Biomarker Evaluation and Clinical Development
Abstract
:Introduction
Can the Biomarker Predict the Outcome of Interest?
Choose the right outcome
Does the biomarker distinguish between samples of clearly distinguishable patients?
Is the biomarker associated with the outcome in patients the biomarker would be applied to in practice?
Assessing Predictiveness
Discrimination
Calibration
Clinical utility
Impact Studies
Study Design Issues
Recommendations
Conclusions
Conflicts of Interest
Abbreviations
AUC | area under the curve |
DRE | digital rectal examination |
EPCA | early prostate cancer antigen |
PCPT | Prostate Cancer Prevention Trial |
PCPTRC | Prostate Cancer Risk Calculator |
ROC | receiver operating characteristic |
EPCA | early prostate cancer antigen |
References
- Thompson, I.M.; Ankerst, D.P.; Chi, C.; et al. Assessing prostate cancer risk: Results from the Prostate Cancer Prevention Trial. J. Ntl. Cancer Inst. 2006, 98, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Ankerst, D.P.; Straubinger, J.; Selig, K.; et al. A Contemporary Prostate Biopsy Risk Calculator Based on Multiple Heterogeneous Cohorts. Eur. Urol. 2018, 74, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Kattan, M.W.; Yu, C.; Stephenson, A.J.; Sartor, O.; Tombal, B. Clinicians versus nomogram: Predicting future technetium-99m bone scan positivity in patients with rising prostate-specific antigen after radical prostatectomy for prostate cancer. Urology 2013, 81, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Jelovsek, J.E.; Chagin, K.; Brubaker, L.; et al. A model for predicting the risk of de novo stress urinary incontinence in women undergoing pelvic organ prolapse surgery. Obstet Gynecol. 2014, 123, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.L.; Gerigk, C.; Gonen, M.; et al. Comparisons of nomograms and urologists’ predictions in prostate cancer. Semin. Urol. Oncol. 2002, 20, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Peeters, K.C.; Kattan, M.W.; Hartgrink, H.H.; et al. Validation of a nomogram for predicting disease-specific survival after an R0 resection for gastric carcinoma. Cancer 2005, 103, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Novotny, A.R.; Schuhmacher, C.; Busch, R.; Kattan, M.W.; Brennan, M.F.; Siewert, J.R. Predicting individual survival after gastric cancer resection: Validation of a U.S.-derived nomogram at a single high-volume center in Europe. Ann. Surg. 2006, 243, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Weiser, M.R.; Landmann, R.G.; Kattan, M.W.; et al. Individualized prediction of colon cancer recurrence using a nomogram. J. Clin. Oncol. 2008, 26, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Weiser, M.R.; Gönen, M.; Chou, J.F.; Kattan, M.W.; Schrag, D. Predicting survival after curative colectomy for cancer: Individualizing colon cancer staging. J. Clin. Oncol. 2011, 29, 4796–4802. [Google Scholar] [CrossRef]
- Steyerberg, E.W. Clinical Prediction Models: A Practical Approach to Development, Validation and Updating; Springer: New York, NY, USA, 2019. [Google Scholar]
- Schumacher, F.R.; Al Olama, A.A.; Berndt, S.I.; et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 2018, 50, 928–936. [Google Scholar] [CrossRef]
- Vertosick, E.A.; Häggström, C.; Sjoberg, D.D.; et al. Prespecified 4 Kallikrein Marker Model (4Kscore) at Age 50 or 60 for Early Detection of Lethal Prostate Cancer in a Large Population Based Cohort of Asymptomatic Men Followed for 20 Years. J. Urol. 2020. [Google Scholar] [CrossRef]
- Sjoberg, D.D.; Vickers, A.J.; Assel, M.; et al. Twenty-year risk of prostate cancer death by midlife prostate-specific antigen and a panel of four Kallikrein markers in a large population-based cohort of healthy men. Eur. Urol. 2018, 73, 941–948. [Google Scholar] [CrossRef]
- Marascio, J.; Spratt, D.E.; Zhang, J.; et al. Prospective study to define the clinical utility and benefit of Decipher testing in men following prostatectomy. Prostate Cancer Prostatic Dis. 2020, 23, 295–302. [Google Scholar] [CrossRef]
- Vickers, A.J.; Ulmert, D.; Sjoberg, D.D.; et al. Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40-55 and long term risk of metastasis: Case-control study. BMJ 2013, 346, f2023. [Google Scholar] [CrossRef]
- Vickers, A.J.; Cronin, A.M.; Björk, T.; et al. Prostate specific antigen concentration at age 60 and death or metastasis from prostate cancer: Case-control study. BMJ 2010, 341, c4521. [Google Scholar] [CrossRef] [PubMed]
- Leman, E.S.; Cannon, G.W.; Trock, B.J.; et al. EPCA-2: A highly specific serum marker for prostate cancer. Urology 2007, 69, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Christensson, A.; Björk, T.; Nilsson, O.; et al. Serum prostate specific antigen complexed to alpha 1-antichymotrypsin as an indicator of prostate cancer. J. Urol. 1993, 150, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Catalona, W.J.; Smith, D.S.; Wolfert, R.L.; et al. Evaluation of Percentage of Free Serum Prostate-Specific Antigen to Improve Specificity of Prostate Cancer Screening. JAMA 1995, 274, 1214–1220. [Google Scholar]
- Cooperberg, M.R.; Broering, J.M.; Carroll, P.R. Risk Assessment for Prostate Cancer Metastasis and Mortality at the Time of Diagnosis. J. Ntl. Cancer Inst. 2009, 101, 878–887. [Google Scholar] [CrossRef]
- Network NCC.
- Bamber, P. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. J. Math. Psychol. 1975, 12, 387–415. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Vickers, A.J.; Cook, N.R.; et al. Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology. 2010, 21, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Demler, O.V.; Pencina, M.J.; D’Agostino, R.B., Sr. Misuse of DeLong test to compare AUCs for nested models. Stat. Med. 2012, 31, 2577–2587. [Google Scholar] [CrossRef]
- Vickers, A.J.; Cronin, A.M.; Begg, C.B. One statistical test is sufficient for assessing new predictive markers. BMC Med. Res. Methodol. 2011, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Hilden, J.; Habbema, J.D.; Bjerregaard, B. The measurement of performance in probabilistic diagnosis. II. Trustworthiness of the exact values of the diagnostic probabilities. Methods Inf. Med. 1978, 17, 227–237. [Google Scholar] [PubMed]
- Jansen, F.H.; van Schaik, R.H.; Kurstjens, J.; et al. Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. Eur. Urol. 2010, 57, 921–927. [Google Scholar] [CrossRef]
- Vickers, A.J.; Elkin, E.B. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Making 2006, 26, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Van Calster, B.; Vickers, A.J. Calibration of risk prediction models: Impact on decision-analytic performance. Med. Decis. Making 2015, 35, 162–169. [Google Scholar] [CrossRef]
- Vickers, A.J.; van Calster, B.; Steyerberg, E.W. A simple, step-by-step guide to interpreting decision curve analysis. Diagn. Progn. Res. 2019, 3, 18. [Google Scholar] [CrossRef]
- Vickers, A.J.; Van Calster, B.; Steyerberg, E.W. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 2016, 352, i6. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.J.; Cronin, A.M.; Gönen, M. A simple decision analytic solution to the comparison of two binary diagnostic tests. Stat. Med. 2013, 32, 1865–1876. [Google Scholar] [CrossRef] [PubMed]
- Konety, B.; Zappala, S.M.; Parekh, D.J.; et al. The 4Kscore® Test Reduces Prostate Biopsy Rates in Community and Academic Urology Practices. Rev. Urol. 2015, 17, 231–240. [Google Scholar] [PubMed]
- White, J.; Tutrone, R.F.; Reynolds, M.A. Second Reply to Letter to the Editor re: “Clinical utility of the Prostate Health Index (phi) for biopsy decision management in a large group urology practice setting”. Prostate Cancer Prostatic Dis. 2019, 22, 639–640. [Google Scholar] [CrossRef] [PubMed]
- Schröder, F.H.; Hugosson, J.; Carlsson, S.; et al. Screening for prostate cancer decreases the risk of developing metastatic disease: Findings from the European Randomized Study of Screening for Prostate Cancer (ERSPC). Eur. Urol. 2012, 62, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Hugosson, J.; Roobol, M.J.; Månsson, M.; et al. A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer. Eur. Urol. 2019, 76, 43–51. [Google Scholar] [CrossRef] [PubMed]
- McShane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M. Reporting recommendations for tumour MARKer prognostic studies (REMARK). Br. J. Cancer 2005, 93, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.C.; Seaman, S.R.; Wood, A.M.; Royston, P.; White, I.R. Correcting for optimistic prediction in small data sets. Am. J. Epidemiol. 2014, 180, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E. Overfitting and optimism in prediction models. New York: Springer Verlag; 2009:83-100.
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stats. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Chen, R.; Sjoberg, D.D.; Huang, Y.; et al. Prostate Specific Antigen and Prostate Cancer in Chinese Men Undergoing Initial Prostate Biopsies Compared with Western Cohorts. J. Urol. 2017, 197, 90–96. [Google Scholar] [CrossRef]
This is an open access article under the terms of a license that permits non-commercial use, provided the original work is properly cited. © 2020 The Authors. Société Internationale d'Urologie Journal, published by the Société Internationale d'Urologie, Canada.
Share and Cite
Assel, M.; Vickers, A. Biomarker Evaluation and Clinical Development. Soc. Int. Urol. J. 2020, 1, 16-22. https://doi.org/10.48083/ZCJS3811
Assel M, Vickers A. Biomarker Evaluation and Clinical Development. Société Internationale d’Urologie Journal. 2020; 1(1):16-22. https://doi.org/10.48083/ZCJS3811
Chicago/Turabian StyleAssel, Melissa, and Andrew Vickers. 2020. "Biomarker Evaluation and Clinical Development" Société Internationale d’Urologie Journal 1, no. 1: 16-22. https://doi.org/10.48083/ZCJS3811
APA StyleAssel, M., & Vickers, A. (2020). Biomarker Evaluation and Clinical Development. Société Internationale d’Urologie Journal, 1(1), 16-22. https://doi.org/10.48083/ZCJS3811