Cryptic Circulation and Co-Infections of Endemic Human Coronaviruses During the First Years of the COVID-19 Pandemic in Brazil
Highlights
- HCoV-NL63 was the most prevalent species among the HCoVs detected.
- More than 25% of HCoV patients were co-infected with at least one other respiratory pathogen.
- HCoVs were circulating during COVID-19 pandemic.
- Coronaviruses can be involved in multi-pathogen infections.
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albitar, O.; Ballouze, R.; Ooi, J.P.; Sheikh Ghadzi, S.M. Risk factors for mortality among COVID-19 patients. Diabetes Res. Clin. Pract. 2020, 166, 108293. [Google Scholar] [CrossRef]
- Eales, O.; Plank, M.J.; Cowling, B.J.; Howden, B.P.; Kucharski, A.J.; Sullivan, S.G.; Vandemaele, K.; Viboud, C.; Riley, S.; McCaw, J.M.; et al. Key Challenges for Respiratory Virus Surveillance while Transitioning out of Acute Phase of COVID-19 Pandemic. Emerg. Infect. Dis. 2024, 30, e1–e9. [Google Scholar] [CrossRef]
- Toyoshima, Y.; Nemoto, K.; Matsumoto, S.; Nakamura, Y.; Kiyotani, K. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J. Hum. Genet. 2020, 65, 1075–1082. [Google Scholar] [CrossRef]
- Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M.; et al. Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef]
- Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef]
- Hamre, D.; Procknow, J.J. A New Virus Isolated from the Human Respiratory Tract. Proc. Soc. Exp. Biol. Med. 1966, 121, 190–193. [Google Scholar] [CrossRef]
- Kesheh, M.M.; Hosseini, P.; Soltani, S.; Zandi, M. An overview on the seven pathogenic human coronaviruses. Rev. Med. Virol. 2022, 32, e2282. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.P.; Lee, P.; Tsang, A.K.L.; Yip, C.C.Y.; Tse, H.; Lee, R.A.; So, L.-Y.; Lau, Y.-L.; Chan, K.-H.; Woo, P.C.Y.; et al. Molecular Epidemiology of Human Coronavirus OC43 Reveals Evolution of Different Genotypes over Time and Recent Emergence of a Novel Genotype due to Natural Recombination. J. Virol. 2011, 85, 11325–11337. [Google Scholar] [CrossRef] [PubMed]
- Raoult, D.; Zumla, A.; Locatelli, F.; Ippolito, G.; Kroemer, G. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress 2020, 4, 66–75. [Google Scholar] [CrossRef]
- Vabret, A.; Dina, J.; Gouarin, S.; Petitjean, J.; Corbet, S.; Freymuth, F. Detection of the new human coronavirus HKU1: A report of 6 cases. Clin. Infect. Dis. 2006, 42, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Van Der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.M.; Wolthers, K.C.; Wertheim-Van Dillen, P.M.E.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a new human coronavirus. Nat. Med. 2004, 10, 368–373. [Google Scholar] [CrossRef]
- Harrison, C.M.; Doster, J.M.; Landwehr, E.H.; Kumar, N.P.; White, E.J.; Beachboard, D.C.; Stobart, C.C. Evaluating the Virology and Evolution of Seasonal Human Coronaviruses Associated with the Common Cold in the COVID-19 Era. Microorganisms 2023, 11, 445. [Google Scholar] [CrossRef]
- Ogimi, C.; Englund, J.A.; Bradford, M.C.; Qin, X.; Boeckh, M.; Waghmare, A. Characteristics and outcomes of coronavirus infection in children: The role of viral factors and an immunocompromised state. J. Pediatr. Infect. Dis. Soc. 2019, 8, 21–28. [Google Scholar] [CrossRef]
- Choi WIl Kim, I.B.; Park, S.J.; Ha, E.H.; Lee, C.W. Comparison of the clinical characteristics and mortality of adults infected with human coronaviruses 229E and OC43. Sci. Rep. 2021, 11, 4499. [Google Scholar] [CrossRef]
- Agca, H.; Akalin, H.; Saglik, I.; Hacimustafaoglu, M.; Celebi, S.; Ener, B. Changing epidemiology of influenza and other respiratory viruses in the first year of COVID-19 pandemic. J. Infect. Public Health 2021, 14, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Frutos, A.M.; Kubale, J.; Kuan, G.; Ojeda, S.; Vydiswaran, N.; Sanchez, N.; Plazaola, M.; Patel, M.; Lopez, R.; Balmaseda, A.; et al. SARS-CoV-2 and endemic coronaviruses: Comparing symptom presentation and severity of symptomatic illness among Nicaraguan children. PLoS Glob. Public Health 2022, 2, e0000414. [Google Scholar] [CrossRef] [PubMed]
- Trifonova, I.; Korsun, N.; Madzharova, I.; Velikov, P.; Alexsiev, I.; Grigorova, L.; Voleva, S.; Yordanova, R.; Ivanov, I.; Tcherveniakova, T.; et al. Prevalence and clinical impact of mono- and co-infections with endemic coronaviruses 229E, OC43, NL63, and HKU-1 during the COVID-19 pandemic. Heliyon 2024, 10, 29258. [Google Scholar] [CrossRef]
- Zeng, Z.Q.; Chen, D.H.; Tan, W.P.; Qiu, S.Y.; Xu, D.; Liang, H.X.; Chen, M.X.; Li, X.; Lin, Z.S.; Liu, W.K.; et al. Epidemiology and clinical characteristics of human coronaviruses OC43, 229E, NL63, and HKU1: A study of hospitalized children with acute respiratory tract infection in Guangzhou, China. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Gaunt, E.R.; Hardie, A.; Claas, E.C.J.; Simmonds, P.; Templeton, K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol. 2010, 48, 2940–2947. [Google Scholar] [CrossRef]
- Cabeça, T.K.; Granato, C.; Bellei, N. Epidemiological and clinical features of human coronavirus infections among different subsets of patients. Influenza Other Respir. Viruses 2013, 7, 1040–1047. [Google Scholar] [CrossRef]
- Dyrdak, R.; Hodcroft, E.B.; Wahlund, M.; Neher, R.A.; Albert, J. Interactions between seasonal human coronaviruses and implications for the SARS-CoV-2 pandemic: A retrospective study in Stockholm, Sweden, 2009–2020. J. Clin. Virol. 2021, 136, 104754. [Google Scholar] [CrossRef]
- Góes, L.G.B.; Zerbinati, R.M.; Tateno, A.F.; de Souza, A.V.; Ebach, F.; Corman, V.M.; Moreira-Filho, C.A.; Durigon, E.L.; da Silva Filho, L.V.R.F.; Drexler, J.F. Typical epidemiology of respiratory virus infections in a Brazilian slum. J. Med. Virol. 2020, 92, 1316–1321. [Google Scholar] [CrossRef]
- Lu, R.; Yu, X.; Wang, W.; Duan, X.; Zhang, L.; Zhou, W.; Xu, J.; Xu, L.; Hu, Q.; Lu, J.; et al. Characterization of human coronavirus etiology in chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays. PLoS ONE 2012, 7, 23–25. [Google Scholar] [CrossRef]
- Taylor, S.; Lopez, P.; Weckx, L.; Borja-Tabora, C.; Ulloa-Gutierrez, R.; Lazcano-Ponce, E.; Kerdpanich, A.; Angel Rodriguez Weber, M.; Mascareñas de Los Santos, A.; Tinoco, J.C.; et al. Respiratory viruses and influenza-like illness: Epidemiology and outcomes in children aged 6 months to 10 years in a multi-country population sample. J. Infect. 2017, 74, 29–41. [Google Scholar] [CrossRef]
- Trombetta, H.; Faggion, H.Z.; Leotte, J.; Nogueira, M.B.; Vidal, L.R.R.; Raboni, S.M. Human coronavirus and severe acute respiratory infection in Southern Brazil. Pathog. Glob. Health 2016, 110, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Veiga, A.B.G.; da Martins, L.G.; Riediger, I.; Mazetto, A.; Debur Mdo, C.; Gregianini, T.S. More than just a common cold: Endemic coronaviruses OC43, HKU1, NL63, and 229E associated with severe acute respiratory infection and fatality cases among healthy adults. J. Med. Virol. 2021, 93, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lu, R.; Wang, Z.; Zhu, N.; Wang, W.; Julian, D.; Chris, B.; Lv, J.; Tan, W. Etiology and clinical characterization of respiratory virus infections in adult patients attending an emergency department in beijing. PLoS ONE 2012, 7, e32174. [Google Scholar] [CrossRef]
- Barbosa, G.; Alberto-Lei, F.; Chaves, A.P.C.; Carvalho, J.M.A.; Conte, D.D.; Moreira, L.V.L.; de Souza Luna, L.K.; Perosa, A.H.; Bellei, N. Respiratory virus detection among healthcare professionals in Brazil: Work-related contact and episode recurrence during the COVID-19 pandemic. Public Health 2024, 226, 159–164. [Google Scholar] [CrossRef]
- Kim, D.; Quinn, J.; Pinsky, B.; Shah, N.H.; Brown, I. Rates of Co-infection between SARS-CoV-2 and Other Respiratory Pathogens. JAMA-J. Am. Med. Assoc. 2020, 323, 2085–2086. [Google Scholar] [CrossRef]
- Nowak, M.D.; Sordillo, E.M.; Gitman, M.R.; Paniz Mondolfi, A.E. Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J. Med. Virol. 2020, 92, 1699–1700. [Google Scholar] [CrossRef]
- Valian, N.K.; Pourakbari, B.; Asna Ashari, K.; Hosseinpour Sadeghi, R.; Mahmoudi, S. Evaluation of human coronavirus OC43 and SARS-COV-2 in children with respiratory tract infection during the COVID-19 pandemic. J. Med. Virol. 2022, 94, 1450–1456. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, L.; Chen, Y.; Yu, S.; Zhang, D.; Mao, H.; Fang, L. Etiology and clinical characteristics of SARS-CoV-2 and other human coronaviruses among children in Zhejiang Province, China 2017–2019. Virol. J. 2021, 18, 89. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, 2021; pp. 1–11. Available online: https://www.r-project.org/ (accessed on 9 September 2021).
- Rodriguez-Morales, A.J.; Gallego, V.; Escalera-Antezana, J.P.; Méndez, C.A.; Zambrano, L.I.; Franco-Paredes, C.; Suárez, J.A.; Rodriguez-Enciso, H.D.; Balbin-Ramon, G.J.; Savio-Larriera, E.; et al. COVID-19 in Latin America: The Implications of the First Confirmed Case in Brazil. Travel Med. Infect. Dis. 2020, 35, 101613. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Gonçalves, M.R.; Padilha dos Reis, R.C.; Tólio, R.P.; Pellanda, L.C.; Schmidt, M.I.; Katz, N.; Mengue, S.S.; Hallal, P.C.; Horta, B.L.; Silveira, M.F.; et al. Social distancing, mask use, and transmission of severe acute respiratory syndrome Coronavirus 2, Brazil, April–June 2020. Emerg. Infect. Dis. 2021, 27, 2135–2143. [Google Scholar] [CrossRef]
- Heiskanen, A.; Galipeau, Y.; Little, J.; Mortimer, L.; Ramotar, K.; Langlois, M.A.; Cooper, C.L. Seasonal respiratory virus circulation was diminished during the COVID-19 pandemic. Influenza Other Respir. Viruses 2023, 17, e13065. [Google Scholar] [CrossRef]
- Partridge, E.; McCleery, E.; Cheema, R.; Nakra, N.; Lakshminrusimha, S.; Tancredi, D.J.; Blumberg, D.A. Evaluation of Seasonal Respiratory Virus Activity Before and After the Statewide COVID-19 Shelter-in-Place Order in Northern California. JAMA Netw. Open 2021, 4, e2035281. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Mehrbod, P.; Bokharaei-Salim, F.; Eybpoosh, S.; Tavakoli, M.; Mohammadnejad, A.E.; Hosseini, Z.; Kashanian, S.; Asadi, L.F.; Salehi-Vaziri, M.; et al. Epidemiological surveillance of respiratory viral infections in SARS-CoV-2-negative samples during COVID-19 pandemic in Iran. Virol. J. 2023, 20, 296. [Google Scholar] [CrossRef] [PubMed]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Rucinski, S.L.; Binnicker, M.J.; Thomas, A.S.; Patel, R. Seasonality of Coronavirus 229E, HKU1, NL63, and OC43 From 2014 to 2020. Mayo Clin. Proc. 2020, 95, 1701–1703. [Google Scholar] [CrossRef]
- Chiu, S.S.; Chan, K.H.; Chu, K.W.; Kwan, S.W.; Guan, Y.; Poon, L.L.M.; Peiris, J.S.M. Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin. Infect. Dis. 2005, 40, 1721–1729. [Google Scholar] [CrossRef]
- Veldhoen, M.; Simas, J.P. Endemic SARS-CoV-2 will maintain post-pandemic immunity. Nat. Rev. Immunol. 2021, 21, 131–132. [Google Scholar] [CrossRef]
- Townsend, J.P.; Hassler, H.B.; Lamb, A.D.; Sah, P.; Nishio, A.A.; Nguyen, C.; Tew, A.D.; Galvani, A.P.; Dornburg, A. Seasonality of endemic COVID-19. mBio 2023, 14, e01426-23. [Google Scholar] [CrossRef]
- Al-Khannaq, M.N.; Ng, K.T.; Oong, X.Y.; Pang, Y.K.; Takebe, Y.; Chook, J.B.; Hanafi, N.S.; Kamarulzaman, A.; Tee, K.K. Diversity and evolutionary histories of human coronaviruses NL63 and 229E associated with acute upper respiratory tract symptoms in Kuala Lumpur, Malaysia. Am. J. Trop. Med. Hyg. 2016, 94, 1058–1064. [Google Scholar] [CrossRef]
- Albuquerque, M.C.M.; Varella, R.B.; Santos, N. Acute respiratory viral infections in children in rio de janeiro and teresópolis, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Matoba, Y.; Abiko, C.; Ikeda, T.; Aoki, Y.; Suzuki, Y.; Yahagi, K.; Matsuzaki, Y.; Itagaki, T.; Katsushima, F.; Katsushima, Y.; et al. Detection of the human coronavirus 229E, HKU1, NL63, and OC43 between 2010 and 2013 in Yamagata, Japan. Jpn. J. Infect. Dis. 2015, 68, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Gerardo, R.M.; Guiomar, H.G.; Ander, G.S.; Carlos Andrés, G.C.; Coral, A.C. Dynamics of endemic human coronavirus and SARS-CoV-2 in a hospital of Madrid, Spain. Retrospective study from June 2020 to July 2023. J. Pathol. Microbiol. Immunol. 2024, 132, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Killerby, M.E.; Biggs, H.M.; Haynes, A.; Dahl, R.M.; Mustaquim, D.; Gerber, S.I.; Watson, J.T. Human coronavirus circulation in the United States 2014–2017. J. Clin. Virol. 2018, 101, 52–56. [Google Scholar] [CrossRef]
- Liu, D.X.; Liang, J.Q.; Fung, T.S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). Encycl. Virol. 2020, 1, 428–440. [Google Scholar] [CrossRef]
- Ludvigsson, J.F. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020, 109, 1088–1095. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr. Infect. Dis. J. 2020, 39, 355–368. [Google Scholar] [CrossRef]
- Abela, I.A.; Pasin, C.; Schwarzmüller, M.; Epp, S.; Sickmann, M.E.; Schanz, M.M.; Rusert, P.; Weber, J.; Schmutz, S.; Audigé, A.; et al. Multifactorial seroprofiling dissects the contribution of pre-existing human coronaviruses responses to SARS-CoV-2 immunity. Nat. Commun. 2021, 12, 6703. [Google Scholar] [CrossRef] [PubMed]
- Abela, I.A.; Schwarzmüller, M.; Ulyte, A.; Radtke, T.; Haile, S.R.; Ammann, P.; Raineri, A.; Rueegg, S.; Epp, S.; Berger, C.; et al. Cross-protective HCoV immunity reduces symptom development during SARS-CoV-2 infection. mBio 2024, 15, e02722-23. [Google Scholar] [CrossRef] [PubMed]
- Gebhard, C.; Regitz-Zagrosek, V.; Neuhauser, H.K.; Morgan, R.; Klein, S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 2020, 11, 29. [Google Scholar] [CrossRef]
- Scully, E.P.; Haverfield, J.; Ursin, R.L.; Tannenbaum, C.; Klein, S.L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 2020, 20, 442–447. [Google Scholar] [CrossRef]
- Kong, D.; Zheng, Y.; Hu, L.; Chen, J.; Wu, H.; Teng, Z.; Zhou, Y.; Qiu, Q.; Lu, Y.; Pan, H. Epidemiological and co-infection characteristics of common human coronaviruses in Shanghai, 2015–2020: A retrospective observational study. Emerg. Microbes Infect. 2021, 10, 1660–1668. [Google Scholar] [CrossRef]
- Garcia, J.; Espejo, V.; Nelson, M.; Sovero, M.; Villaran, M.V.; Gomez, J.; Barrantes, M.; Sanchez, F.; Comach, G.; Arango, A.E.; et al. Human rhinoviruses and enteroviruses in influenza-like illness in Latin America. Virol. J. 2013, 10, 305. [Google Scholar] [CrossRef]
- Mann, R.; Perisetti, A.; Gajendran, M.; Gandhi, Z.; Umapathy, C.; Goyal, H. Clinical Characteristics, Diagnosis, and Treatment of Major Coronavirus Outbreaks. Front. Med. 2020, 7, 581521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.F.; Tuo, J.L.; Huang, X.B.; Zhu, X.; Zhang, D.M.; Zhou, K.; Yuan, L.; Luo, H.J.; Zheng, B.J.; Yuen, K.Y.; et al. Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010–2015 in Guangzhou. PLoS ONE 2018, 13, 363–369. [Google Scholar] [CrossRef]
- Li, Q.; Shah, T.; Wang, B.; Qu, L.; Wang, R.; Hou, Y.; Baloch, Z.; Xia, X. Cross-species transmission, evolution and zoonotic potential of coronaviruses. Front. Cell. Infect. Microbiol. 2023, 12, 1081370. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.X.; Soares, A.M.; Fonsêca, W.; Rey, L.C.; Guerrant, R.L.; Lima, A.A.M. Common infectious diseases and skin test anergy in children from an urban slum in northeast Brazil. Braz. J. Infect. Dis. 2003, 7, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Haage, V.C.; Bleicker, T.; Schmidt, M.L.; Mühlemann, B.; Zuchowski, M.; Jo, W.K.; Tscheak, P.; Möncke-Buchner, E.; Müller, M.A.; et al. Comparison of seven commercial SARS-CoV-2 rapid point-of-care antigen tests: A single-centre laboratory evaluation study. Lancet Microbe 2021, 2, e311–e319. [Google Scholar] [CrossRef] [PubMed]
- Grubaugh, N.D.; Saraf, S.; Gangavarapu, K.; Watts, A.; Tan, A.L.; Oidtman, R.J.; Ladner, J.T.; Oliveira, G.; Matteson, N.L.; Kraemer, M.U.G.; et al. Travel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning Epidemic. Cell 2019, 178, 1057–1071.e11. [Google Scholar] [CrossRef]
- Secchi, M.; Bazzigaluppi, E.; Brigatti, C.; Marzinotto, I.; Tresoldi, C.; Rovere-Querini, P.; Poli, A.; Castagna, A.; Scarlatti, G.; Zangrillo, A.; et al. COVID-19 survival associates with the immunoglobulin response to the SARS-cov-2 spike receptor binding domain. J. Clin. Investig. 2020, 130, 6366–6378. [Google Scholar] [CrossRef]
- Borges, L.P.; Martins, A.F.; de Mello Silva, B.; de Paula Dias, B.; Gonçalves, R.L.; de Souza, D.R.V.; de Oliveira, M.G.B.; de Jesus, P.C.; Serafini, M.R.; Quintans, J.S.S.; et al. Rapid diagnosis of COVID-19 in the first year of the pandemic: A systematic review. Int. Immunopharmacol. 2021, 101, 108144. [Google Scholar] [CrossRef]





| Virus | Sex | Positive Cases n/N (%) | <18 Years n (%) | 18–64 Years n (%) | ≥65 Years n (%) | Min Age | Max Age | Mean Age | SD | SEM |
|---|---|---|---|---|---|---|---|---|---|---|
| HCoV-NL63 | M | 41/86 (47.7%) | 9 (22%) | 27 (65.9%) | 5 (12.2%) | 3 | 82 | 37.15 | 20.84 | 3.254 |
| HCoV-NL63 | F | 45/86 (52.3%) | 11 (24.4%) | 26 (57.8%) | 8 (17.8%) | 2 | 89 | 38.93 | 24.12 | 3.595 |
| HCoV-HKU1 | M | 19/37 (51.4%) | 3 (15.8%) | 15 (78.9%) | 1 (5.3%) | 3 | 82 | 39.95 | 19.11 | 4.385 |
| HCoV-HKU1 | F | 18/37 (48.6%) | 2 (11.1%) | 13 (72.2%) | 3 (16.7%) | 2 | 72 | 44.06 | 19.99 | 4.711 |
| HCoV-OC43 | M | 8/17 (47.1%) | 2 (25%) | 5 (62.5%) | 1 (12.5%) | 15 | 73 | 41.75 | 22.03 | 7.789 |
| HCoV-OC43 | F | 9/17 (52.9%) | 0 | 8 (88.9%) | 1 (11.1%) | 29 | 67 | 41.89 | 12.64 | 4.215 |
| HCoV-229E | M | 12/25 (48%) | 2 (16.7%) | 8 (66.7%) | 2 (16.7%) | 7 | 86 | 37.33 | 23.46 | 6.774 |
| HCoV-229E | F | 13/25 (52%) | 2 (15.4%) | 11 (84.6%) | 0 | 7 | 59 | 36.54 | 17.73 | 4.918 |
| SARS-CoV-2 | M | 50,928/ 105,609 (48.2%) | 2952 (5.8%) | 43,054 (84.5%) | 4922 (9.7%) | 0 | 90 | 41.98 | 16.23 | 0.072 |
| SARS-CoV-2 | F | 54,681/ 105,609 (51.8%) | 2832 (5.2%) | 46,274 (84.6%) | 5575 (10.2%) | 1 | 90 | 41.94 | 16.36 | 0.07 |
| Coinfections | N Infections | N Cases | Date |
|---|---|---|---|
| HCoV-229E + HCoV-OC43 + Influenza A virus + Human Parainfluenza virus types III + C. pneumoniae | 5 | 1 | April 2020 |
| HCoV-NL63 + Rhinovirus|Enterovirus + Human Metapneumovirus + Human Respiratory Syncytial Virus | 4 | 1 | March 2020 |
| HCoV-NL63 + Rhinovirus|Enterovirus + Human Respiratory Syncytial Virus | 3 | 1 | March 2020 |
| HCoV-NL63 + Rhinovirus|Enterovirus + Adenoviruses | 3 | 2 | March 2020 |
| HCoV-HKU1 + Rhinovirus|Enterovirus + Human Parainfluenza virus types IV | 3 | 1 | March 2020 |
| HCoV-NL63 + Influenza B virus + SARS-CoV-2 | 3 | 1 | March 2020 |
| Co-Pathogen a | HKU1 (n = 8) | NL63 (n = 28) | OC43 (n = 9) | 229E (n = 11) | |
|---|---|---|---|---|---|
| HAdV | _ | 2 (7.2) | _ | _ | |
| HRV/ENT | 2 (25) | 14 (50.0) | 3 (33.4) | 2 (18.2) | |
| HPIV-3 | _ | 1 (3.5) | _ | 1 (9.1) | |
| HPIV-4 | 2 (25) | _ | _ | 1 (9.1) | |
| SARS-CoV-2 | _ | 3 (10.7) | 2 (22.2) | 2 (18.2) | |
| H1N1 | 1 (12.5) | 2 (7.2) | _ | _ | |
| HMPV | _ | 2 (7.2) | _ | _ | |
| HRSV | 1 (12.5) | 3 (10.7) | _ | _ | |
| FLU A | _ | _ | _ | 1 (9.1) | |
| FLU B | _ | 1 (3.5) | _ | 1 (9.1) | |
| Cpn | _ | _ | _ | 1 (9.1) | |
| HCoV b | HKU1 | _ | _ | 2 (22.2) | _ |
| NL63 | _ | _ | _ | _ | |
| OC43 | 2 (25) | _ | _ | 2 (18.2) | |
| 229E | _ | _ | 2 (22.2) | _ | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Polish Respiratory Society. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, A.K.M.; Gopalsamy, R.G.; Santana, L.A.d.M.; Barreto, M.d.S.; Moura, P.H.M.; Silva, D.M.R.R.; Leite, T.C.R.; Dias, C.d.P.; Silva, B.d.M.; Borges, L.P.; et al. Cryptic Circulation and Co-Infections of Endemic Human Coronaviruses During the First Years of the COVID-19 Pandemic in Brazil. Adv. Respir. Med. 2025, 93, 55. https://doi.org/10.3390/arm93060055
Moreno AKM, Gopalsamy RG, Santana LAdM, Barreto MdS, Moura PHM, Silva DMRR, Leite TCR, Dias CdP, Silva BdM, Borges LP, et al. Cryptic Circulation and Co-Infections of Endemic Human Coronaviruses During the First Years of the COVID-19 Pandemic in Brazil. Advances in Respiratory Medicine. 2025; 93(6):55. https://doi.org/10.3390/arm93060055
Chicago/Turabian StyleMoreno, Ana Karolina Mendes, Rajiv Gandhi Gopalsamy, Lucas Alves da Mota Santana, Marina dos Santos Barreto, Pedro Henrique Macedo Moura, Deise Maria Rego Rodrigues Silva, Túlio César Rodrigues Leite, Camila de Paula Dias, Breno de Melo Silva, Lysandro Pinto Borges, and et al. 2025. "Cryptic Circulation and Co-Infections of Endemic Human Coronaviruses During the First Years of the COVID-19 Pandemic in Brazil" Advances in Respiratory Medicine 93, no. 6: 55. https://doi.org/10.3390/arm93060055
APA StyleMoreno, A. K. M., Gopalsamy, R. G., Santana, L. A. d. M., Barreto, M. d. S., Moura, P. H. M., Silva, D. M. R. R., Leite, T. C. R., Dias, C. d. P., Silva, B. d. M., Borges, L. P., & Gonçalves, R. L. (2025). Cryptic Circulation and Co-Infections of Endemic Human Coronaviruses During the First Years of the COVID-19 Pandemic in Brazil. Advances in Respiratory Medicine, 93(6), 55. https://doi.org/10.3390/arm93060055

