SIU-ICUD: Management of Lymph Node–Positive Prostate Cancer
Abstract
:1. Introduction
The Definition of Positive Lymph Nodes
- Pathologically positive (pN+) lymph node metastasis, confirmed by pathology after Pelvic Lymph Node Dissection (PLND), which is considered the standard of care (SOC) for the diagnosis of positive lymph node disease in prostate cancer, or in rare cases, through nodal sampling;
- Clinically positive (cN+) lymph node metastasis suggested by imaging, with the advent of new nuclear imaging techniques, improves identification in this category. Unfortunately, despite these advances, up to one-third of lymph node metastases are still missed;
- Clinically negative (cN−) patients with high-risk features for lymph node involvement (LNI) can be readily identified using a host of validated formulas and nomograms.
2. Management of Pelvic Lymph Node Involvement
- In patients undergoing radical prostatectomy (RP), surgical options include either PLND or Extended Pelvic Lymph Node Dissection (ePLND);
- When radiation is the main treatment modality, whole pelvic radiotherapy (WPRT) with or without a nodal boost is considered the standard of care.
- (a)
- Surgical staging management
2.1. PLND vs. ePLND
- Limited PLND (LPLND): Involves the obturator nodes;
- Standard PLND (SPLND): Involves the obturator and external iliac nodes; as shown in Figure 1
- ePLND: Involves the obturator, external, and internal iliac nodes;
- Super-extended PLND (SePLND): Encompasses ePLND plus common iliac, presacral, and/or other nodes.
- (b)
- Nonsurgical management: (radiation therapy + systemic treatment):
- 1.
- Non-surgical management for patients with clinically node negative (cN0) at High Risk of lymph node metastasis (LNM) (i.e., Elective Nodal Irradiation)
2.1.1. GETUG-01
2.1.2. RTOG 9413
- 2.
- Non-surgical management for patients with cN + ve disease in the primary setting: Radiotherapeutic options
3. Nodal Irradiation: Simultaneous Integrated Boost (SIB) and Hypofractionation
4. Patients with pN1 Disease in the Postoperative Setting
5. The Postoperative Salvage Setting: N + ve Disease
6. The Case for Nodal Recurrence (rN + ve) Patients
7. SBRT in Oligometastatic Nodal Recurrence
8. Combined RT and Systemic Therapy
9. Volume of Treatment and RT Scheme: SBRT vs. Elective Nodal Radiotherapy (ENRT)
- Localized treatment (SBRT) or more extensive radiotherapy (ENRT);
- The combination of these radiotherapies with ADT and/or androgen receptor pathway inhibitors (ARPIs);
- The optimal timing and duration of such treatments.
10. Ongoing Trials and Future Directions
11. Toxicity of Radiotherapy
- Late GU toxicity: Theoretically, whole pelvic radiotherapy may increase toxicity compared with prostate-only radiotherapy [74]. There are discrepancies among studies regarding how much late GU toxicity there is, with some studies using advanced technologies reporting no significant difference in late GU toxicity with PORT versus WPRT at an intermediate dose [75,76,77,78]. In contrast, another study found a 40% increase in late GU toxicity with WPRT [16]
- Late GI toxicity: Similar inconsistencies exist with late GI toxicity. Although the GETUG-01 trial [14] did not report any excess late GI toxicity, the RTOG 9413 trial [13] found significantly worse GI toxicity with WPRT versus PORT (5.1% vs. 1.9%). Tharmalingam and colleagues confirmed this significant increase in late GI toxicity (≥grade 2) [16]. However, both studies involved patients treated before the routine use of 3D conformal EBRT.
- Hematological toxicity: Data on hematological toxicity are limited, and there were few ≥ grade 3 toxicities reported in the RTOG 9413 trial [13]. WPRT can result in lower absolute lymphocyte and white blood cell counts from baseline 1 year after treatment, particularly in smokers and in patients with low baseline lymphocyte counts. In such cases, the volume of ilium bone marrow receiving 40 Gray is a strong predictor of developing late lymphopenia [77]. WPRT increased late ≥grade 2 hematological toxicities, although absolute numbers remained low (29 [5%] of 570 patients) compared to prostate bed radiotherapy (27 [2%] of 1125 patients) [53]. Patient-reported toxicity scoring indicated more frequent bowel movements, loose stools, fecal urgency, and gas passage with WPRT [74].
12. Impact of Using Modern Radiotherapy Techniques on Toxicity
13. Additional Systemic Treatment
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Morikawa, L.K.; Roach, M., III. Pelvic nodal radiotherapy in patients with unfavorable intermediate and high-risk prostate cancer: Evidence, rationale, and future directions. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Zamboglou, C.; Peeken, J.C.; Janbain, A.; Katsahian, S.; Strouthos, I.; Ferentinos, K.; Farolfi, A.; Koerber, S.A.; Debus, J.; Vogel, M.E. Development and validation of a multi-institutional nomogram of outcomes for PSMA-PET–based salvage radiotherapy for recurrent prostate cancer. JAMA Netw. Open 2023, 6, e2314748. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; van den Bergh, R.C.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Sanda, M.G.; Cadeddu, J.A.; Kirkby, E.; Chen, R.C.; Crispino, T.; Fontanarosa, J.; Freedland, S.J.; Greene, K.; Klotz, L.H.; Makarov, D.V. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: Risk stratification, shared decision making, and care options. J. Urol. 2018, 199, 683–690. [Google Scholar] [CrossRef]
- Fossati, N.; Willemse, P.-P.M.; Van den Broeck, T.; van den Bergh, R.C.; Yuan, C.Y.; Briers, E.; Bellmunt, J.; Bolla, M.; Cornford, P.; De Santis, M. The benefits and harms of different extents of lymph node dissection during radical prostatectomy for prostate cancer: A systematic review. Eur. Urol. 2017, 72, 84–109. [Google Scholar] [CrossRef]
- Mattei, A.; Fuechsel, F.G.; Bhatta Dhar, N.; Warncke, S.H.; Thalmann, G.N.; Krause, T.; Studer, U.E. The template of the primary lymphatic landing sites of the prostate should be revisited: Results of a multimodality mapping study. Eur. Urol. 2008, 53, 118–125. [Google Scholar] [CrossRef]
- Van Eecke, H.; Devos, G.; Vansevenant, B.; Vander Stichele, A.; Devlies, W.; Berghen, C.; Everaerts, W.; De Meerleer, G.; Joniau, S. Defining the optimal template of salvage lymph node dissection for unilateral pelvic nodal recurrence of prostate cancer following radical prostatectomy. Int. J. Urol. 2023, 30, 92–99. [Google Scholar] [CrossRef]
- Quhal, F.; Bryniarski, P.; Rivas, J.G.; Gandaglia, G.; Shariat, S.F.; Rajwa, P. Salvage lymphadenectomy after primary therapy with curative intent for prostate cancer. Curr. Opin. Urol. 2023, 33, 269–273. [Google Scholar] [CrossRef]
- Ambrosini, F.; Falkenbach, F.; Budaeus, L.; Graefen, M.; Koehler, D.; Lischewski, F.; Gschwend, J.E.; Heck, M.; Eiber, M.; Knipper, S. Prevalence of bilateral loco-regional spread in unilateral pelvic PSMA PET positive recurrent prostate cancer. Minerva Urol. Nephrol. 2023, 75, 734–742. [Google Scholar] [CrossRef]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Lieng, H.; Kneebone, A.; Hayden, A.J.; Christie, D.R.H.; Davis, B.J.; Eade, T.N.; Emmett, L.; Holt, T.; Hruby, G.; Pryor, D.; et al. Radiotherapy for node-positive prostate cancer: 2019 Recommendations of the Australian and New Zealand Radiation Oncology Genito-Urinary group. Radiother. Oncol. 2019, 140, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, E.M.; Srinivas, S.; Adra, N.; An, Y.; Barocas, D.; Bitting, R.; Bryce, A.; Chapin, B.; Cheng, H.H.; D’Amico, A.V.; et al. NCCN Guidelines® Insights: Prostate Cancer, Version 1.2023. J. Natl. Compr. Cancer Netw. 2022, 20, 1288–1298. [Google Scholar]
- Roach, M.; Moughan, J.; Lawton, C.A.; Dicker, A.P.; Zeitzer, K.L.; Gore, E.M.; Kwok, Y.; Seider, M.J.; Hsu, I.-C.; Hartford, A.C. Sequence of hormonal therapy and radiotherapy field size in unfavourable, localised prostate cancer (NRG/RTOG 9413): Long-term results of a randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1504–1515. [Google Scholar] [CrossRef] [PubMed]
- Pommier, P.; Chabaud, S.; Lagrange, J.L.; Richaud, P.; Le Prise, E.; Wagner, J.P.; Azria, D.; Beckendorf, V.; Suchaud, J.P.; Bernier, V.; et al. Is There a Role for Pelvic Irradiation in Localized Prostate Adenocarcinoma? Update of the Long-Term Survival Results of the GETUG-01 Randomized Study. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 759–769. [Google Scholar] [CrossRef]
- Murthy, V.; Maitre, P.; Kannan, S.; Panigrahi, G.; Krishnatry, R.; Bakshi, G.; Prakash, G.; Pal, M.; Menon, S.; Phurailatpam, R.; et al. Prostate-Only Versus Whole-Pelvic Radiation Therapy in High-Risk and Very High-Risk Prostate Cancer (POP-RT): Outcomes From Phase III Randomized Controlled Trial. J. Clin. Oncol. 2021, 39, 1234–1242. [Google Scholar] [CrossRef]
- Tharmalingam, H.; Tsang, Y.; Choudhury, A.; Alonzi, R.; Wylie, J.; Ahmed, I.; Henry, A.; Heath, C.; Hoskin, P.J. External Beam Radiation Therapy (EBRT) and High-Dose-Rate (HDR) Brachytherapy for Intermediate and High-Risk Prostate Cancer: The Impact of EBRT Volume. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 525–533. [Google Scholar] [CrossRef]
- Dearnaley, D.; Griffin, C.L.; Lewis, R.; Mayles, P.; Mayles, H.; Naismith, O.F.; Harris, V.; Scrase, C.D.; Staffurth, J.; Syndikus, I.; et al. Toxicity and Patient-Reported Outcomes of a Phase 2 Randomized Trial of Prostate and Pelvic Lymph Node Versus Prostate only Radiotherapy in Advanced Localised Prostate Cancer (PIVOTAL). Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 605–617. [Google Scholar] [CrossRef]
- Roach, M., III; DeSilvio, M.; Lawton, C.; Uhl, V.; Machtay, M.; Seider, M.; Rotman, M.; Jones, C.; Asbell, S.; Valicenti, R. Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J. Clin. Oncol. 2003, 21, 1904–1911. [Google Scholar] [CrossRef]
- Granfors, T.; Modig, H.; Damber, J.-E.; Tomic, R. Long-term followup of a randomized study of locally advanced prostate cancer treated with combined orchiectomy and external radiotherapy versus radiotherapy alone. J. Urol. 2006, 176, 544–547. [Google Scholar] [CrossRef]
- Parker, C.C.; James, N.D.; Brawley, C.D.; Clarke, N.W.; Hoyle, A.P.; Ali, A.; Ritchie, A.W.; Attard, G.; Chowdhury, S.; Cross, W. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): A randomised controlled phase 3 trial. Lancet 2018, 392, 2353–2366. [Google Scholar] [CrossRef]
- Widmark, A.; Klepp, O.; Solberg, A.; Damber, J.-E.; Angelsen, A.; Fransson, P.; Lund, J.-Å.; Tasdemir, I.; Hoyer, M.; Wiklund, F. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): An open randomised phase III trial. Lancet 2009, 373, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.D.; Parulekar, W.R.; Sydes, M.R.; Brundage, M.; Kirkbride, P.; Gospodarowicz, M.; Cowan, R.; Kostashuk, E.C.; Anderson, J.; Swanson, G. Final report of the intergroup randomized study of combined androgen-deprivation therapy plus radiotherapy versus androgen-deprivation therapy alone in locally advanced prostate cancer. J. Clin. Oncol. 2015, 33, 2143–2150. [Google Scholar] [CrossRef]
- Schröder, F.H.; Kurth, K.H.; Fossa, S.D.; Hoekstra, W.; Karthaus, P.P.; De Prijck, L.; Collette, L. Early versus delayed endocrine treatment of T2-T3 pN1-3 M0 prostate cancer without local treatment of the primary tumour: Final results of European Organisation for the Research and Treatment of Cancer protocol 30846 after 13 years of follow-up (a randomised controlled trial). Eur. Urol. 2009, 55, 14–22. [Google Scholar] [PubMed]
- Messing, E.M.; Manola, J.; Yao, J.; Kiernan, M.; Crawford, D.; Wilding, G.; di’SantAgnese, P.A.; Trump, D. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol. 2006, 7, 472–479. [Google Scholar] [CrossRef]
- Pilepich, M.V.; Winter, K.; Lawton, C.A.; Krisch, R.E.; Wolkov, H.B.; Movsas, B.; Hug, E.B.; Asbell, S.O.; Grignon, D. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma--long-term results of phase III RTOG 85-31. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 1285–1290. [Google Scholar] [CrossRef]
- Tward, J.D.; Kokeny, K.E.; Shrieve, D.C. Radiation therapy for clinically node-positive prostate adenocarcinoma is correlated with improved overall and prostate cancer-specific survival. Pr. Radiat. Oncol. 2013, 3, 234–240. [Google Scholar] [CrossRef]
- Tilki, D.; Chen, M.H.; Wu, J.; Huland, H.; Graefen, M.; Wiegel, T.; Böhmer, D.; Mohamad, O.; Cowan, J.E.; Feng, F.Y.; et al. Adjuvant Versus Early Salvage Radiation Therapy for Men at High Risk for Recurrence Following Radical Prostatectomy for Prostate Cancer and the Risk of Death. J. Clin. Oncol. 2021, 39, 2284–2293. [Google Scholar] [CrossRef] [PubMed]
- Fonteyne, V.; Van Praet, C.; Ost, P.; Van Bruwaene, S.; Liefhooghe, N.; Berghen, C.; De Meerleer, G.; Vanneste, B.; Verbaeys, C.; Verbeke, S.; et al. Evaluating the Impact of Prostate Only Versus Pelvic Radiotherapy for Pathological Node-positive Prostate Cancer: First Results from the Multicenter Phase 3 PROPER Trial. Eur. Urol. Focus 2023, 9, 317–324. [Google Scholar] [CrossRef]
- Da Pozzo, L.F.; Cozzarini, C.; Briganti, A.; Suardi, N.; Salonia, A.; Bertini, R.; Gallina, A.; Bianchi, M.; Fantini, G.V.; Bolognesi, A.; et al. Long-Term Follow-up of Patients with Prostate Cancer and Nodal Metastases Treated by Pelvic Lymphadenectomy and Radical Prostatectomy: The Positive Impact of Adjuvant Radiotherapy. Eur. Urol. 2009, 55, 1003–1011. [Google Scholar] [CrossRef]
- Briganti, A.; Karnes, R.J.; Pozzo, L.F.D.; Cozzarini, C.; Capitanio, U.; Gallina, A.; Suardi, N.; Bianchi, M.; Tutolo, M.; Salonia, A.; et al. Combination of Adjuvant Hormonal and Radiation Therapy Significantly Prolongs Survival of Patients with pT2–4 pN+ Prostate Cancer: Results of a Matched Analysis. Eur. Urol. 2011, 59, 832–840. [Google Scholar] [CrossRef]
- Kaplan, J.R.; Kowalczyk, K.J.; Borza, T.; Gu, X.; Lipsitz, S.R.; Nguyen, P.L.; Friedlander, D.F.; Trinh, Q.-D.; Hu, J.C. Patterns of care and outcomes of radiotherapy for lymph node positivity after radical prostatectomy. BJU Int. 2013, 111, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Abdollah, F.; Karnes, R.J.; Suardi, N.; Cozzarini, C.; Gandaglia, G.; Fossati, N.; Vizziello, D.; Sun, M.; Karakiewicz, P.I.; Menon, M.; et al. Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer. J. Clin. Oncol. 2014, 32, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Rusthoven, C.G.; Carlson, J.A.; Waxweiler, T.V.; Raben, D.; Dewitt, P.E.; Crawford, E.D.; Maroni, P.D.; Kavanagh, B.D. The Impact of Definitive Local Therapy for Lymph Node-Positive Prostate Cancer: A Population-Based Study. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Gray, P.J.; Jemal, A.; Efstathiou, J.A. Androgen deprivation with or without radiation therapy for clinically node-positive prostate cancer. J. Natl. Cancer Inst. 2015, 107, djv119. [Google Scholar] [CrossRef]
- Jegadeesh, N.; Liu, Y.; Zhang, C.; Zhong, J.; Cassidy, R.J.; Gillespie, T.; Kucuk, O.; Rossi, P.; Master, V.A.; Alemozaffar, M.; et al. The role of adjuvant radiotherapy in pathologically lymph node-positive prostate cancer. Cancer 2017, 123, 512–520. [Google Scholar] [CrossRef]
- Van Hemelryk, A.; De Meerleer, G.; Ost, P.; Poelaert, F.; De Gersem, W.; Decaestecker, K.; De Visschere, P.; Fonteyne, V. The Outcome for Patients with Pathologic Node-Positive Prostate Cancer Treated with Intensity Modulated Radiation Therapy and Androgen Deprivation Therapy: A Case-Matched Analysis of pN1 and pN0 Patients. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 323–332. [Google Scholar] [CrossRef]
- Poelaert, F.; Fonteyne, V.; Ost, P.; De Troyer, B.; Decaestecker, K.; De Meerleer, G.; De Visschere, P.; Claeys, T.; Dhondt, B.; Lumen, N. Whole pelvis radiotherapy for pathological node-positive prostate cancer: Oncological outcome and prognostic factors. Strahlenther. Onkol. 2017, 193, 444–451. [Google Scholar] [CrossRef]
- Seisen, T.; Vetterlein, M.W.; Karabon, P.; Jindal, T.; Sood, A.; Nocera, L.; Nguyen, P.L.; Choueiri, T.K.; Trinh, Q.D.; Menon, M.; et al. Efficacy of Local Treatment in Prostate Cancer Patients with Clinically Pelvic Lymph Node-positive Disease at Initial Diagnosis. Eur. Urol. 2018, 73, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Bryant, A.K.; Kader, A.K.; McKay, R.R.; Einck, J.P.; Mell, L.K.; Mundt, A.J.; Kane, C.J.; Efstathiou, J.A.; Murphy, J.D.; Rose, B.S. Definitive Radiation Therapy and Survival in Clinically Node-Positive Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 1188–1193. [Google Scholar] [CrossRef]
- Touijer, K.A.; Karnes, R.J.; Passoni, N.; Sjoberg, D.D.; Assel, M.; Fossati, N.; Gandaglia, G.; Eastham, J.A.; Scardino, P.T.; Vickers, A.; et al. Survival Outcomes of Men with Lymph Node-positive Prostate Cancer After Radical Prostatectomy: A Comparative Analysis of Different Postoperative Management Strategies. Eur. Urol. 2018, 73, 890–896. [Google Scholar] [CrossRef]
- Gupta, M.; Patel, H.D.; Schwen, Z.R.; Tran, P.T.; Partin, A.W. Adjuvant radiation with androgen-deprivation therapy for men with lymph node metastases after radical prostatectomy: Identifying men who benefit. BJU Int. 2019, 123, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Vale, C.L.; Burdett, S.; Rydzewska, L.H.M.; Albiges, L.; Clarke, N.W.; Fisher, D.; Fizazi, K.; Gravis, G.; James, N.D.; Mason, M.D.; et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: A systematic review and meta-analyses of aggregate data. Lancet Oncol. 2016, 17, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Ahlgren, G.M.; Flodgren, P.; Tammela, T.L.J.; Kellokumpu-Lehtinen, P.; Borre, M.; Angelsen, A.; Iversen, J.R.; Sverrisdottir, A.; Jonsson, E.; Sengelov, L. Docetaxel Versus Surveillance After Radical Prostatectomy for High-risk Prostate Cancer: Results from the Prospective Randomised, Open-label Phase 3 Scandinavian Prostate Cancer Group 12 Trial. Eur. Urol. 2018, 73, 870–876. [Google Scholar] [CrossRef]
- Attard, G.; Murphy, L.; Clarke, N.W.; Cross, W.; Jones, R.J.; Parker, C.C.; Gillessen, S.; Cook, A.; Brawley, C.; Amos, C.L.; et al. Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: A meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol. Lancet 2022, 399, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Onishi, M.; Kawamura, H.; Murata, K.; Inoue, T.; Murata, H.; Takakusagi, Y.; Okonogi, N.; Ohkubo, Y.; Okamoto, M.; Kaminuma, T. Intensity-modulated radiation therapy with simultaneous integrated boost for clinically node-positive prostate cancer: A single-institutional retrospective study. Cancers 2021, 13, 3868. [Google Scholar] [CrossRef]
- Basu, T.; Senapati, M.R.; Priyadharshni, J.M.; Karpe, A.; Gawde, S.; Gnair, R.; Saxena, U.; Maxwell, S.J.; Pawar, T. Simultaneous integrated boost (SIB) stereotactic body radiotherapy (SBRT) for prostate and pelvic nodes in high risk, node positive and oligometastatic prostate cancers: Safety, efficacy and quality of life outcome measures. J. Clin. Oncol. 2023, 41, 121. [Google Scholar] [CrossRef]
- Mizowaki, T.; Takayama, K.; Nakamura, K.; Aizawa, R.; Inoue, T.; Yamasaki, T.; Kobayashi, T.; Akamatsu, S.; Ogawa, O. Outcomes of high-dose whole pelvic simultaneous integrated boost IMRT in patients with pelvic lymph node-positive prostate cancer. J. Clin. Oncol. 2019, 37, 192. [Google Scholar] [CrossRef]
- Blanchard, P.; Faivre, L.; Lesaunier, F.; Salem, N.; Mesgouez-Nebout, N.; Deniau-Alexandre, E.; Rolland, F.; Ferrero, J.-M.; Houédé, N.; Mourey, L. Outcome according to elective pelvic radiation therapy in patients with high-risk localized prostate cancer: A secondary analysis of the GETUG 12 phase 3 randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 85–92. [Google Scholar] [CrossRef]
- Abdollah, F.; Dalela, D.; Sood, A.; Keeley, J.; Alanee, S.; Briganti, A.; Montorsi, F.; Peabody, J.O.; Menon, M. Impact of adjuvant radiotherapy in node-positive prostate cancer patients: The importance of patient selection. Eur. Urol. 2018, 74, 253–256. [Google Scholar] [CrossRef]
- Baker, B.R.; Mohiuddin, J.J.; Chen, R.C. The role of radiotherapy in node-positive prostate cancer. Oncology 2015, 29, 108–114. [Google Scholar]
- Song, C.; Byun, S.J.; Kim, Y.S.; Ahn, H.; Byun, S.-S.; Kim, C.-S.; Lee, S.E.; Kim, J.-S. Elective pelvic irradiation in prostate cancer patients with biochemical failure following radical prostatectomy: A propensity score matching analysis. PLoS ONE 2019, 14, e0215057. [Google Scholar] [CrossRef]
- Ramey, S.J.; Agrawal, S.; Abramowitz, M.C.; Moghanaki, D.; Pisansky, T.M.; Efstathiou, J.A.; Michalski, J.M.; Spratt, D.E.; Hearn, J.W.; Koontz, B.F. Multi-institutional evaluation of elective nodal irradiation and/or androgen deprivation therapy with postprostatectomy salvage radiotherapy for prostate cancer. Eur. Urol. 2018, 74, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Pollack, A.; Karrison, T.G.; Balogh, A.G.; Gomella, L.G.; Low, D.A.; Bruner, D.W.; Wefel, J.S.; Martin, A.-G.; Michalski, J.M.; Angyalfi, S.J. The addition of androgen deprivation therapy and pelvic lymph node treatment to prostate bed salvage radiotherapy (NRG Oncology/RTOG 0534 SPPORT): An international, multicentre, randomised phase 3 trial. Lancet 2022, 399, 1886–1901. [Google Scholar] [CrossRef] [PubMed]
- Iversen, P.; Roder, M.A. The Early Prostate Cancer program: Bicalutamide in nonmetastatic prostate cancer. Expert. Rev. Anticancer. Ther. 2008, 8, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Gillessen, S.; Bossi, A.; Davis, I.D.; de Bono, J.; Fizazi, K.; James, N.D.; Mottet, N.; Shore, N.; Small, E.; Smith, M. Management of patients with advanced prostate cancer. Part I: Intermediate-/high-risk and locally advanced disease, biochemical relapse, and side effects of hormonal treatment: Report of the Advanced Prostate Cancer Consensus Conference 2022. Eur. Urol. 2023, 83, 267–293. [Google Scholar] [CrossRef]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: Long-term results of the SABR-COMET phase II randomized trial. J. Clin. Oncol. 2020, 38, 2830–2838. [Google Scholar] [CrossRef]
- Phillips, R.; Shi, W.Y.; Deek, M.; Radwan, N.; Lim, S.J.; Antonarakis, E.S.; Rowe, S.P.; Ross, A.E.; Gorin, M.A.; Deville, C. Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: The ORIOLE phase 2 randomized clinical trial. JAMA Oncol. 2020, 6, 650–659. [Google Scholar] [CrossRef]
- Harrow, S.; Palma, D.A.; Olson, R.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P. Stereotactic radiation for the comprehensive treatment of oligometastases (SABR-COMET): Extended long-term outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 611–616. [Google Scholar] [CrossRef]
- Ost, P.; Reynders, D.; Decaestecker, K.; Fonteyne, V.; Lumen, N.; De Bruycker, A.; Lambert, B.; Delrue, L.; Bultijnck, R.; Claeys, T.; et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J. Clin. Oncol. 2018, 36, 446–453. [Google Scholar] [CrossRef]
- Siva, S.; Bressel, M.; Murphy, D.G.; Shaw, M.; Chander, S.; Violet, J.; Tai, K.H.; Udovicich, C.; Lim, A.; Selbie, L.; et al. Stereotactic Abative Body Radiotherapy (SABR) for Oligometastatic Prostate Cancer: A Prospective Clinical Trial. Eur. Urol. 2018, 74, 455–462. [Google Scholar] [CrossRef]
- Glicksman, R.M.; Ramotar, M.; Metser, U.; Chung, P.W.; Liu, Z.; Vines, D.; Finelli, A.; Hamilton, R.; Fleshner, N.E.; Perlis, N.; et al. Extended Results and Independent Validation of a Phase 2 Trial of Metastasis-Directed Therapy for Molecularly Defined Oligometastatic Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Hölscher, T.; Baumann, M.; Kotzerke, J.; Zöphel, K.; Paulsen, F.; Müller, A.C.; Zips, D.; Koi, L.; Thomas, C.; Löck, S.; et al. Toxicity and Efficacy of Local Ablative, Image-guided Radiotherapy in Gallium-68 Prostate-specific Membrane Antigen Targeted Positron Emission Tomography-staged, Castration-sensitive Oligometastatic Prostate Cancer: The OLI-P Phase 2 Clinical Trial. Eur. Urol. Oncol. 2022, 5, 44–51. [Google Scholar] [CrossRef]
- Conde-Moreno, A.J.; Lopez, F.; Hervas, A.; Morillo, V.; Mendez, A.; Puertas, M.D.M.; Albarrán, J.V.; De Iturriaga, A.G.; Rico, M.; Vázquez de la Torre, M.L.; et al. Phase II Trial of SBRT and Androgen Deprivation for Oligometastases in Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, S59. [Google Scholar] [CrossRef]
- Deek, M.P.; Van der Eecken, K.; Sutera, P.; Deek, R.A.; Fonteyne, V.; Mendes, A.A.; Decaestecker, K.; Kiess, A.P.; Lumen, N.; Phillips, R. Long-term outcomes and genetic predictors of response to metastasis-directed therapy versus observation in oligometastatic prostate cancer: Analysis of STOMP and ORIOLE trials. J. Clin. Oncol. 2022, 40, 3377–3382. [Google Scholar] [CrossRef]
- Gillessen, S.; Bossi, A.; Davis, I.D.; de Bono, J.; Fizazi, K.; James, N.D.; Mottet, N.; Shore, N.; Small, E.; Smith, M. Management of patients with advanced prostate cancer—Metastatic and/or castration-resistant prostate cancer: Report of the Advanced Prostate Cancer Consensus Conference (APCCC) 2022. Eur. J. Cancer 2023, 185, 178–215. [Google Scholar] [CrossRef]
- Hussain, M.; Tangen, C.; Higano, C.; Vogelzang, N.; Thompson, I. Evaluating intermittent androgen-deprivation therapy phase III clinical trials: The devil is in the details. J. Clin. Oncol. 2016, 34, 280–285. [Google Scholar] [CrossRef]
- Joseph, I.; Nelson, J.B.; Denmeade, S.R.; Isaacs, J.T. Androgens regulate vascular endothelial growth factor content in normal and malignant prostatic tissue. Clin. Cancer Res 1997, 3, 2507–2511. [Google Scholar] [PubMed]
- Roden, A.C.; Moser, M.T.; Tri, S.D.; Mercader, M.; Kuntz, S.M.; Dong, H.; Hurwitz, A.A.; McKean, D.J.; Celis, E.; Leibovich, B.C. Augmentation of T cell levels and responses induced by androgen deprivation. J. Immunol. 2004, 173, 6098–6108. [Google Scholar] [CrossRef] [PubMed]
- Philippou, Y.; Sjoberg, H.T.; Murphy, E.; Alyacoubi, S.; Jones, K.I.; Gordon-Weeks, A.N.; Phyu, S.; Parkes, E.E.; Gillies McKenna, W.; Lamb, A.D. Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a murine prostate cancer model. Br. J. Cancer 2020, 123, 1089–1100. [Google Scholar] [CrossRef]
- Zilli, T.; Dirix, P.; Heikkilä, R.; Liefhooghe, N.; Siva, S.; Gomez-Iturriaga, A.; Everaerts, W.; Otte, F.; Shelan, M.; Mercier, C. The multicenter, randomized, phase 2 PEACE V-STORM trial: Defining the best salvage treatment for oligorecurrent nodal prostate cancer metastases. Eur. Urol. Focus 2021, 7, 241–244. [Google Scholar] [CrossRef]
- Zilli, T.; Achard, V.; Dal Pra, A.; Schmidt-Hegemann, N.; Jereczek-Fossa, B.A.; Lancia, A.; Ingrosso, G.; Alongi, F.; Aluwini, S.; Arcangeli, S. Recommendations for radiation therapy in oligometastatic prostate cancer: An ESTRO-ACROP Delphi consensus. Radiother. Oncol. 2022, 176, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Swami, U.; Velho, P.I.; Nussenzveig, R.; Chipman, J.; Santos, V.S.; Erickson, S.; Dharmaraj, D.; Alva, A.S.; Vaishampayan, U.N.; Esther, J. Association of SPOP mutations with outcomes in men with de novo metastatic castration-sensitive prostate cancer. Eur. Urol. 2020, 78, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Kucharczyk, M.J.; So, J.; Gravis, G.; Sweeney, C.; Saad, F.; Niazi, T. A combined biological and clinical rationale for evaluating metastasis directed therapy in the management of oligometastatic prostate cancer. Radiother. Oncol. 2020, 152, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Sini, C.; Chiorda, B.N.; Gabriele, P.; Sanguineti, G.; Morlino, S.; Badenchini, F.; Cante, D.; Carillo, V.; Gaetano, M.; Giandini, T. Patient-reported intestinal toxicity from whole pelvis intensity-modulated radiotherapy: First quantification of bowel dose–volume effects. Radiother. Oncol. 2017, 124, 296–301. [Google Scholar] [CrossRef]
- Chuong, M.D.; Hartsell, W.; Larson, G.; Tsai, H.; Laramore, G.E.; Rossi, C.J.; Wilkinson, J.B.; Kaiser, A.; Vargas, C. Minimal toxicity after proton beam therapy for prostate and pelvic nodal irradiation: Results from the proton collaborative group REG001-09 trial. Acta Oncol. 2018, 57, 368–374. [Google Scholar] [CrossRef]
- Ishii, K.; Yamanaga, T.; Ogino, R.; Hosokawa, Y.; Kishimoto, S.; Nakahara, R.; Shimada, C.; Kawamorita, R.; Tada, T.; Hayashi, Y. Bowel and urinary quality of life after whole-pelvic versus prostate-only volumetric-modulated arc therapy for localized prostate cancer. Pract. Radiat. Oncol. 2018, 8, e49–e55. [Google Scholar] [CrossRef]
- Sini, C.; Fiorino, C.; Perna, L.; Chiorda, B.N.; Deantoni, C.L.; Bianchi, M.; Sacco, V.; Briganti, A.; Montorsi, F.; Calandrino, R. Dose–volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation. Radiother. Oncol. 2016, 118, 79–84. [Google Scholar] [CrossRef]
- Ong, A.L.; Ang, K.; Master, Z.; Wong, S.M.; Tuan, J.K. Intensity-modulated radiotherapy for whole pelvis irradiation in prostate cancer: A dosimetric and plan robustness study between photons and protons. Tech. Innov. Patient Support. Radiat. Oncol. 2018, 6, 11–19. [Google Scholar] [CrossRef]
- Davis, I.D.; Martin, A.J.; Stockler, M.R.; Begbie, S.; Chi, K.N.; Chowdhury, S.; Coskinas, X.; Frydenberg, M.; Hague, W.E.; Horvath, L.G. Enzalutamide with standard first-line therapy in metastatic prostate cancer. N. Engl. J. Med. 2019, 381, 121–131. [Google Scholar] [CrossRef]
- Buonerba, C.; Ferro, M.; Dolce, P.; Crocetto, F.; Verde, A.; Lucarelli, G.; Scafuri, L.; Facchini, S.; Vaia, A.; Marinelli, A. Predictors of efficacy of androgen-receptor-axis-targeted therapies in patients with metastatic castration-sensitive prostate cancer: A systematic review and meta-analysis. Crit. Rev. Oncol./Hematol. 2020, 151, 102992. [Google Scholar] [CrossRef]
- James, N.D.; Ingleby, F.C.; Clarke, N.W.; Amos, C.L.; Attard, G.; Brawley, C.D.; Chowdhury, S.; Cross, W.; Dearnaley, D.P.; Gilbert, D.C. Docetaxel for nonmetastatic prostate cancer: Long-term survival outcomes in the STAMPEDE randomized controlled trial. JNCI Cancer Spectr. 2022, 6, pkac043. [Google Scholar] [CrossRef] [PubMed]
Guideline | cN1M0 | pN1M0 |
---|---|---|
EAU [10] | 1. Offer local treatment (either RP or EBRT) and long-term ADT 2. Offer EBRT for prostate and pelvis in combination with long-term ADT and 2 years of abiraterone | 1. Offer adjuvant ADT 2. Offer ADT + EBRT 3. Offer observation (expectant management) after LND if ≤ 2 nodes and PSA < 0.1 ng/mL |
FROGG [11] | 1. Pelvis and prostate EBRT and long-term ADT | 1 Individualized discussion of observation, ADT, or EBRT + ADT 2 Patients should be referred to a radiation oncologist to discuss EBRT + ADT |
NCCN [12] | 1. EBRT and ADT 2. EBRT, ADT, and abiraterone 3. ADT and abiraterone 4. If <5 years expected survival and asymptomatic: Observation or ADT | 1 ADT 2 EBRT + ADT 3 Observation |
Study Design | No. of Pts | LNI Risk | Treatment Groups | Outcome | |
---|---|---|---|---|---|
RTOG 9413 [13] | RCT | 1322 | All > 15% (roach formula) | 2 × 2 design, Neoadjuvant ADT vs. adjuvant ADT–WPRT vs. PORT | The best PFS seen in patients with WPRT was in GS 7–10, PSA < 30 ng/mL, and Gleason score < 7 and PSA > 30 ng/mL |
GETUG-01 trial [14] | RCT | 446 | 45% of pts > 15% | WPRT vs. PORT—4–8 mo of ADT | No difference in 10 yr OS and EFS. A higher but non-WPRT has better EFS in the low-risk subgroup (77.2% vs. 62.5%; p = 0.18) |
POP-RT trial [15] | RCT | 224 | All > 20% (roach formula) | WPRT vs. PORT—24 mo of ADT | Favors WPRT: 5-yr BFFS was 95.0% with WPRT versus 81.2% with PORT, (HR) of 0.23 p < 0.0001). WPRT 5-yr DFS (89.5% vs. 77.2%; HR, 0.40; p = 0.002), 5 yr OS no differrence HR, 0.92; p = 0.83) |
Tharmalingam et al. [16] | Cohort | 812 | Not specified | WPRT vs. PORT (with brachytherapy boost)—variable ADT | Favors WPRT: Better 5-yr BFFS vs. PORT (84% vs. 77%; p = 0.001) |
PIVOTAL trial [17] | RCT | 124 | All > 30% (roach formula) | WPRT vs. PORT–6–9 mo of ADT | Confirmed safety of HD-WPRT |
Study Design | No. of N1M0 pts | Treatment Groups | Outcome | ||
---|---|---|---|---|---|
ADT as adjuvant treatment | Schröder et al. (2009) [23] | RCT: EORCT 308846 | 234 | Immediate ADT vs. delayed ADT | NS difference—HR 1.22—CI (0.92–1.62) for prostate CSS |
Messing et al. (2006) [24] | RCT: ECOG 3886 | 98 | Immediate ADT vs. delayed ADT | Favors immediate ADT—better OS—HR 1.84 p = 0.04 | |
EBRT as adjuvant treatment | Pilepich et al. (2005) [25] | RCT: phase III 85-31 | 263 | EBRT +ADT vs. EBRT alone | Favors EBRT + ADT, especially high GS (p = 0.002) |
Tward et al. (2013) [26] | SEER data observational | 1100 | EBRT vs. NO EBRT | Favors EBRT— 10 yr CSS HR 0.66 p ≤ 0.01 10 yr OS—HR 0.70 p ≤ 0.01 | |
Tiliki et al. (2015) [27] | Retrospective, multi-institution | 1491 | Adjuvant vs. early salvage therapy | Favors adjuvant EBRT in case of pN1—HR 0.66 (p = 0.04) | |
Fonteyne et al. (2022) [28] | RCT, PROPER trial | 69 | PORT (arm A) vs. WPRT (arm B) | No difference WPRT over PORT; 3 yr. bRES 79% (PORT)% vs. 92% (WPRT), p = 0.08; 3 yr OS 92% (PORT)% vs. 93% (WPRT), p = 0.61 | |
ADT ± any local therapy | Da Pozzo et al. (2009) [29] | Retrospective, single institutions | 250 | ADT vs. EBRT +ADT | No difference, 10 yr BCR–free survival 51% (combination) vs. 42% (ADT) p = 0.11–10 yr CSS 70% (combination) vs. 72% (ADT) p = 0.22 |
Briganti et al. (2011) [30] | Retrospective, two institutions | 364 | ADT vs. EBRT +ADT | Favors adjuvant EBRT —10 yr. CSS 86% (combination) vs. 70% (ADT) p = 0.004; 10 yr OS–74% (combination) vs. 55% (ADT) p < 0.001 | |
Kaplan et al. (2013) [31] | SEER data observational | 577 | ADT vs. EBRT +ADT | No benefit of adjuvant EBRT: OM 5.35 (EBRT) vs. 3.77 (no EBRT) events per 100 person/yr. (p = 0.193)—PCSM 2.39 (EBRT) vs. 1.3 (no EBRT) (p = 0.354) | |
Abdollah et al. (2014) [32] | Retrospective, two institutions | 1107 | ADT vs. EBRT +ADT | Favors ADT + adj. EBRT–8 yr. OM-free survival of 88% (ADT + EBRT) vs. 75% (ADT) (p < 0.01)—8 yr. CSM-free 86% (ADT = EBRT) vs. 92% (ADT) (p = 0.08) | |
Rusthoven et al. (2014) [33] | SEER data observational | 2991 | RT, RP, or both vs. no local therapy | Favors EBRT-10 yr. OS 45% vs. 29, p < 0.001 -10 yr PCSS 76% vs. 53%, p < 0.001 | |
Lin et al. (2015) [34] | Observational | 3540 | ADT vs. ADT +EBRT | Favors ADT + EBRT 50% reduction in ACM–HR 0.50 (p < 0.001 | |
Jegadeesh et al. (2016) [35] | Retrospective | 826 | ADT vs. ADT + EBRT | Favors ADT + EBRT–improved OS—HR 0.67 (p < 0.001) | |
Van hemelryk et al. (2016) [36] | Retrospective–case matched | 69 | Case matching of pN1 and pN0 after EBRT +ADT | 5 yr bRFS 65% vs. 79% (p = 0.08). 5 yr cRFS 70% vs. 83% (p = 0.04). 5 yr PCSS 92% vs. 93% (p = 0.66). 5 yr OS 82% vs. 80% (p = 0.58) | |
Poelaert et al. (2016) [37] | Retrospective | 154 | ADT + WPRT | 5 yr CSS 96%. 5 yr bRFS 67%.5 yr cRFS 71%-5 yr OS 89% | |
Seisen et al. (2018) [38] | Observational | 1987 | ADT vs. ADT + local therapy | Favors ADT + local therapy | |
Bryant et al. (2018) [39] | Observational | 648 | ADT vs. ADT + EBRT | Favors ADT + EBRT.PCSS HR 0.05 p = 0.02.ACM HR 0.38 p < 0.001 | |
Toujer et al. (2018) [40] | Retrospective | 1338 | Observation vs. ADT alone vs. ADT + EBRT | Favors ADT + EBRT over ADT alone, HR 0.46 for OS (p < 0.0001); Favors ADT + EBRT over observation, HR 0.41 for OS (p < 0.0001) | |
Gupta et al. (2019) [41] | Retrospective, 3 institutions | 8074 | Observation vs. ADT alone vs. ADT + EBRT | Favors ADT + EBRT over ADT alone, HR 0.76 for OS (p = 0.007)—Favors ADT + EBRT over observation, HR 0.77 for OS (p = 0.008) | |
ADT ± systemic treatment | Vale et al. (2016) [42] | Systematic review, GETUG-12, RTOG 0521, STAMPEDE | 945 | ADT ± Docetaxel | OS, no benefit of adding Docetaxel, HR 0.87, (p = 0.218) |
Ahlgren et al. (2018) [43] | RCT, SPCG-12 trial | 55/459–(27 arm A and 28 arm B) | Arm A: Docetaxel. Arm B: Surveillance | No difference in time to BCR > 0.05 ng/mL (p = 0.06) | |
Attard et al. (2022) [44] | RCT 1: Abiraterone trial; RCT 2: Abiraterone + enzalutamide trial STAMPEDE protocol | 774 | 1: ADT vs. ADT + abiraterone 2: ADT vs. ADT + abiraterone + enzalutamide | Favors ADT + abiraterone (combination) vs. ADT (alone).6 yr metastasis-free survival 82 vs. 69% HR 0.53 p < 0.0001 |
Study (Ref) | N | Imaging/ N◦ of Mets | % of Nodal Lesions | MDT/Design | Median FU | Outcome |
---|---|---|---|---|---|---|
Harrows SABR-COMT phase II RCT [58] | 16/99 | Conv./1–5 | PSOC vs. SBRT + PSOC | 5.7 yr | 8 yr OS: HR 0.05; 8 yr PFS: HR 0.45 | |
OST [59]-STOMP-phase II RCT | 62 | PET-CHO/1–3 | 55% | Surveillance vs. SBRT | 3 yr | ADTF: 13 vs. 21 mo (HR 0.06), p = 0.11) |
Phillips- [57] ORIOLE–phase II RCT | 4 | Conv. PSMA-PET 1–3 | 58% | Surveillance vs. SBRT | 19 mo | PFS: 81% vs. 39% (p = 0.005) HR 0.03 (p = 0.002) |
Siva–[60] POPSTAR phase I | 33 | CT, BS, F-PET/1–3 | 39% | SBRT (ADT in 33%) | 24 mo | 2 yr Local-PFS 93%/2 yr DFS 39%/2 yr ADTF 48% |
Glicksman [61] PSMA MRgRT phase II | 74 | PSMA-PET, MR/ 2 | 37% | SBRT (87%) or surgery (no ADT) | 41 mo | PSA response: Median 21 mo /PSA-PFS median 45 mo |
Holscher [62] OLIP phase II | 63 | PSMA-PET, MR/ 1 lesion | 68% | SBRT 77% CRT 50 Gy 23%—No ADT | 37 mo | No Grade > 2 treatment related toxicity time to ADT 20.6 mo |
Conde Moreno [63] SBRT-SG05 phase II | 67 | PET-CHO, MR/‘1–5 | 57% | SBRT + ADT | 41 mo | Median DPFS 54.2 mo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Société Internationale d’Urologie. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaheen, H.; Roach, M., 3rd; Elsemary, E.E. SIU-ICUD: Management of Lymph Node–Positive Prostate Cancer. Soc. Int. Urol. J. 2025, 6, 46. https://doi.org/10.3390/siuj6030046
Shaheen H, Roach M 3rd, Elsemary EE. SIU-ICUD: Management of Lymph Node–Positive Prostate Cancer. Société Internationale d’Urologie Journal. 2025; 6(3):46. https://doi.org/10.3390/siuj6030046
Chicago/Turabian StyleShaheen, Haitham, Mack Roach, 3rd, and Eman Essam Elsemary. 2025. "SIU-ICUD: Management of Lymph Node–Positive Prostate Cancer" Société Internationale d’Urologie Journal 6, no. 3: 46. https://doi.org/10.3390/siuj6030046
APA StyleShaheen, H., Roach, M., 3rd, & Elsemary, E. E. (2025). SIU-ICUD: Management of Lymph Node–Positive Prostate Cancer. Société Internationale d’Urologie Journal, 6(3), 46. https://doi.org/10.3390/siuj6030046