google Scholar] [CrossRef]
- De Menocal, P.; Ortiz, J.; Guilderson, T.; Adkins, J.; Sarnthein, M.; Baker, L.; Yarusinsky, M. Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 2000, 19, 347–361. [Google Scholar] [CrossRef]
- Armitage, S.J.; Drake, N.A.; Stokes, S.; El-Hawat, A.; Salem, M.J.; White, K.; Turner, P.; McLaren, S.J. Multiple phases of North African humidity recorded in lacustrine sediments from the Fazzan Basin, Libyan Sahara. Quat. Geochronol. 2007, 2, 181–186. [Google Scholar] [CrossRef]
- Nicoll, K. Recent environmental change and prehistoric human activity in Egypt and Northern Sudan. Quat. Sci. Rev. 2004, 23, 561–580. [Google Scholar] [CrossRef]
- Hoelzmann, P.; Jolly, D.; Harrison, S.P.; Laarif, F.; Bonnefille, R.; Pachur, H.J. Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: A data set for the analysis of biogeophysical feedbacks in the climate system. Glob. Biogeochem. Cycles 1998, 12, 35–51. [Google Scholar] [CrossRef]
- Swezey, C. Eolian sediment responses to late Quaternary climate changes: Temporal and spatial patterns in the Sahara. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 167, 119–155. [Google Scholar] [CrossRef]
- Singarayer, J.S.; Burrough, S.L. Interhemispheric dynamics of the African rainbelt during the late Quaternary. Quat. Sci. Rev. 2015, 124, 48–67. [Google Scholar] [CrossRef]
- Nicholson, S.E. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Chang. 2000, 2, 137–158. [Google Scholar] [CrossRef]
- Black, E.; Slingo, J.; Sperber, K.R. An Observational Study of the Relationship between Excessively Strong Short Rains in Coastal East Africa and Indian Ocean SST. Mon. Weather Rev. 2003, 131, 74–94. [Google Scholar] [CrossRef]
- Goddard, L.; Graham, N.E. Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res. 1999, 104, 19099–19116. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Sen Gupta, A.; England, M.H.; Reason, C.J.C. Contributions of Indian Ocean Sea Surface Temperatures to Enhanced East African Rainfall. Am. Meteorol. Soc. 2009, 22, 993–1013. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Kulüke, M.; Tierney, J.E. Extremes in East African hydroclimate and links to Indo-Pacific variability on interannual to decadal timescales. Clim. Dyn. 2017, 50, 2971–2991. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Zinke, J.; Pfeiffer, M.; Timm, O.; Dullo, W.C.; Brummer, G.J.A. Western Indian Ocean marine and terrestrial records of climate variability: A review and new concepts on land–ocean interactions since AD 1660. Int. J. Earth Sci. 2009, 98, 115. [Google Scholar] [CrossRef]
- Konecky, B.; Russell, J.M.; Vuille, M.; Rehfeld, K. The Indian Ocean Zonal Mode over the past millennium in observed and modeled precipitation isotopes. Quat. Sci. Rev. 2014, 103, 1–18. [Google Scholar] [CrossRef]
- Weldeab, S.; Lea, D.W.; Oberhänsli, H.; Schneider, R.R. Links between southwestern tropical Indian Ocean SST and precipitation over southeastern Africa over the last 17 kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 410, 200–212. [Google Scholar] [CrossRef]
- Hansingo, K.; Reason, C.J.C. Modelling the atmospheric response to SST dipole patterns in the South Indian Ocean with a regional climate model. Meteorol. Atmos. Phys. 2008, 100, 37–52. [Google Scholar] [CrossRef]
- Van Heerden, J.; Taljaard, J.J. Africa and Surrounding Waters. In Meteorology of the Southern Hemisphere; American Meteorological Society: Boston, MA, USA, 1998; pp. 141–174. [Google Scholar]
- Engelbrecht, C.J.; Landman, W.A.; Engelbrecht, F.A.; Malherbe, J. A synoptic decomposition of rainfall over the Cape south coast of South Africa. Clim. Dyn. 2015, 44, 2589–2607. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Baker, A. Speleothem Science: From Process to Past Environments; John Wiley & Sons: Chichester, UK, 2012; 432p, ISBN 978-1-4051-9620-8. [Google Scholar]
- De Lamotte, D.F.; Leturmy, P.; Missenard, Y.; Khomsi, S.; Ruiz, G.; Saddiqi, O.; Guillocheau, F.; Michard, A. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics 2009, 475, 9–28. [Google Scholar] [CrossRef]
- Rohling, E.J.; De Rijk, S. Holocene Climate Optimum and Last Glacial Maximum in the Mediterranean: The marine oxygen isotope record. Mar. Geol. 1999, 153, 57–75. [Google Scholar] [CrossRef]
- Wassenburg, J.; Immenhauser, A.; Richter, D.; Niedermayr, A.; Riechelmann, S.; Fietzke, J.; Scholz, D.; Jochum, K.; Fohlmeister, J.; Schröder-Ritzrau, A. Moroccan speleothem and tree ring records suggest a variable positive state of the North Atlantic Oscillation during the Medieval Warm Period. Earth Planet. Sci. Lett. 2013, 375, 291–302. [Google Scholar] [CrossRef]
- Fleitmann, D.; Burns, S.J.; Neff, U.; Mudelsee, M.; Mangini, A.; Matter, A. Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quat. Sci. Rev. 2004, 23, 935–945. [Google Scholar] [CrossRef]
- Dansgaard, W.; Johnsen, S.J.; Clausen, H.B.; Dahl-Jensen, D.; Gundestrup, N.S.; Hammer, C.U.; Hvidberg, C.S. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 1993, 364, 218–220. [Google Scholar] [CrossRef]
- Andersen, K.K.; Azuma, N.; Barnola, J.M.; Bigler, M.; Biscaye, P.; Caillon, N.; Chappellaz, J.; Clausen, H.B.; Dahl-Jensen, D.; Fischer, H.; et al. High-resolution climate record of Northern Hemisphere climate extending into the Last Interglacial period. Nature 2004, 431, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.; Asrat, A.; Fairchild, I.J.; Leng, M.J.; Wynn, P.M.; Bryant, C.; Genty, D.; Umer, M. Analysis of the climate signal contained within δ18O and growth rate parameters in two Ethiopian stalagmites. Geochim. Cosmochim. Acta 2007, 71, 2975–2988. [Google Scholar] [CrossRef]
- Asrat, A.; Baker, A.; Leng, M.J.; Gunn, J.; Umer, M. Environmental monitoring in the Mechara caves, Southeastern Ethiopia: Implications for speleothem palaeoclimate studies. Int. J. Speleol. 2008, 37, 207–220. [Google Scholar] [CrossRef]
- Blyth, A.J.; Asrat, A.; Baker, A.; Gulliver, P.; Leng, M.J.; Genty, D. A new approach to detecting vegetation and land-use change using high-resolution lipid biomarker records in stalagmites. Quat. Res. 2007, 68, 314–324. [Google Scholar] [CrossRef]
- Holmgren, K.; Karlén, W.; Lauritzen, S.E.; Lee Thorp, J.A.; Partridge, T.C.; Shaw, P.A.; Tyson, P.D. Speleochronology, stable isotopes and laminae analysis of stalagmites from southern Africa. In Proceedings of the International Congress on Speleology, La Chaux-de-Fond, Switzerland, 10–17 August 1997; Jeanin, P.-Y., Ed.; pp. 55–56. [Google Scholar]
- Verschuren, D.; Laird, K.R.; Cumming, B.F. Rainfall and drought in equatorial east Africa during the past 1100 years (2000). Rainfall and drought in equatorial east Africa during the past 1100 years. Nature 2000, 403, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Tierney, J.E.; Smerdon, J.E.; Anchukaitis, K.J.; Seager, R. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 2013, 493, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Buckles, L.K.; Verschuren, D.; Weijers, J.W.; Cocquyt, C.; Blaauw, M.; Sinninghe Damsté, J.S. Interannual and (multi-) decadal variability in the sedimentary BIT index of Lake Challa, East Africa, over the past 2200 years: Assessment of the precipitation proxy. Clim. Past 2016, 12, 1243–1262. [Google Scholar] [CrossRef]
- Burney, D.A. Late Holocene Vegetational Change in Central Madagascar. Quat. Res. 1987, 28, 130–143. [Google Scholar] [CrossRef]
- Matsumoto, K.; Burney, D.A. Late Holocene environments at Lake Mitsinjo, northwestern Madagascar. Holocene 1994, 4, 16–24. [Google Scholar] [CrossRef]
- Carbol, P.; Coudray, J. Climatic fluctuations influence the genesis and diagenesis of carbonate speleothems in southwest France. Natl. Speleol. Soc. Bull. 1982, 44, 112–117. [Google Scholar]
- Hopley, P.J.; Marshall, J.D.; Latham, A.G. Speleothem preservation and diagenesis in South African hominin sites: Implications for paleoenvironments and geochronology. Geoarchaeology 2009, 24, 519–547. [Google Scholar] [CrossRef]
- Ortega, R.; Maire, R.; Devès, G.; Quinif, Y. High-resolution mapping of uranium and other trace elements in recristallized aragonite–calcite speleothems from caves in the Pyrenees (France): Implication for U-series dating. Earth Planet. Sci. Lett. 2005, 237, 911–923. [Google Scholar] [CrossRef]
- Hopley, P.J.; Weedon, G.P.; Brierley, C.M.; Thrasivoulou, C.; Herries, A.I.R.; Dinckal, A.; Richards, D.A.; Nita, D.C.; Parrish, R.R.; Roberts, N.M.W.; et al. Orbital precession modulates interannual rainfall variability, as recorded in an Early Pleistocene speleothem. Geology 2018, 46, 731–734. [Google Scholar] [CrossRef]
- Vogel, J.C.; Fuls, A. Spatial Distribution of Radiocarbon Dates for the Iron Age in Southern Africa. S. Afr. Archaeol. Bull. 1999, 54, 97–101. [Google Scholar] [CrossRef]
- Sundqvist, H.S.; Holmgren, K.; Fohlmeister, J.; Zhang, Q.; Bar-Matthews, M.; Spötl, C.; Kornich, H. Evidence of a large cooling between 1690 and 1740 AD in southern Africa. Nat. Sci. Rep. 2013, 3, 1767. [Google Scholar] [CrossRef]
- Lee-Thorp, J.A.; Holmgren, K.; Lauritzen, S.-E.; Linge, H.; Moberg, A.; Partridge, T.C.; Stevenson, C.; Tyson, P.D. Rapid climate shifts in the southern African interior throughout the Mid to Late Holocene. Geophys. Res. Lett. 2001, 28, 4507–4510. [Google Scholar] [CrossRef]
- Ayliffe, L.K.; Marianelli, P.C.; Moriarty, K.C.; Wells, R.T.; McCulloch, M.T.; Mortimer, G.E.; Hellstrom, J.C. 500 ka precipitation record from southeastern Australia: Evidence for interglacial relative aridity. Geology 1998, 26, 147–150. [Google Scholar] [CrossRef]
- Braun, K.; Bar-Matthews, M.; Ayalon, A.; Zilberman, T.; Matthews, A. Rainfall isotopic variability at the intersection between winter and summer rainfall regimes in coastal South Africa (Mossel Bay, Western Cape Province). S. Afr. J. Geol. 2017, 120, 323–340. [Google Scholar] [CrossRef]
- Scroxton, N.; Gagan, M.K.; Dunbar, G.B.; Ayliffe, L.K.; Hantoro, W.S.; Shen, C.C.; Hellstrom, J.C.; Zhao, J.X.; Cheng, H.; Edwards, R.L.; et al. Natural attrition and growth frequency variations of stalagmites in southwest Sulawesi over the past 530,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 823–833. [Google Scholar] [CrossRef]
- Zielhofer, C.; Fletcher, W.J.; Mischke, S.; De Batist, M.; Campbell, J.F.; Joannin, S.; Tjallingii, R.; El Hamouti, N.; Junginger, A.; Stele, A.; et al. Atlantic forcing of Western Mediterranean winter rain minima during the last 12,000 years. Quat. Sci. Rev. 2017, 157, 29–51. [Google Scholar] [CrossRef]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.M.; Chappellaz, J.; et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 2007, 317, 793–796. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Isotope techniques in the study of environmental change. In Proceedings of the International Symposium on Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere, International Atomic Energy Agency, Vienna, Austria, 14–18 April 1997; IAEA: Vienna, Austria, 1997; p. 936. [Google Scholar]
- Leblanc, M.J.; Leduc, C.; Stagnitti, F.; Van Oevelen, P.J.; Jones, C.; Mofor, L.A.; Razack, M.; Favreau, G. Evidence for Megalake Chad, north-central Africa, during the late Quaternary from satellite data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 230, 230–242. [Google Scholar] [CrossRef]
- Ghoneim, E.; El-Baz, F. DEM-optical-radar data integration for palaeohydrological mapping in the northern Darfur, Sudan: Implication for groundwater exploration. Int. J. Remote Sens. 2007, 28, 5001–5018. [Google Scholar] [CrossRef]
- Conrad, G.; Lappartient, J.-R. The appearance of Cardium fauna and foraminifers in the great lakes of the early quaternary period in the Algerian central Sahara Desert. J. Afr. Earth Sci. (Middle East) 1991, 12, 375–382. [Google Scholar] [CrossRef]
- Quade, J.; Dente, E.; Armon, M.; Ben Dor, Y.; Morin, E.; Adam, O.; Enzel, Y. Megalakes in the Sahara? A Review. Quat. Res. 2018, 90, 253–275. [Google Scholar] [CrossRef]
- Drake, N.A.; Lem, R.E.; Armitage, S.J.; Breeze, P.; Francke, J.; El-Hawat, A.S.; Salem, M.J.; Hounslow, M.W.; White, K. Reconstructing palaeoclimate and hydrological fluctuations in the Fezzan Basin (southern Libya) since 130 ka: A catchment-based approach. Quat. Sci. Rev. 2018, 200, 376–394. [Google Scholar] [CrossRef]
- Cremaschi, M.; Zerboni, A.; Spötl, C.; Felletti, F. The calcareous tufa in the Tadrart Acacus Mt. (SW Fezzan, Libya): An early Holocene palaeoclimate archive in the central Sahara. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 287, 81–94. [Google Scholar] [CrossRef]
- Smith, J.R.; Giegengack, R.; Schwarcz, H.P.; McDonald, M.M.; Kleindienst, M.R.; Hawkins, A.L.; Churcher, C.S. A reconstruction of quaternary pluvial environments and human occupations using stratigraphy and geochronology of fossil-spring tufas, Kharga Oasis, Egypt. Geoarchaeol. Int. J. 2004, 19, 407–439. [Google Scholar] [CrossRef]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.M.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef]
- Larrasoaña, J.C.; Roberts, A.P.; Hayes, A.; Wehausen, R.; Rohling, E.J. Detecting missing beats in the Mediterranean climate rhythm from magnetic identification of oxidized sapropels (Ocean Drilling Program Leg 160). Phys. Earth Planet. Inter. 2006, 156, 283–293. [Google Scholar] [CrossRef]
- Zanchetta, G.; Bar-Matthews, M.; Drysdale, R.N.; Lionello, P.; Ayalon, A.; Hellstrom, J.C.; Isola, I.; Regattieri, E. Coeval dry events in the central and eastern Mediterranean basin at 5.2 and 5.6 ka recorded in Corchia (Italy) and Soreq caves (Israel) speleothems. Glob. Planet. Chang. 2014, 122, 130–139. [Google Scholar] [CrossRef]
- Drysdale, R.N.; Zanchetta, G.; Hellstrom, J.; Maas, R.; Fallick, A.; Pickett, M.; Cartwright, I.; Piccini, L. Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 2006, 34, 101–104. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. Holocene 2011, 21, 163–171. [Google Scholar] [CrossRef]
- Kaufman, A.J.; Wasserburg, G.J.; Porcelli, D.; Bar-Matthews, M.; Ayalon, A.; Halicz, L. U-Th isotope systematics from the Soreq cave, Israel and climatic correlations. Earth Planet. Sci. Lett. 1998, 156, 141–155. [Google Scholar] [CrossRef]
- Weyhenmeyer, C.E.; Burns, S.J.; Waber, H.N.; Aeschbach-Hertig, W.; Kipfer, R.; Loosli, H.H.; Matter, A. Cool Glacial Temperatures and Changes in Moisture Source Recorded in Oman Groundwaters. Science 2000, 287, 842–845. [Google Scholar] [CrossRef] [PubMed]
- Stager, J.C.; Mayewski, P.A. Abrupt Early to Mid-Holocene Climatic Transition registered at the Equator and the Poles. Science 1997, 276, 1834–1836. [Google Scholar] [CrossRef]
- Tierney, J.E.; Russell, J.M.; Huang, Y.; Sinninghe Damsté, J.S.; Hopmans, E.C.; Cohen, A.S. Northern Hemisphere Controls on Tropical Southeast African Climate During the Past 60,000 Years. Science 2008, 322, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Garcin, Y.; Junginger, A.; Melnick, D.; Olago, D.O.; Strecker, M.R.; Trauth, M.H. Late Pleistocene-Holocene rise and collapse of Lake Suguta, northern Kenya Rift. Quat. Sci. Rev. 2009, 28, 911–925. [Google Scholar] [CrossRef]
- Verschuren, D.; Sinninghe Damsté, J.S.; Moernaut, J.; Kristen, I.; Blaauw, M.; Fagot, M.; Haug, G.H.; van Geel, B.; De Batist, M.; Barker, P.; et al. Half-precessional dynamics of monsoon rainfall near the East African Equator. Nature 2009, 462, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Costa, K.; Russel, J.; Konecky, B.; Lamb, H. Isotopic reconstruction of the African Humid Period and Congo Air Boundary migration at Lake Tana, Ethiopia. Quat. Sci. Rev. 2014, 83, 58–67. [Google Scholar] [CrossRef]
- Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev. 2000, 19, 189–211. [Google Scholar] [CrossRef]
- Biasutti, M.; Voigt, A.; Boos, W.R.; Braconnot, P.; Hargreaves, J.C.; Harrison, S.P.; Kang, S.M.; Mapes, B.E.; Scheff, J.; Schumacher, C.; et al. Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci. 2018, 11, 392–400. [Google Scholar] [CrossRef]
- Gasse, F.; Van Campo, E. A 40,000-yr Pollen and Diatom Record from Lake Tritrivakely, Madagascar, in the Southern Tropics. Quat. Res. 1998, 49, 299–311. [Google Scholar] [CrossRef]
- Partridge, T.C.; DeMenocal, P.B.; Lorentz, S.A.; Paiker, M.J.; Vogel, J.C. Orbital forcing of climate over South Africa: A 200,000-year rainfall record from the Pretoria Saltpan. Quat. Sci. Rev. 1997, 16, 1125–1133. [Google Scholar] [CrossRef]
- Scott, L. Fluctuations of vegetation and climate over the last 75,000 years in the Savanna Biome, South Africa: Tswaing Crater and Wonderkrater pollen sequences reviewed. Quat. Sci. Rev. 2016, 145, 117–133. [Google Scholar] [CrossRef]
- Finney, B.P.; Sholtz, C.A.; Johnson, T.C.; Trumbore, S. Late Quaternary lake-level changes of Lake Malawi. In The Limnology, Climatology and Paleoclimatology of the East African Lakes; Johnson, T.J., Odada, E.O., Eds.; Gordon and Breach: London, UK, 1996; pp. 495–508. [Google Scholar]
- Konecky, B.; Russell, J.M.; Johnson, T.C.; Brown, E.T.; Berke, M.A.; Werne, J.P.; Huang, Y. Atmospheric circulation patterns during late Pleistocene climate changes at Lake Malawi, Africa. Earth Planet. Sci. Lett. 2011, 312, 318–326. [Google Scholar] [CrossRef]
- Stone, J.R.; Westover, K.S.; Cohen, A.S. Late Pleistocene paleohydrography and diatom paleoecology of the central basin of Lake Malawi, Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 303, 51–70. [Google Scholar] [CrossRef]
- Garcin, Y.; Vincens, A.; Williamson, D.; Guiot, J.; Buchet, G. Wet phases in tropical southern Africa during the last glacial period. Geophys. Res. Lett. 2006, 33, L07703. [Google Scholar] [CrossRef]
- Broccoli, A.J.; Dahl, K.A.; Stouffer, R.J. Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett. 2006, 33, L01702. [Google Scholar] [CrossRef]
- Collins, J.A.; Schefuß, E.; Heslop, D.; Mulitza, S.; Prange, M.; Tjallingii, R.; Dokken, T.M.; Huang, E.; Mackensen, A.; Schulz, M.; et al. Interhemispheric symmertry of the tropical African rainbelt over the past 23,000 years. Nat. Geosci. 2011, 4, 42–45. [Google Scholar] [CrossRef]
- Simon, M.H.; Arthur, K.; Hall, I.R.; Peeters, F.J.C.; Loveday, B.R.; Barker, S.; Ziegler, M.; Zahn, R. Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian-Atlantic Ocean Gateway. Earth Planet. Sci. Lett. 2013, 383, 101–112. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First results of the MODIS Vegetation Continuous Fields Algorithm. Earth Interact. 2003, 7. [Google Scholar] [CrossRef]
- Bowen, G.J.; Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 2003, 39, 1299. [Google Scholar] [CrossRef]
- IAEA/WMO Global Network of Isotopes in Precipitation. The GNIP Database. 2015. Available online: https://nucleus.iaea.org/wiser (accessed on 12 November 2018).
- Still, C.J.; Powell, R.L. Continental-Scale Distributions of Vegetation Stable Carbon Isotope Ratios. In Isoscapes; Springer: Dordrecht, The Netherlands, 2010; pp. 179–193. [Google Scholar] [CrossRef]
- McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Breecker, D.O.; Payne, A.E.; Quade, J.; Banner, J.L.; Ball, C.E.; Meyer, K.W.; Cowan, B.D. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation. Geochim. Cosmochim. Acta 2012, 96, 230–246. [Google Scholar] [CrossRef]
- Gat, J.R.; Klein, B.; Kushnir, Y.; Roether, W.; Wernli, H.; Yam, R.; Shemesh, A. Isotope composition of air moisture over the Mediterranean Sea: An index of the air–sea interaction pattern. Tellus Ser. B Chem. Phys. Meteorol. 2003, 55, 953–965. [Google Scholar] [CrossRef]
- Bowen, G.J. Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Burney, D.A.; Burney, L.P.; Godfrey, L.R.; Jungers, W.L.; Goodman, S.M.; Wright, H.T.; Jull, A.J.T. A chronology for late prehistoric Madagascar. J. Hum. Evol. 2004, 47, 25–63. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.C.; Brown, E.T.; McManus, J.; Barry, S.; Barker, P.; Gasse, F. A High-Resolution Paleoclimate Record Spanning the Past 25,000 Years in Southern East Africa. Science 2002, 296, 113–132. [Google Scholar] [CrossRef] [PubMed]
- Lamb, H.F.; Bates, C.R.; Bryant, C.L.; Davies, S.J.; Huws, D.G.; Marshall, M.H.; Roberts, H.M. 150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa. Nat. Sci. Rep. 2018, 8, 1077. [Google Scholar] [CrossRef] [PubMed]
- Lyons, R.P.; Scholz, C.A.; Cohen, A.S.; King, J.W.; Brown, E.T.; Ivory, S.J.; Johnson, T.C.; Deino, A.L.; Reinthal, P.N.; McGlue, M.M.; et al. Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity. Proc. Natl. Acad. Sci. USA 2015, 112, 15568–15573. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, I.S.; Werne, J.P.; Johnson, T.C. Wet and arid phases in the southeast African tropics since the Last Glacial Maximum. Geology 2007, 35, 823–826. [Google Scholar] [CrossRef]
- Schefuß, E.; Kuhlmann, H.; Mollenhauer, G.; Prange, M.; Pätzold, J. Forcing of wet phases in southeast Africa over the past 17,000 years. Nature 2011, 480, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Otto-Bliesner, B.L.; Russell, J.M.; Clark, P.U.; Liu, Z.; Overpeck, J.T.; Konecky, B.; Nicholson, S.E.; He, F.; Lu, Z. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 2014, 346, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Pickering, R.; Dirks, P.H.G.M.; Jinnah, Z.; de Ruiter, D.J.; Churchill, S.E.; Herries, A.I.R.; Woodhead, J.D.; Hellstrom, J.C.; Berger, L.R. Australopithecus sediba at 1.977 Ma and Implications for the Origins of the Genus Homo. Science 2011, 333, 1421–1423. [Google Scholar] [CrossRef] [PubMed]
- Pickering, R.; Kramers, J.D.; Partridge, T.; Kodolanyi, J.; Pettke, T. U–Pb dating of calcite–aragonite layers in speleothems from hominin sites in South Africa by MC-ICP-MS. Quat. Geochronol. 2010, 5, 544–558. [Google Scholar] [CrossRef]
site_name | site_id | Country | Latitude (N) | Longitude (E) | Elevation (m amsl) | entity_name | entity_id | Min. Year (BP) | Max. Year (BP) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Achere Cave | 114 | Ethiopia | 8.60 | 40.37 | 1534 | Ach-1 | 229 | 4523 | 4968 | [12] |
Aigamas | Namibia | −19.11 | 17.07 | 112,000 * | 129,900 * | [13] | ||||
Aikab | Namibia | −19.11 | 17.07 | 7500 * | 10,600 * | [13] | ||||
Anjohibe Cave | 94 | Madagascar | −15.53 | 46.88 | 131 | AB3 | 187 | −64 | 1673 | [14] |
AB2 | 188 | −64 | 1343 | [15] | ||||||
MA3 | 189 | 650 | 1580 | [16] | ||||||
ANJB-2 | 190 | 141 | 9027 | [17] | ||||||
MA1 | −45 | 3412 | [18] | |||||||
MA2 | −45 | 7340 | [18] | |||||||
Anjokipoty Cave | 32 | Madagascar | −15.58 | 46.73 | ~40 | MAJ-5 | 107 | 183 | 9880 | [19] |
Bero Cave | 33 | Ethiopia | 8.42 | 40.31 | 1363 | Bero-1 | 108 | −55 | 7750 | [20] |
Bone Cave | Botswana | −20.14 | 21.21 | 1000 | BC97-14 | −47 | 273 | [21] | ||
Buffalo Cave | 148 | South Africa | −24.14 | 29.18 | 1140 | Buffalo Cave Flowstone | 323 | 1,517,550 | 1,989,850 | [10,11] |
Cango Cave | 74 | South Africa | −33.39 | 22.21 | ~700 | V3 | 163 | 41 | 47,978 | [5,22,23] |
Casecas Cave | Yemen | 12.56 | 54.31 | 542 | STM5 | 12 | 856 | [24] | ||
Cold Air Cave | 7 | South Africa | −24 | 29.18 | 1420 | T5 | 45 | 466 | 4379 | [25] |
T7_1999 | 46 | −46 | 2506 | [26,27] | ||||||
T7_2001 | 47 | −46 | 6406 | [28] | ||||||
T8 | 48 | −48 | 24,380 | [29] | ||||||
T7_2013 | 49 | −46 | 314 | [13] | ||||||
Crevice Cave | South Africa | −34.21 | 22.09 | 15 | composite record | 53,060 | 90,500 | [30] | ||
Dante Cave | 99 | Namibia | −19.4 | 17.88 | DP1_2013 | 197 | 18 | 4618 | [31] | |
DP1_2016 | 198 | 11 | 487 | [32] | ||||||
Defore Cave | 170 | Oman | 17.17 | 54.08 | 150 | S3 | 366 | −46 | 731 | [33] |
S4 | 9020 | 10,864 | [34] | |||||||
Dimarshim Cave | Yemen | 12.55 | 53.68 | 350 | D1 | −50 | 4400 | [34] | ||
Dragons-breath | Namibia | −19.48 | 17.79 | 8800 * | [13] | |||||
Drotsky’s Cave (Gcwihaba Caves) | Botswana | −20.02 | 21.36 | 750 * | 41,900 * | [35,36,37] | ||||
Stalagmite 1 | 14,125 * | 16,190 * | [38] | |||||||
Stalagmite 2 | 3663 * | 5860 * | [37] | |||||||
Stalagmite 3 | 1185 * | 5375 * | [37] | |||||||
1.0 m core | 197,400 * | [39] | ||||||||
0.5 m core | 5360 * | 14,520 * | [39] | |||||||
Echo Cave | South Africa | −24.58 | 30.61 | 1030 | 2675 * | 231,900 * | [13,28] | |||
Gaalweyte Cave | Somalia | 10.98 | 47.69 | 5000 * | 75,500 * | [13] | ||||
Gladysvale Cave | South Africa | −25.12 | 27.05 | 7450 * | 571,380 * | [40] | ||||
Goda Mea Cave | Ethiopia | 9.48 | 37.66 | 1574 | GM1 | 108,173 | 141,786 | [41] | ||
Grotte de Piste | 135 | Morocco | 33.84 | −4.09 | 1260 | GP2 | 285 | 2537 | 11,416 | [42] |
Grotte Prison de Chien | Morocco | 34 | −4 | 360 | HK1 | 18,870 | 36,470 | [43] | ||
HK3 | 4240 | 27,480 | [43] | |||||||
Gueldaman Cave | 81 | Algeria | 36.43 | 4.57 | 507 | stm2 | 173 | 4039 | 6191 | [44] |
stm4 | 174 | 3193 | 5793 | [44] | ||||||
Guinas Meer | Namibia | −19.23 | 17.35 | 13,500 * | 61,400 * | [13] | ||||
Harasib | Namibia | −19.48 | 17.79 | 8500 * | 107,600 * | [13] | ||||
Hayla Cave | South Africa | 10.76 | 47.30 | 1800 | 4000 * | 260,400 * | [39,40] | |||
Hoq Cave | Yemen | 12.59 | 54.35 | 335 | STM1 | −17 | 5717 | [24] | ||
STM6 | 777 | 4608 | [24] | |||||||
Hq1 | 146 | 7708 | [24] | |||||||
Hoti Cave | 152 | Oman | 23.08 | 57.35 | 800 | H5 | 327 | 6026 | 9607 | [45] |
H5 | 6220 | 10,760 | [34,46] | |||||||
H12 | 230 | 6341 | [34,47] | |||||||
Flowstone | 82,000 | 125,700 | [47,48] | |||||||
H4 | 112,900 | 121,600 | [47,48] | |||||||
H1 | 77,620 | 82,460 | [47] | |||||||
H10 | 8250 | 10,150 | [47] | |||||||
H11 | 8130 | 9060 | [47] | |||||||
H13 | 124,000 | 387,000 | [47] | |||||||
H14 | 6410 | 8470 | [47] | |||||||
Ifoulki Cave | 42 | Morocco | 30.71 | −9.33 | 1250 | IFK1 | 188 | −3 | 1160 | [49] |
Kiomoni Quarry Cave | Tanzania | 17,430 * | 19,270 * | [50] | ||||||
La Mine Cave | 83 | Tunisia | 36.03 | 9.68 | 975 | Min-stm1 | 176 | 5366 | 23,168 | [51] |
Lobatse Cave | 30 | Botswana | −25.21 | 25.68 | 1200 | LII4 | 103 | 21,425 | 27,206 | [52,53] |
LII4-KH | 104 | 21,458 | 50,943 | [52,53] | ||||||
Mafuriko Quarry | Tanzania | 5.10 | 39.00 | 28,100 * | 39,400 * | [50,54] | ||||
Makapan Cave | South Africa | −24.16 | 29.18 | 202,000 * | 324,000 * | [55] | ||||
Mampombo Cave | Tanzania | 31,560 * | 104,640 * | [50] | ||||||
Matupi Cave | Democratic Republic of Congo | 1.19 | 30.01 | 1100 | MAT 23 | 13,260 * | 14,820 * | [39] | ||
MAT16 | “modern” | [39] | ||||||||
MAT11 | 40,100 * | [39] | ||||||||
MAT13 | 990 * | 50,330 * | [39] | |||||||
Moomi Cave | 138 | Yemen | 12.5 | 54 | 400 | M1-5 | 293 | 11,086 | 27,370 | [56] |
M1-2 | 40,379 | 53,484 | [57] | |||||||
Mukalla Cave | Yemen | 14.92 | 48.59 | 1500 | Y99 | 119,141 | 358,887 | [58] | ||
Y97-4 | 5630 | 185,600 | [58] | |||||||
Y97-5 | 8790 | 233,300 | [58] | |||||||
Namaingo Cave | Tanzania | 560 * | 2640 * | [50] | ||||||
Nangoma-Nakitara Cave | Tanzania | 53,560 * | 77,150 * | [50] | ||||||
Orumana Cave | Namibia | −18.26 | 13.89 | 1450 | Orum-1 | 986 | 47,301 | [32] | ||
PP29 | South Africa | −34.21 | 22.09 | 10 | 46745 | 67,600 | 112,400 | [59] | ||
46746a | 82,700 | 99,500 | [59] | |||||||
46746b | 75,000 | 98,800 | [59] | |||||||
46747 | 41,500 | 61,300 | [59] | |||||||
138862.1 | 58,500 | 89,200 | [59] | |||||||
138862.2a | 102,900 | 109,900 | [59] | |||||||
138862.2b | 82,920 | 88,000 | [59] | |||||||
142828 | 51,000 | 108,400 | [59] | |||||||
Qunf Cave | 159 | Oman | 17.17 | 54.3 | 650 | Q5 | 351 | 308 | 10,558 | [34] |
Q5 | 400 | 10,470 | [60] | |||||||
Q11 | 3738 | 4929 | [60] | |||||||
Rössing Cave | Namibia | −22.53 | 14.80 | 332 | 26,530 * | 480,000 * | [38,61] | |||
KOO933 | 117,000 * | 413,000 * | [61] | |||||||
KOO931 | 363,000 * | 480,000 * | [38,61] | |||||||
KOO930 | 89,000 * | 480,000 * | [38,61] | |||||||
KOO929 | 369,000 * | 439,000 * | [38,61] | |||||||
Rukiessa Cave | 22 | Ethiopia | 8.60 | 40.38 | 1618 | Merc-1 | 87 | −53 | 56 | [12,20] |
Asfa-3 | 88 | −53 | 52 | [12,20] | ||||||
Staircase Cave | South Africa | −34.21 | 22.09 | 46322 | 202,400 | 279,100 | [59] | |||
46330a | 210,800 | 215,800 | [59] | |||||||
46330b | 173,500 | 205,700 | [59] | |||||||
46861 | 172,000 | 283,200 | [59] | |||||||
50100 | 194,500 | 247,800 | [59] | |||||||
142819 | 129,900 | 334,700 | [59] | |||||||
142820 | 160,900 | 335,600 | [59] | |||||||
Sterkfontein Cave | South Africa | −26.02 | 27.73 | 1450 | 10,000 * | 200,000 * | [13] | |||
Sudwala Cave | South Africa | −25.37 | 30.7 | 975 | SC1 | 12,790 | 40,220 | [62] | ||
1160 * | 403,290 * | [62] | ||||||||
Susah Cave | Libya | 32.89 | 21.87 | 200 | SC-06-01 | 31,945 | 66,636 | [63] | ||
SC-06-01 parallel | 30,755 | 34,850 | [63] | |||||||
Tinkas Cave | Namibia | −22.84 | 15.44 | 425 | 224,000 * | 337,000 * | [38] | |||
Wadi Sannur Cave | Egypt | 28.62 | 31.28 | 200 | WSS | 136,460 | 188,120 | [64] | ||
WS-5d | 127,923 | 365,921 | [65] | |||||||
Wolkberg Cave | 172 | South Africa | −24.1 | 29.88 | 1450 | W5 | 377 | 39,742 | 57,872 | [66] |
1520 * | 29,560 * | [6] | ||||||||
Wonderwerk Cave | South Africa | −27.85 | 23.06 | 1680 | W-1 | 900 | 34,800 | [67] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braun, K.; Nehme, C.; Pickering, R.; Rogerson, M.; Scroxton, N. A Window into Africa’s Past Hydroclimates: The SISAL_v1 Database Contribution. Quaternary 2019, 2, 4. https://doi.org/10.3390/quat2010004
Braun K, Nehme C, Pickering R, Rogerson M, Scroxton N. A Window into Africa’s Past Hydroclimates: The SISAL_v1 Database Contribution. Quaternary. 2019; 2(1):4. https://doi.org/10.3390/quat2010004
Chicago/Turabian StyleBraun, Kerstin, Carole Nehme, Robyn Pickering, Mike Rogerson, and Nick Scroxton. 2019. "A Window into Africa’s Past Hydroclimates: The SISAL_v1 Database Contribution" Quaternary 2, no. 1: 4. https://doi.org/10.3390/quat2010004
APA StyleBraun, K., Nehme, C., Pickering, R., Rogerson, M., & Scroxton, N. (2019). A Window into Africa’s Past Hydroclimates: The SISAL_v1 Database Contribution. Quaternary, 2(1), 4. https://doi.org/10.3390/quat2010004