Leveraging Artificial Intelligence for the Diagnosis of Systemic Sclerosis Associated Pulmonary Arterial Hypertension: Opportunities, Challenges, and Future Perspectives
Abstract
Highlights
- Artificial Intelligence (AI), particularly machine learning (ML) and deep learning (DL), shows significant potential in improving the early and non-invasive diagnosis of systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH).
- AI models can enhance the interpretation of a wide range of diagnostic modalities, including echocardiography (ECHO), ECGs, chest X-rays (CXRs), and biomarkers, often identifying subtle patterns missed by conventional analysis.
- Emerging SSc-PAH-specific AI applications successfully leverage genomics, proteomics, and multimodal clinical data for early detection, risk stratification, and prognostication.
- The integration of AI into screening algorithms could revolutionize SSc-PAH management by reducing diagnostic delays, optimizing referrals for right heart catheterization (RHC), and enabling personalized treatment strategies.
- Future, validated AI tools hold promise for deployment in diverse clinical settings, including resource-limited areas, to improve the poor prognosis associated with this life-threatening complication.
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection and Scope
2.3. Exclusion Criteria
2.4. Data Organization
- AI in SSc;
- AI applied to diagnostic modalities relevant to PAH (e.g., ECG, ECHO, CT, CMR, biomarkers);
- Direct AI applications in SSc-PAH detection or risk stratification.
2.5. Appraisal of Evidence
2.6. Methodological Limitations
3. Pathogenesis of SSc-PAH
3.1. The Initial Vascular Insult: Endothelial Injury and Etiologic Agents
3.1.1. Endothelial Cell Dysfunction
3.1.2. Genetic Predisposition and Environmental Modulators
3.2. Disruption of Vascular Homeostasis
3.3. Immune System Dysregulation: A Key Pathogenic Factor
- Lymphocyte-Mediated Effects: T lymphocytes, particularly Th2 cells, are involved in fibrosis development through the release of cytokines such as interleukin-4 (IL-4) and IL-13 [14,33]. B lymphocytes participate in autoimmunity via the generation of autoantibodies (e.g., anti-endothelial cell antibodies) and in fibrotic processes by direct cell-to-cell interaction with vascular components [34,35].
- Role of Autoantibodies: Anti-topoisomerase IIα (anti-topo IIα) antibodies have been identified in a subset of SSc patients and are significantly associated with the development of PAH. Unlike anti-topoisomerase I or anti-centromere antibodies, anti-topo IIα is specifically linked to reduced diffusing capacity of the lung for carbon monoxide (DLco) and the presence of PH, independent of interstitial lung disease. This suggests a potential pathogenic role of anti-topo IIα in promoting vascular injury or dysfunction, contributing to the development of SSc-PH [36].
3.4. Pro-Remodeling Environment: Role of Growth Factors and Cytokines
3.5. Pathological Culmination: Vascular Remodeling and Its Structural Consequences
3.6. Hemodynamic Effects and Right Ventricular Adaptation
4. Current Diagnoses of SSc-PAH
4.1. The Need for Early and Accurate Detection
4.2. The Foundational Clinical Assessment
4.2.1. Detailed Patient History and Review of Symptoms
4.2.2. Physical Examination Findings and Clinical Clues
4.3. Diagnostic Armamentarium: Modalities Needed and How to Use Them
4.3.1. RHC: The Hemodynamic Gold Standard
4.3.2. ECHO: The First Non-Invasive Imaging Modality
4.3.3. PFTs: Indirect Vascular Disease Markers
4.3.4. Serum Biomarkers: Adjunctive Information for Risk Stratification
4.3.5. Exercise Testing
4.3.6. Chest-Xray, CT Pulmonary Angiography, and High-Resolution CT
4.3.7. Cardiac Magnetic Resonance
4.4. Screening Algorithms
4.4.1. DETECT Algorithm
4.4.2. ASIG Algorithm
5. AI in Healthcare
6. AI in SSc Diagnostics: A General Overview
6.1. AI Applications in Comprehensive Scleroderma Evaluation System
6.1.1. Microvascular Assessment (Nailfold Videocapillaroscopy—NVC)
6.1.2. Pulmonary Fibrosis (Interstitial Lung Disease—ILD) Quantification
6.1.3. Skin Fibrosis Assessment
6.1.4. Cardiac Involvement Detection
6.1.5. Disease Stratification and Phenotyping
6.1.6. Predicting Future Organ Involvement
7. Application of AI in Existing Traditional Diagnostic Modalities for SSc-PAH
7.1. AI in Non-Invasive Physiological Monitoring
7.1.1. AI in Heart Sound Analysis
7.1.2. AI in Biomarkers
7.1.3. AI in ECG Interpretation
7.1.4. AI in PFTs
7.1.5. AI-Enabled Wearable Technology
7.1.6. AI in EHRs
7.2. AI-Driven Imaging-Based Diagnostic Approaches
7.2.1. AI in CXRs
7.2.2. AI in ECHO
7.2.3. AI in CMR
7.2.4. AI in CTPA
7.3. Multimodal AI Models for Comprehensive PAH Detection
8. Existing AI Approach in Detecting SSc-PAH
8.1. Genomics-Based Biomarker Identification
8.2. CXR Image Analysis
8.3. Echocardiographic Strain Pattern Detection
8.4. Proteomics for Serum Biomarkers
8.5. Multimodal Clinical Data Integration
8.6. Clinical Risk Factor Prediction
8.7. Cluster-Based Mortality Prediction
8.8. Early Functional Marker Identification
8.9. Omics-Driven Risk Stratification
8.10. Serum Biomarker Differentiation
9. Discussion
9.1. Advancing Diagnosis and Disease Classification
9.2. Risk Stratification and Prognostic Applications
9.3. Challenges and Limitations
9.4. Future Directions
- Detailed Model Validation: To train and externally validate the models, we will need larger, multiethnic, and prospective datasets. Collaboration within international SSc-PAH registries and consortia (e.g., EUSTAR, PHAROS) can enhance model generalizability and reduce bias. Approaches such as federated learning, which allow multi-institutional training without raw data exchange, may help overcome data governance barriers while preserving privacy. Performance metrics such as the sensitivity, specificity, PPV, and NPV should be clearly defined and divided into subgroups (e.g., early disease versus advanced disease) to improve clinical relevance. Rigorous external validation in independent, multiethnic cohorts is non-negotiable to mitigate site effects, ILD confounding, and spectrum bias before clinical deployment. Overfitting must be proactively addressed through techniques like LASSO or ridge regression, dropout layers in deep learning, and systematic validation strategies.
- Enhanced Data Integration: The combination of genomic, proteomic, imaging, and EHR data, with the advancement of AI, facilitates the process of deep phenotyping. With the adoption of this strategy, it may be possible to identify new subtypes of SSc-PAH, providing mechanistic insights and refining clinical classifications beyond the current frameworks.
- Evaluation Beyond AUC: Future studies developing AI models for SSc-PAH screening must move beyond reporting the area under the curve (AUC) alone. To demonstrate tangible clinical benefit, performance should be benchmarked against current standards like the DETECT algorithm using decision-curve analysis to assess clinical utility across risk thresholds and net reclassification improvement to quantify the correct reclassification of patients.
- Shift to Non-Invasive Methods: The ongoing improvements in AI models could achieve the preclusion or decrease in the need for invasive methods such as RHC, thus laying the foundation for the possibility of monitoring with complete non-invasiveness using PFTs, imaging, and biochemical markers over the long term.
- End-Stage Disease Applications: AI could help the specialists make decisions on mechanical circulatory support or advanced therapies when they must deal with severe complications such as heart failure.
- Seamless AI Integration in Healthcare: To achieve clinical success, the existing models need to be smoothly incorporated into EHRs and must give interpretable outputs that support, rather than take the place of, the clinician’s judgment. AI literacy training programs for health workers are also necessary to develop trust and to ensure proper use.
- Adherence to Reporting Standards: The current landscape of AI studies in SSc-PAH is characterized by limited adherence to emerging guidelines such as TRIPOD-AI and CONSORT-AI, reflecting their retrospective, early-phase nature. As the field progresses, future prospective model development and validation studies must commit to these standards to ensure transparency, reproducibility, and critical appraisal of methodological quality.
- Ethical and regulatory considerations: The initiation of AI devices in actual clinical practice makes it very critical to come up with the regulatory frameworks that address the issues of data privacy, algorithmic fairness, liability, and accountability. Ethical deployment is necessary for the preservation of public trust.
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ML | Machine Learning |
DL | Deep Learning |
ANN | Artificial Neural Network |
CNN | Convolutional Neural Network |
SVM | Support Vector Machine |
EHR | Electronic Health Records |
CXR | Chest X-Ray |
CTPA | CT Pulmonary Angiography |
CMR | Cardiac Magnetic Resonance Imaging |
ECHO | Echocardiogram |
TTE | Transthoracic Echocardiography |
RHC | Right Heart Catheterization |
mPAP | Mean Pulmonary Arterial Pressure |
PAWP | Pulmonary Artery Wedge Pressure |
PVR | Pulmonary Vascular Resistance |
PASP | Pulmonary Artery Systolic Pressure |
TRV | Tricuspid Regurgitation Velocity |
PH | Pulmonary Hypertension |
PAH | Pulmonary Arterial Hypertension |
SSc | Systemic Sclerosis |
lcSSc | Limited cutaneous SSc |
dcSSc | Diffuse cutaneous SSc |
ILD | Interstitial Lung Disease |
DLCO | Diffusing Capacity of the Lung for Carbon Monoxide |
PFT | Pulmonary Function Test |
FVC | Forced Vital Capacity |
ASIG | Australian Scleroderma Interest Group |
6MWT | Six-Minute Walk Test |
VO2 peak | Peak Oxygen Uptake |
VE/VCO2 | Minute Ventilation to Carbon Dioxide Output Ratio |
V/Q | Ventilation/Perfusion |
References
- Gabrielli, A.; Avvedimento, E.V.; Krieg, T. Scleroderma. N. Engl. J. Med. 2009, 360, 1989–2003. [Google Scholar] [CrossRef]
- Morgan, N.D.; Hummers, L.K. Scleroderma Mimickers. Curr. Treat. Options Rheumatol. 2016, 2, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Good, S.D.; Lee, J.Y.; Johnson, R.E.; Volkmann, E.R. A scoping review of the epidemiology of systemic sclerosis and its organ manifestations: 2018-2024. Curr. Opin. Rheumatol. 2025, 37, 103–112. [Google Scholar] [CrossRef] [PubMed]
- LeRoy, E.C.; Medsger, T.A. Criteria for the classification of early systemic sclerosis. J. Rheumatol. 2001, 28, 1573–1576. [Google Scholar]
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Sapadin, A.N.; Fleischmajer, R. Treatment of scleroderma. Arch. Dermatol. 2002, 138, 99–105. [Google Scholar] [CrossRef]
- Shahane, A. Pulmonary hypertension in rheumatic diseases: Epidemiology and pathogenesis. Rheumatol. Int. 2013, 33, 1655–1667. [Google Scholar] [CrossRef]
- Fisher, M.R.; Mathai, S.C.; Champion, H.C.; Girgis, R.E.; Housten-Harris, T.; Hummers, L.; Krishnan, J.A.; Wigley, F.; Hassoun, P.M. Clinical differences between idiopathic and scleroderma-related pulmonary hypertension. Arthritis Rheum. 2006, 54, 3043–3050. [Google Scholar] [CrossRef]
- Chung, L.; Domsic, R.T.; Lingala, B.; Alkassab, F.; Bolster, M.; Csuka, M.E.; Derk, C.; Fischer, A.; Frech, T.; Furst, D.E.; et al. Survival and Predictors of Mortality in Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: Outcomes From the Pulmonary Hypertension Assessment and Recognition of Outcomes in Scleroderma Registry. Arthritis Care Res. 2014, 66, 489–495. [Google Scholar] [CrossRef]
- Sweiss, N.J.; Hushaw, L.; Thenappan, T.; Sawaqed, R.; Machado, R.F.; Patel, A.R.; Gomberg-Maitland, M.; Husain, A.N.; Archer, S.L. Diagnosis and Management of Pulmonary Hypertension in Systemic Sclerosis. Curr. Rheumatol. Rep. 2010, 12, 8–18. [Google Scholar] [CrossRef]
- York, M.; Farber, H.W. Pulmonary hypertension: Screening and evaluation in scleroderma. Curr. Opin. Rheumatol. 2011, 23, 536–544. [Google Scholar] [CrossRef]
- Dragoi, I.T.; Rezus, C.; Burlui, A.M.; Bratoiu, I.; Rezus, E. Multimodal Screening for Pulmonary Arterial Hypertension in Systemic Scleroderma: Current Methods and Future Directions. Medicina 2024, 61, 19. [Google Scholar] [CrossRef] [PubMed]
- Giordano, N.; Montella, A.; Corallo, C.; Ruocco, G.; Chirico, C.; Palazzuoli, A.; Nuti, R.; Pecetti, G. Pulmonary hypertension: A correct diagnosis for a suitable therapy in scleroderma patients. Clin. Exp. Rheumatol. 2015, 33, S182–S189. [Google Scholar] [PubMed]
- Papadimitriou, T.I.; Lemmers, J.M.J.; van Caam, A.P.M.; Vos, J.L.; Vitters, E.L.; Stinissen, L.; van Leuven, S.I.; Koenders, M.I.; van Der Kraan, P.M.; Koenen, H.J.P.M.; et al. Systemic sclerosis-associated pulmonary arterial hypertension is characterized by a distinct peripheral T helper cell profile. Rheumatology 2024, 63, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, U.; Cuomo, A.; Pirozzi, F.; Loffredo, S.; Abete, P.; Petretta, M.; Marone, G.; Bonaduce, D.; De Paulis, A.; Rossi, F.W.; et al. Pulmonary Hypertension Phenotypes in Systemic Sclerosis: The Right Diagnosis for the Right Treatment. Int. J. Mol. Sci. 2020, 21, 4430. [Google Scholar] [CrossRef]
- Mintz, Y.; Brodie, R. Introduction to artificial intelligence in medicine. Minim. Invasive Ther. Allied Technol. 2019, 28, 73–81. [Google Scholar] [CrossRef]
- Zeb, S.; Fnu, N.; Abbasi, N.; Fahad, M. AI in Healthcare: Revolutionizing Diagnosis and Therapy. Int. J. Multidiscip. Sci. Arts 2024, 3, 118–128. [Google Scholar] [CrossRef]
- Greenhill, A.T.; Edmunds, B.R. A primer of artificial intelligence in medicine. Tech. Innov. Gastrointest. Endosc. 2020, 22, 85–89. [Google Scholar] [CrossRef]
- Alfaras, M.; Soriano, M.C.; Ortín, S. A Fast Machine Learning Model for ECG-Based Heartbeat Classification and Arrhythmia Detection. Front. Phys. 2019, 7, 103. [Google Scholar] [CrossRef]
- Li, S.; Zhao, R.; Zou, H. Artificial intelligence for diabetic retinopathy. Chin. Med. J. 2022, 135, 253–260. [Google Scholar] [CrossRef]
- Mansoor, M.A.; Ibrahim, A.F.; Kidd, N. The Impact of Artificial Intelligence on Internal Medicine Physicians: A Survey of Procedural and Non-procedural Specialties. Cureus 2024, 16, e69121. [Google Scholar] [CrossRef]
- Briganti, G.; Le Moine, O. Artificial Intelligence in Medicine: Today and Tomorrow. Front. Med. 2020, 7, 27. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef]
- Becker, M.O.; Kill, A.; Kutsche, M.; Guenther, J.; Rose, A.; Tabeling, C.; Witzenrath, M.; Kühl, A.A.; Heidecke, H.; Ghofrani, H.A.; et al. Vascular Receptor Autoantibodies in Pulmonary Arterial Hypertension Associated with Systemic Sclerosis. Am. J. Respir. Crit. Care Med. 2014, 190, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Bahi, M.; Li, C.; Wang, G.; Korman, B.D. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: From Bedside to Bench and Back Again. Int. J. Mol. Sci. 2024, 25, 4728. [Google Scholar] [CrossRef] [PubMed]
- Parks, C.G.; Miller, F.W.; Pollard, K.M.; Selmi, C.; Germolec, D.; Joyce, K.; Rose, N.R.; Humble, M.C. Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int. J. Mol. Sci. 2014, 15, 14269–14297. [Google Scholar] [CrossRef] [PubMed]
- Voelkel, N.F.; Tamosiuniene, R.; Nicolls, M.R. Challenges and opportunities in treating inflammation associated with pulmonary hypertension. Expert Rev. Cardiovasc. Ther. 2016, 14, 939–951. [Google Scholar] [CrossRef]
- Tuder, R.M.; Cool, C.D.; Geraci, M.W.; Wang, J.; Abman, S.H.; Wright, L.; Badesch, D.; Voelkel, N.F. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am. J. Respir. Crit. Care Med. 1999, 159, 1925–1932. [Google Scholar] [CrossRef]
- Davie, N.; Haleen, S.J.; Upton, P.D.; Polak, J.M.; Yacoub, M.H.; Morrell, N.W.; Wharton, J. ETA and ETB Receptors Modulate the Proliferation of Human Pulmonary Artery Smooth Muscle Cells. Am. J. Respir. Crit. Care Med. 2002, 165, 398–405. [Google Scholar] [CrossRef]
- Crosswhite, P.; Sun, Z. Molecular Mechanisms of Pulmonary Arterial Remodeling. Mol. Med. 2014, 20, 191–201. [Google Scholar] [CrossRef]
- Bauer, M.; Wilkens, H.; Langer, F.; Schneider, S.O.; Lausberg, H.; Schäfers, H.-J. Selective Upregulation of Endothelin B Receptor Gene Expression in Severe Pulmonary Hypertension. Circulation 2002, 105, 1034–1036. [Google Scholar] [CrossRef]
- Adigun, R.; Goyal, A.; Hariz, A. Systemic Sclerosis (Scleroderma). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK430875/ (accessed on 28 June 2025).
- Christmann, R.B.; Mathes, A.; Affandi, A.J.; Padilla, C.; Nazari, B.; Bujor, A.M.; Stifano, G.; Lafyatis, R. Thymic Stromal Lymphopoietin Is Up-Regulated in the Skin of Patients with Systemic Sclerosis and Induces Profibrotic Genes and Intracellular Signaling That Overlap with Those Induced by Interleukin-13 and Transforming Growth Factor β. Arthritis Rheum. 2013, 65, 1335–1346. [Google Scholar] [CrossRef]
- Thoreau, B.; Chaigne, B.; Mouthon, L. Role of B-Cell in the Pathogenesis of Systemic Sclerosis. Front. Immunol. 2022, 13, 933468. [Google Scholar] [CrossRef]
- Li, Z.; Ma, J.; Wang, X.; Zhu, L.; Gan, Y.; Dai, B. The role of immune cells in the pathogenesis of connective tissue diseases-associated pulmonary arterial hypertension. Front. Immunol. 2024, 15, 1464762. [Google Scholar] [CrossRef]
- Grigolo, B.; Mazzetti, I.; Meliconi, R.; Bazzi, S.; Scorza, R.; Candela, M.; Gabrielli, A.; Facchini, A. Anti-topoisomerase II alpha autoantibodies in systemic sclerosis-association with pulmonary hypertension and HLA-B35. Clin. Exp. Immunol. 2000, 121, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Derk, C.T. Transforming growth factor-beta (TGF-beta) and its role in the pathogenesis of systemic sclerosis: A novel target for therapy? Recent Pat. Inflamm. Allergy Drug Discov. 2007, 1, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Paolini, C.; Agarbati, S.; Benfaremo, D.; Mozzicafreddo, M.; Svegliati, S.; Moroncini, G. PDGF/PDGFR: A Possible Molecular Target in Scleroderma Fibrosis. Int. J. Mol. Sci. 2022, 23, 3904. [Google Scholar] [CrossRef] [PubMed]
- Iwayama, T.; Olson, L.E. Involvement of PDGF in fibrosis and scleroderma: Recent insights from animal models and potential therapeutic opportunities. Curr. Rheumatol. Rep. 2013, 15, 304. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, P.M. The Right Ventricle in Scleroderma (2013 Grover Conference Series). Pulm. Circ. 2015, 5, 3–14. [Google Scholar] [CrossRef]
- Kelemen, B.W.; Mathai, S.C.; Tedford, R.J.; Damico, R.L.; Corona-Villalobos, C.; Kolb, T.M.; Chaisson, N.F.; Harris, T.H.; Zimmerman, S.L.; Kamel, I.R.; et al. Right Ventricular Remodeling in Idiopathic and Scleroderma-Associated Pulmonary Arterial Hypertension: Two Distinct Phenotypes. Pulm. Circ. 2015, 5, 327–334. [Google Scholar] [CrossRef]
- Champion, H.C. The Heart in Scleroderma. Rheum. Dis. Clin. N. Am. 2008, 34, 181–190. [Google Scholar] [CrossRef]
- Hsu, S.; Kokkonen-Simon, K.M.; Kirk, J.A.; Kolb, T.M.; Damico, R.L.; Mathai, S.C.; Mukherjee, M.; Shah, A.A.; Wigley, F.M.; Margulies, K.B.; et al. Right Ventricular Myofilament Functional Differences in Humans with Systemic Sclerosis–Associated Versus Idiopathic Pulmonary Arterial Hypertension. Circulation 2018, 137, 2360–2370. [Google Scholar] [CrossRef]
- Mani, P.; Gonzalez, D.; Chatterjee, S.; Faulx, M.D. Cardiovascular complications of systemic sclerosis: What to look for. Cleve. Clin. J. Med. 2019, 86, 685–695. [Google Scholar] [CrossRef]
- Argula, R.G.; Ward, C.; Feghali-Bostwick, C. Therapeutic Challenges And Advances In The Management Of Systemic Sclerosis-Related Pulmonary Arterial Hypertension (SSc-PAH). Ther. Clin. Risk Manag. 2019, 15, 1427–1442. [Google Scholar] [CrossRef]
- Lee, K.-I.; Manuntag, L.J.; Kifayat, A.; Manuntag, S.E.; Sperber, K.; Ash, J.Y.; Frishman, W.H.; Wasserman, A. Cardiovascular Manifestations of Systemic Sclerosis: An Overview of Pathophysiology, Screening Modalities, and Treatment Options. Cardiol. Rev. 2023, 31, 22–27. [Google Scholar] [CrossRef]
- Ramjug, S.; Hussain, N.; Hurdman, J.; Billings, C.; Charalampopoulos, A.; Elliot, C.A.; Kiely, D.G.; Sabroe, I.; Rajaram, S.; Swift, A.J.; et al. Idiopathic and Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Chest 2017, 152, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, E.; Marra, M.P.; Famoso, G.; Balestro, E.; Giraudo, C.; Calabrese, F.; Rea, F.; Doria, A. The Challenge of Diagnosing and Managing Pulmonary Arterial Hypertension in Systemic Sclerosis with Interstitial Lung Disease. Pharmaceuticals 2022, 15, 1042. [Google Scholar] [CrossRef] [PubMed]
- Saygin, D.; Domsic, R.T. Pulmonary Arterial Hypertension In Systemic Sclerosis: Challenges In Diagnosis, Screening And Treatment. Open Access Rheumatol. Res. Rev. 2019, 11, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Chia, E.-M.; Lau, E.M.T.; Xuan, W.; Celermajer, D.S.; Thomas, L. Exercise testing can unmask right ventricular dysfunction in systemic sclerosis patients with normal resting pulmonary artery pressure. Int. J. Cardiol. 2016, 204, 179–186. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2023, 61, 2200879. [Google Scholar] [CrossRef]
- Kampolis, C.; Plastiras, S.C.; Vlachoyiannopoulos, P.G.; Moyssakis, I.; Tzelepis, G.E. The presence of anti-centromere antibodies may predict progression of estimated pulmonary arterial systolic pressure in systemic sclerosis. Scand. J. Rheumatol. 2008, 37, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Pahal, P.; Sharma, S. Secondary Pulmonary Hypertension. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK526008/ (accessed on 25 June 2025).
- Sarkar, S. Pulmonary manifestations of systemic sclerosis. J. Assoc. Chest Physicians 2022, 10, 67–74. [Google Scholar] [CrossRef]
- Naranjo, M.; Hassoun, P.M. Systemic Sclerosis-Associated Pulmonary Hypertension: Spectrum and Impact. Diagnostics 2021, 11, 911. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Kiely, D.G.; Kovacs, G.; Thompson, A.A.R.; Condliffe, R. Pulmonary hypertension phenotypes in patients with systemic sclerosis. Eur. Respir. Rev. 2021, 30, 210053. [Google Scholar] [CrossRef]
- Montani, D.; O’Callaghan, D.S.; Jaïs, X.; Savale, L.; Natali, D.; Redzepi, A.; Hoette, S.; Parent, F.; Sitbon, O.; Simonneau, G.; et al. Implementing the ESC/ERS pulmonary hypertension guidelines: Real-life cases from a national referral centre. Eur. Respir. Rev. 2009, 18, 272–290. [Google Scholar] [CrossRef]
- Rahaghi, F.F.; Hsu, V.M.; Kaner, R.J.; Mayes, M.D.; Rosas, I.O.; Saggar, R.; Steen, V.D.; Strek, M.E.; Bernstein, E.J.; Bhatt, N.; et al. Expert consensus on the management of systemic sclerosis-associated interstitial lung disease. Respir. Res. 2023, 24, 6. [Google Scholar] [CrossRef]
- Nihtyanova, S.I.; Schreiber, B.E.; Ong, V.H.; Wells, A.U.; Coghlan, J.G.; Denton, C.P. Dynamic Prediction of Pulmonary Hypertension in Systemic Sclerosis Using Landmark Analysis. Arthritis Rheumatol. 2023, 75, 449–458. [Google Scholar] [CrossRef]
- Colaci, M.; Giuggioli, D.; Sebastiani, M.; Manfredi, A.; Lumetti, F.; Luppi, F.; Cerri, S.; Ferri, C. Predictive value of isolated DLCO reduction in systemic sclerosis patients without cardio-pulmonary involvement at baseline. Reumatismo 2016, 67, 149–155. [Google Scholar] [CrossRef]
- Overbury, R.S.; Murtaugh, M.A.; Frech, T.M.; Steen, V.D. A normal diffusing capacity of the lungs for carbon monoxide is rare in incidental pulmonary arterial hypertension in systemic sclerosis: Data from the Pulmonary Hypertension Assessment and Recognition of Outcomes in Scleroderma cohort. J. Scleroderma Relat. Disord. 2018, 3, 237–241. [Google Scholar] [CrossRef]
- Chung, L.; Fairchild, R.M.; Furst, D.E.; Li, S.; Alkassab, F.; Bolster, M.B.; Csuka, M.E.; Derk, C.T.; Domsic, R.T.; Fischer, A.; et al. Utility of B-type natriuretic peptides in the assessment of patients with systemic sclerosis-associated pulmonary hypertension in the PHAROS registry. Clin. Exp. Rheumatol. 2017, 35 (Suppl. S106), 106–113. [Google Scholar]
- Williams, M.H.; Handler, C.E.; Akram, R.; Smith, C.J.; Das, C.; Smee, J.; Nair, D.; Denton, C.P.; Black, C.M.; Coghlan, J.G. Role of N-terminal brain natriuretic peptide (N-TproBNP) in scleroderma-associated pulmonary arterial hypertension. Eur. Heart J. 2006, 27, 1485–1494. [Google Scholar] [CrossRef]
- Simpson, C.E.; Damico, R.L.; Hummers, L.; Khair, R.M.; Kolb, T.M.; Hassoun, P.M.; Mathai, S.C. Serum uric acid as a marker of disease risk, severity, and survival in systemic sclerosis-related pulmonary arterial hypertension. Pulm. Circ. 2019, 9, 2045894019859477. [Google Scholar] [CrossRef]
- Zhao, J.; Mo, H.; Guo, X.; Wang, Q.; Xu, D.; Hou, Y.; Tian, Z.; Liu, Y.; Wang, H.; Lai, J.; et al. Red blood cell distribution width as a related factor of pulmonary arterial hypertension in patients with systemic sclerosis. Clin. Rheumatol. 2018, 37, 979–985. [Google Scholar] [CrossRef]
- Ip, C.; Luk, K.S.; Yuen, V.L.C.; Chiang, L.; Chan, C.K.; Ho, K.; Gong, M.; Lee, T.T.L.; Leung, K.S.K.; Roever, L.; et al. Soluble suppression of tumorigenicity 2 (sST2) for predicting disease severity or mortality outcomes in cardiovascular diseases: A systematic review and meta-analysis. IJC Heart Vasc. 2021, 37, 100887. [Google Scholar] [CrossRef] [PubMed]
- Atzeni, I.M.; Al-Adwi, Y.; Doornbos-van Der Meer, B.; Roozendaal, C.; Stel, A.; Van Goor, H.; Gan, C.T.; Dickinson, M.; Timens, W.; Smit, A.J.; et al. The soluble receptor for advanced glycation end products is potentially predictive of pulmonary arterial hypertension in systemic sclerosis. Front. Immunol. 2023, 14, 1189257. [Google Scholar] [CrossRef] [PubMed]
- Korman, B.D.; Marangoni, R.G.; Hinchcliff, M.; Shah, S.J.; Carns, M.; Hoffmann, A.; Ramsey-Goldman, R.; Varga, J. Brief Report: Association of Elevated Adipsin Levels with Pulmonary Arterial Hypertension in Systemic Sclerosis. Arthritis Rheumatol. 2017, 69, 2062–2068. [Google Scholar] [CrossRef] [PubMed]
- Petrow, E.; Feng, C.; Frazer-Abel, A.; Marangoni, R.G.; Lutz, K.; Nichols, W.C.; Holers, V.M.; Ritchlin, C.; White, R.J.; Korman, B.D. Utility of factor D and other alternative complement factors as biomarkers in systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH). Semin. Arthritis Rheum. 2024, 69, 152554. [Google Scholar] [CrossRef]
- Badesch, D.B.; Champion, H.C.; Gomez Sanchez, M.A.; Hoeper, M.M.; Loyd, J.E.; Manes, A.; McGoon, M.; Naeije, R.; Olschewski, H.; Oudiz, R.J.; et al. Diagnosis and Assessment of Pulmonary Arterial Hypertension. J. Am. Coll. Cardiol. 2009, 54, S55–S66. [Google Scholar] [CrossRef]
- Madigan, S.; Proudman, S.; Schembri, D.; Davies, H.; Adams, R. Use of exercise tests in screening for pulmonary arterial hypertension in systemic sclerosis: A systematic literature review. J. Scleroderma Relat. Disord. 2024, 9, 50–58. [Google Scholar] [CrossRef]
- Santaniello, A.; Casella, R.; Vicenzi, M.; Rota, I.; Montanelli, G.; De Santis, M.; Bellocchi, C.; Lombardi, F.; Beretta, L. Cardiopulmonary exercise testing in a combined screening approach to individuate pulmonary arterial hypertension in systemic sclerosis. Rheumatology 2020, 59, 1581–1586. [Google Scholar] [CrossRef]
- Ascha, M.; Renapurkar, R.D.; Tonelli, A.R. A review of imaging modalities in pulmonary hypertension. Ann. Thorac. Med. 2017, 12, 61–73. [Google Scholar] [CrossRef]
- Valentini, A.; Franchi, P.; Cicchetti, G.; Messana, G.; Chiffi, G.; Strappa, C.; Calandriello, L.; Del Ciello, A.; Farchione, A.; Preda, L.; et al. Pulmonary Hypertension in Chronic Lung Diseases: What Role Do Radiologists Play? Diagnostics 2023, 13, 1607. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.; Bartolome, S.; Denton, C.P.; Gatzoulis, M.A.; Gu, S.; Khanna, D.; Badesch, D.; Montani, D. Definition, classification and diagnosis of pulmonary hypertension. Eur. Respir. J. 2024, 64, 2401324. [Google Scholar] [CrossRef] [PubMed]
- Condliffe, R.; Radon, M.; Hurdman, J.; Davies, C.; Hill, C.; Akil, M.; Guarasci, F.; Rajaram, S.; Swift, A.J.; Wragg, Z.; et al. CT pulmonary angiography combined with echocardiography in suspected systemic sclerosis-associated pulmonary arterial hypertension. Rheumatology 2011, 50, 1480–1486. [Google Scholar] [CrossRef] [PubMed]
- Sahay, S. Evaluation and classification of pulmonary arterial hypertension. J. Thorac. Dis. 2019, 11, S1789–S1799. [Google Scholar] [CrossRef]
- Aryal, S.R.; Sharifov, O.F.; Lloyd, S.G. Emerging role of cardiovascular magnetic resonance imaging in the management of pulmonary hypertension. Eur. Respir. Rev. 2020, 29, 190138. [Google Scholar] [CrossRef]
- Alabed, S.; Garg, P.; Johns, C.S.; Alandejani, F.; Shahin, Y.; Dwivedi, K.; Zafar, H.; Wild, J.M.; Kiely, D.G.; Swift, A.J. Cardiac Magnetic Resonance in Pulmonary Hypertension—An Update. Curr. Cardiovasc. Imaging Rep. 2020, 13, 30. [Google Scholar] [CrossRef]
- Hao, Y.; Thakkar, V.; Stevens, W.; Morrisroe, K.; Prior, D.; Rabusa, C.; Youssef, P.; Gabbay, E.; Roddy, J.; Walker, J.; et al. A comparison of the predictive accuracy of three screening models for pulmonary arterial hypertension in systemic sclerosis. Arthritis Res. Ther. 2015, 17, 7. [Google Scholar] [CrossRef]
- Giucă, A.; Mihai, C.; Jurcuț, C.; Gheorghiu, A.M.; Groșeanu, L.; Dima, A.; Săftoiu, A.; Coman, I.M.; Popescu, B.A.; Jurcuț, R. Screening for Pulmonary Hypertension in Systemic Sclerosis—A Primer for Cardio-Rheumatology Clinics. Diagnostics 2021, 11, 1013. [Google Scholar] [CrossRef]
- Coghlan, J.G.; Denton, C.P.; Grünig, E.; Bonderman, D.; Distler, O.; Khanna, D.; Müller-Ladner, U.; Pope, J.E.; Vonk, M.C.; Doelberg, M.; et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: The DETECT study. Ann. Rheum. Dis. 2014, 73, 1340–1349. [Google Scholar] [CrossRef]
- Yazici, İ.; Shayea, I.; Din, J. A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems. Eng. Sci. Technol. Int. J. 2023, 44, 101455. [Google Scholar] [CrossRef]
- Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996, 4, 237–285. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical Image Analysis using Convolutional Neural Networks: A Review. J. Med. Syst. 2018, 42, 226. [Google Scholar] [CrossRef] [PubMed]
- Tolu-Akinnawo, O.Z.; Ezekwueme, F.; Omolayo, O.; Batheja, S.; Awoyemi, T. Advancements in Artificial Intelligence in Noninvasive Cardiac Imaging: A Comprehensive Review. Clin. Cardiol. 2025, 48, e70087. [Google Scholar] [CrossRef]
- Ose, B.; Sattar, Z.; Gupta, A.; Toquica, C.; Harvey, C.; Noheria, A. Artificial Intelligence Interpretation of the Electrocardiogram: A State-of-the-Art Review. Curr. Cardiol. Rep. 2024, 26, 561–580. [Google Scholar] [CrossRef]
- Al Kuwaiti, A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; Al Muhanna, D.; Al-Muhanna, F.A. A Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [Google Scholar] [CrossRef]
- Shajari, S.; Kuruvinashetti, K.; Komeili, A.; Sundararaj, U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors 2023, 23, 9498. [Google Scholar] [CrossRef]
- Kevat, A.; Kalirajah, A.; Roseby, R. Artificial intelligence accuracy in detecting pathological breath sounds in children using digital stethoscopes. Respir. Res. 2020, 21, 253. [Google Scholar] [CrossRef]
- Mondillo, G.; Colosimo, S.; Perrotta, A.; Frattolillo, V.; Gicchino, M.F. Unveiling Artificial Intelligence’s Power: Precision, Personalization, and Progress in Rheumatology. J. Clin. Med. 2024, 13, 6559. [Google Scholar] [CrossRef]
- Smith, V.; Herrick, A.L.; Ingegnoli, F.; Damjanov, N.; De Angelis, R.; Denton, C.P.; Distler, O.; Espejo, K.; Foeldvari, I.; Frech, T.; et al. Standardisation of nailfold capillaroscopy for the assessment of patients with Raynaud’s phenomenon and systemic sclerosis. Autoimmun. Rev. 2020, 19, 102458. [Google Scholar] [CrossRef]
- Ozturk, L.; Laclau, C.; Boulon, C.; Mangin, M.; Braz-ma, E.; Constans, J.; Dari, L.; Le Hello, C. Analysis of nailfold capillaroscopy images with artificial intelligence: Data from literature and performance of machine learning and deep learning from images acquired in the SCLEROCAP study. Microvasc. Res. 2025, 157, 104753. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Gotelli, E.; Smith, V. Reading nailfold capillaroscopic images in systemic sclerosis: Manual and/or automated detection? Rheumatology 2023, 62, 2335–2337. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Trombetta, A.C.; Melsens, K.; Pizzorni, C.; Sulli, A.; Ruaro, B.; Paolino, S.; Deschepper, E.; Smith, V. Automated assessment of absolute nailfold capillary number on videocapillaroscopic images: Proof of principle and validation in systemic sclerosis. Microcirculation 2018, 25, e12447. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Long, Y.; Li, S.; Li, X.; Zhang, Y.; Hu, J.; Han, L.; Ren, L. Use of artificial intelligence algorithms to analyse systemic sclerosis-interstitial lung disease imaging features. Rheumatol. Int. 2024, 44, 2027–2041. [Google Scholar] [CrossRef]
- Chassagnon, G.; Vakalopoulou, M.; Régent, A.; Zacharaki, E.I.; Aviram, G.; Martin, C.; Marini, R.; Bus, N.; Jerjir, N.; Mekinian, A.; et al. Deep Learning–based Approach for Automated Assessment of Interstitial Lung Disease in Systemic Sclerosis on CT Images. Radiol. Artif. Intell. 2020, 2, e190006. [Google Scholar] [CrossRef]
- Occhipinti, M.; Bosello, S.; Sisti, L.G.; Cicchetti, G.; De Waure, C.; Pirronti, T.; Ferraccioli, G.; Gremese, E.; Larici, A.R. Quantitative and semi-quantitative computed tomography analysis of interstitial lung disease associated with systemic sclerosis: A longitudinal evaluation of pulmonary parenchyma and vessels. PLoS ONE 2019, 14, e0213444. [Google Scholar] [CrossRef]
- Carvalho, A.R.S.; Guimarães, A.R.; Sztajnbok, F.R.; Rodrigues, R.S.; Silva, B.R.A.; Lopes, A.J.; Zin, W.A.; Almeida, I.; França, M.M. Automatic Quantification of Interstitial Lung Disease From Chest Computed Tomography in Systemic Sclerosis. Front. Med. 2020, 7, 577739. [Google Scholar] [CrossRef]
- Le Gall, A.; Hoang-Thi, T.-N.; Porcher, R.; Dunogué, B.; Berezné, A.; Guillevin, L.; Le Guern, V.; Cohen, P.; Chaigne, B.; London, J.; et al. Prognostic value of automated assessment of interstitial lung disease on CT in systemic sclerosis. Rheumatology 2024, 63, 103–110. [Google Scholar] [CrossRef]
- Li, H.; Furst, D.E.; Jin, H.; Sun, C.; Wang, X.; Yang, L.; He, J.; Wang, Y.; Liu, A. High-frequency ultrasound of the skin in systemic sclerosis: An exploratory study to examine correlation with disease activity and to define the minimally detectable difference. Arthritis Res. Ther. 2018, 20, 181. [Google Scholar] [CrossRef]
- Iagnocco, A.; Kaloudi, O.; Perella, C.; Bandinelli, F.; Riccieri, V.; Vasile, M.; Porta, F.; Valesini, G.; Matucci-Cerinic, M. Ultrasound Elastography Assessment of Skin Involvement in Systemic Sclerosis: Lights and Shadows. J. Rheumatol. 2010, 37, 1688–1691. [Google Scholar] [CrossRef]
- Glynn, P.; Hale, S.; Hussain, T.; Freed, B.H. Cardiovascular Imaging for Systemic Sclerosis Monitoring and Management. Front. Cardiovasc. Med. 2022, 9, 846213. [Google Scholar] [CrossRef] [PubMed]
- Ganieva, N.A.; Djuraeva, E.R.; Dwivedi, K. Systemic Sclerosis and Cardiovascular Risk: A Systematic Review of its Association with Atherosclerosis. Web Discov. J. Anal. Invent. 2025, 3, 16–23. [Google Scholar]
- Sobanski, V.; Giovannelli, J.; Allanore, Y.; Riemekasten, G.; Airò, P.; Vettori, S.; Cozzi, F.; Distler, O.; Matucci-Cerinic, M.; Denton, C.; et al. Phenotypes Determined by Cluster Analysis and Their Survival in the Prospective European Scleroderma Trials and Research Cohort of Patients with Systemic Sclerosis. Arthritis Rheumatol. 2019, 71, 1553–1570. [Google Scholar] [CrossRef] [PubMed]
- Franks, J.M.; Martyanov, V.; Cai, G.; Wang, Y.; Li, Z.; Wood, T.A.; Whitfield, M.L. A Machine Learning Classifier for Assigning Individual Patients with Systemic Sclerosis to Intrinsic Molecular Subsets. Arthritis Rheumatol. 2019, 71, 1701–1710. [Google Scholar] [CrossRef]
- Van Leeuwen, N.M.; Maurits, M.; Liem, S.; Ciaffi, J.; Ajmone Marsan, N.; Ninaber, M.; Allaart, C.; Gillet Van Dongen, H.; Goekoop, R.; Huizinga, T.; et al. New risk model is able to identify patients with a low risk of progression in systemic sclerosis. RMD Open 2021, 7, e001524. [Google Scholar] [CrossRef]
- Taleb, M.; Khuder, S.; Tinkel, J.; Khouri, S.J. The Diagnostic Accuracy of D oppler Echocardiography in Assessment of Pulmonary Artery Systolic Pressure: A Meta-Analysis. Echocardiography 2013, 30, 258–265. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, Z.; Diao, X.; Yang, Z.; Zhao, Z.; Xia, Y.; Zhao, Q.; Sun, Z.; Xi, Q.; Huo, Y.; et al. Development and validation of multimodal deep learning algorithms for detecting pulmonary hypertension. npj Digit. Med. 2025, 8, 198. [Google Scholar] [CrossRef]
- Ogawa, S.; Namino, F.; Mori, T.; Sato, G.; Yamakawa, T.; Saito, S. AI diagnosis of heart sounds differentiated with super StethoScope. J. Cardiol. 2024, 83, 265–271. [Google Scholar] [CrossRef]
- Guo, L.; Khobragade, N.; Kieu, S.; Ilyas, S.; Nicely, P.N.; Asiedu, E.K.; Lima, F.V.; Currie, C.; Lastowski, E.; Choudhary, G. Development and Evaluation of a Deep Learning–Based Pulmonary Hypertension Screening Algorithm Using a Digital Stethoscope. J. Am. Heart Assoc. 2025, 14, e036882. [Google Scholar] [CrossRef]
- Elgendi, M.; Bobhate, P.; Jain, S.; Guo, L.; Rutledge, J.; Coe, Y.; Zemp, R.; Schuurmans, D.; Adatia, I. The Voice of the Heart: Vowel-Like Sound in Pulmonary Artery Hypertension. Diseases 2018, 6, 26. [Google Scholar] [CrossRef]
- Wang, M.; Guo, B.; Hu, Y.; Zhao, Z.; Liu, C.; Tang, H. Transfer Learning Models for Detecting Six Categories of Phonocardiogram Recordings. J. Cardiovasc. Dev. Dis. 2022, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Ping, P.; Wang, F.; Luo, L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J. Biol. Eng. 2018, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Santaguida, P.L.; Don-Wauchope, A.C.; Oremus, M.; McKelvie, R.; Ali, U.; Hill, S.A.; Balion, C.; Booth, R.A.; Brown, J.A.; Bustamam, A.; et al. BNP and NT-proBNP as prognostic markers in persons with acute decompensated heart failure: A systematic review. Heart Fail. Rev. 2014, 19, 453–470. [Google Scholar] [CrossRef] [PubMed]
- Maurer, S.J.; Habdank, V.; Hörer, J.; Ewert, P.; Tutarel, O. NT-proBNP Is a Predictor of Mortality in Adults with Pulmonary Arterial Hypertension Associated with Congenital Heart Disease. J. Clin. Med. 2023, 12, 3101. [Google Scholar] [CrossRef]
- Lewis, R.A.; Durrington, C.; Condliffe, R.; Kiely, D.G. BNP/NT-proBNP in pulmonary arterial hypertension: Time for point-of-care testing? Eur. Respir. Rev. 2020, 29, 200009. [Google Scholar] [CrossRef]
- Kwon, J.; Kim, K.-H.; Medina-Inojosa, J.; Jeon, K.-H.; Park, J.; Oh, B.-H. Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography. J. Heart Lung Transplant. 2020, 39, 805–814. [Google Scholar] [CrossRef]
- Liu, C.-M.; Shih, E.S.C.; Chen, J.-Y.; Huang, C.-H.; Wu, I.-C.; Chen, P.-F.; Higa, S.; Yagi, N.; Hu, Y.-F.; Hwang, M.-J.; et al. Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients with Pulmonary Hypertension. JACC Asia 2022, 2, 258–270. [Google Scholar] [CrossRef]
- DuBrock, H.M.; Wagner, T.E.; Carlson, K.; Carpenter, C.L.; Awasthi, S.; Attia, Z.I.; Frantz, R.P.; Friedman, P.A.; Kapa, S.; Annis, J.; et al. An electrocardiogram-based AI algorithm for early detection of pulmonary hypertension. Eur. Respir. J. 2024, 64, 2400192. [Google Scholar] [CrossRef]
- Schreiber, B.E.; Valerio, C.J.; Keir, G.J.; Handler, C.; Wells, A.U.; Denton, C.P.; Coghlan, J.G. Improving the detection of pulmonary hypertension in systemic sclerosis using pulmonary function tests. Arthritis Rheum. 2011, 63, 3531–3539. [Google Scholar] [CrossRef]
- Hughes, A.M.; Lindsey, A.; Annis, J.; Burke, K.; Master, H.; Silverman-Lloyd, L.G.; Garry, J.D.; Blaha, M.J.; Berman Rosenzweig, E.S.; Frantz, R.P.; et al. Physical Activity, Sleep, and Quality of Life in Pulmonary Arterial Hypertension: Novel Insights From Wearable Devices. Pulm. Circ. 2025, 15, e70069. [Google Scholar] [CrossRef]
- Hesar, M.E.; Seyedsadrkhani, N.S.; Khan, D.; Naghashian, A.; Piekarski, M.; Gall, H.; Schermuly, R.; Ghofrani, H.A.; Ingebrandt, S. AI-enabled epidermal electronic system to automatically monitor a prognostic parameter for hypertension with a smartphone. Biosens. Bioelectron. 2023, 241, 115693. [Google Scholar] [CrossRef]
- Rasmy, L.; Xiang, Y.; Xie, Z.; Tao, C.; Zhi, D. Med-BERT: Pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. npj Digit. Med. 2021, 4, 86. [Google Scholar] [CrossRef] [PubMed]
- Schuler, K.P.; Hemnes, A.R.; Annis, J.; Farber-Eger, E.; Lowery, B.D.; Halliday, S.J.; Brittain, E.L. An algorithm to identify cases of pulmonary arterial hypertension from the electronic medical record. Respir. Res. 2022, 23, 138. [Google Scholar] [CrossRef]
- Kusunose, K.; Hirata, Y.; Yamaguchi, N.; Kosaka, Y.; Tsuji, T.; Kotoku, J.; Sata, M. Deep Learning for Detection of Exercise-Induced Pulmonary Hypertension Using Chest X-Ray Images. Front. Cardiovasc. Med. 2022, 9, 891703. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Sakao, S.; Nagata, J.; Naito, A.; Sekine, A.; Sugiura, T.; Shigeta, A.; Nishiyama, A.; Yokota, H.; Shimizu, N.; et al. Artificial intelligence-based model for predicting pulmonary arterial hypertension on chest X-ray images. BMC Pulm. Med. 2024, 24, 101. [Google Scholar] [CrossRef]
- Zou, X.-L.; Ren, Y.; Feng, D.-Y.; He, X.-Q.; Guo, Y.-F.; Yang, H.-L.; Li, X.; Fang, J.; Li, Q.; Ye, J.-J.; et al. A promising approach for screening pulmonary hypertension based on frontal chest radiographs using deep learning: A retrospective study. PLoS ONE 2020, 15, e0236378. [Google Scholar] [CrossRef]
- Salehi, M.; Alabed, S.; Sharkey, M.; Maiter, A.; Dwivedi, K.; Yardibi, T.; Selej, M.; Hameed, A.; Charalampopoulos, A.; Kiely, D.G.; et al. Artificial intelligence-based echocardiography assessment to detect pulmonary hypertension. ERJ Open Res. 2025, 11, 00592–02024. [Google Scholar] [CrossRef]
- Liao, Z.; Liu, K.; Ding, S.; Zhao, Q.; Jiang, Y.; Wang, L.; Huang, T.; Yang, L.; Luo, D.; Zhang, E.; et al. Automatic echocardiographic evaluation of the probability of pulmonary hypertension using machine learning. Pulm. Circ. 2023, 13, e12272. [Google Scholar] [CrossRef]
- Murayama, M.; Sugimori, H.; Yoshimura, T.; Kaga, S.; Shima, H.; Tsuneta, S.; Mukai, A.; Nagai, Y.; Yokoyama, S.; Nishino, H.; et al. Deep learning to assess right ventricular ejection fraction from two-dimensional echocardiograms in precapillary pulmonary hypertension. Echocardiography 2024, 41, e15812. [Google Scholar] [CrossRef]
- Zhang, J.; Gajjala, S.; Agrawal, P.; Tison, G.H.; Hallock, L.A.; Beussink-Nelson, L.; Lassen, M.H.; Fan, E.; Aras, M.A.; Jordan, C.; et al. Fully Automated Echocardiogram Interpretation in Clinical Practice: Feasibility and Diagnostic Accuracy. Circulation 2018, 138, 1623–1635. [Google Scholar] [CrossRef]
- Swift, A.J.; Lu, H.; Uthoff, J.; Garg, P.; Cogliano, M.; Taylor, J.; Metherall, P.; Zhou, S.; Johns, C.S.; Alabed, S.; et al. A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Alandejani, F.; Alabed, S.; Garg, P.; Goh, Z.M.; Karunasaagarar, K.; Sharkey, M.; Salehi, M.; Aldabbagh, Z.; Dwivedi, K.; Mamalakis, M.; et al. Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements. J. Cardiovasc. Magn. Reson. 2022, 24, 25. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-R.; Yang, K.; Wen, Y.; Wang, P.; Hu, Y.; Lai, Y.; Wang, Y.; Zhao, K.; Tang, S.; Zhang, A.; et al. Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging. Nat. Med. 2024, 30, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Charters, P.F.P.; Rossdale, J.; Brown, W.; Burnett, T.A.; Komber, H.M.E.I.; Thompson, C.; Robinson, G.; MacKenzie Ross, R.; Suntharalingam, J.; Rodrigues, J.C.L. Diagnostic accuracy of an automated artificial intelligence derived right ventricular to left ventricular diameter ratio tool on CT pulmonary angiography to predict pulmonary hypertension at right heart catheterisation. Clin. Radiol. 2022, 77, e500–e508. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, X.; Li, J.; Huang, L.; Li, H.; Feng, H.; Garcia, M.A.; Cao, Y.; Sun, Z.; Chai, S. Machine Learning Based on Computed Tomography Pulmonary Angiography in Evaluating Pulmonary Artery Pressure in Patients with Pulmonary Hypertension. J. Clin. Med. 2023, 12, 1297. [Google Scholar] [CrossRef]
- Xu, J.; Liang, C.; Li, J. A signal recognition particle-related joint model of LASSO regression, SVM-RFE and artificial neural network for the diagnosis of systemic sclerosis-associated pulmonary hypertension. Front. Genet. 2022, 13, 1078200. [Google Scholar] [CrossRef]
- Shimbo, M.; Hatano, M.; Katsushika, S.; Kodera, S.; Isotani, Y.; Sawano, S.; Matsuoka, R.; Minatsuki, S.; Inaba, T.; Maki, H.; et al. Deep Learning to Detect Pulmonary Hypertension from the Chest X-Ray Images of Patients with Systemic Sclerosis. Int. Heart J. 2024, 65, 1066–1074. [Google Scholar] [CrossRef]
- Lui, J.K.; Gopal, D.M.; Bujor, A.M.; LaValley, M.P.; Klings, E.S. Predicting Pre-capillary Pulmonary Hypertension in Systemic Sclerosis by Regional Longitudinal Strain Patterns on Echocardiography. Am. J. Respir. Crit. Care Med. 2024, 209, A6098. [Google Scholar] [CrossRef]
- Bauer, Y.; De Bernard, S.; Hickey, P.; Ballard, K.; Cruz, J.; Cornelisse, P.; Chadha-Boreham, H.; Distler, O.; Rosenberg, D.; Doelberg, M.; et al. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: Machine learning on proteomics from the DETECT cohort. Eur. Respir. J. 2021, 57, 2002591. [Google Scholar] [CrossRef]
- Lui, J.K.; Gillmeyer, K.R.; Sangani, R.A.; Smyth, R.J.; Gopal, D.M.; Trojanowski, M.A.; Bujor, A.M.; Soylemez Wiener, R.; LaValley, M.P.; Klings, E.S. A Multimodal Prediction Model for Diagnosing Pulmonary Hypertension in Systemic Sclerosis. Arthritis Care Res. 2023, 75, 1462–1468. [Google Scholar] [CrossRef]
- Yudkina, N.; Volkov, A.; Nikolaeva, E. Validation of an Alternative Simplified Model for the Selection of Patients with Systemic Sclerosis for the Diagnosis of Pulmonary Arterial Hypertension. Chest 2023, 164, A6006. [Google Scholar] [CrossRef]
- Cerasuolo, P.G.; De Lorenzis, E.; Natalello, G.; Verardi, L.; Alonzi, G.; Fiore, S.; Zoli, A.; Di Murro, S.; D’agostino, M.A.; Bosello, S.L. POS1289 Machine Learning Algorithm as A Useful Tool in the Grey Area of Cardiopulmonary Mortality in Systemic Sclerosis. Sci. Abstr 2023, 82, 992. [Google Scholar] [CrossRef]
- Koyama, Y.; Sato, Y.; Shoji, T.; Fuke, S.; Umayahara, T.; Sakamoto, M. POS0881 Detection of the Gene Expressions in Peripheral Blood Involved in the Progression of Pulmonary Vessel Disease at the Subclinical Stage of Pulmonary Hypertension Associated with Systemic Sclerosis. Ann. Rheum. Dis. 2021, 80, 697. [Google Scholar] [CrossRef]
- Launay, D.; Sanges, S.; Sobanski, V. Time for precision medicine in systemic sclerosis-associated pulmonary arterial hypertension. Eur. Respir. J. 2021, 57, 2100205. [Google Scholar] [CrossRef]
- Lemmers, J.M.; Van Caam, A.P.; Kersten, B.; Van Den Ende, C.H.; Knaapen, H.; Van Dijk, A.P.; Hagmolen Of Ten Have, W.; Van Den Hoogen, F.H.; Koenen, H.; Van Leuven, S.I.; et al. Nailfold capillaroscopy and candidate-biomarker levels in systemic sclerosis-associated pulmonary hypertension: A cross-sectional study. J. Scleroderma Relat. Disord. 2023, 8, 221–230. [Google Scholar] [CrossRef]
- Chaisson, N.F.; Hassoun, P.M. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Chest 2013, 144, 1346–1356. [Google Scholar] [CrossRef]
- Chatterjee, S. Pulmonary Hypertension in Systemic Sclerosis. Semin. Arthritis Rheum. 2011, 41, 19–37. [Google Scholar] [CrossRef]
- Murdaca, G.; Caprioli, S.; Tonacci, A.; Billeci, L.; Greco, M.; Negrini, S.; Cittadini, G.; Zentilin, P.; Ventura Spagnolo, E.; Gangemi, S. A Machine Learning Application to Predict Early Lung Involvement in Scleroderma: A Feasibility Evaluation. Diagnostics 2021, 11, 1880. [Google Scholar] [CrossRef]
- Van Den Hombergh, W.M.; Knaapen-Hans, H.K.; Van Den Hoogen, F.H.; Carreira, P.; Distler, O.; Hesselstrand, R.; Hunzelmann, N.; Vettori, S.; Fransen, J.; Vonk, M.C. Prediction of organ involvement and survival in systemic sclerosis patients in the first 5 years from diagnosis. J. Scleroderma Relat. Disord. 2020, 5, 57–65. [Google Scholar] [CrossRef]
- Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Cabitza, F.; Campagner, A.; Balsano, C. Bridging the “last mile” gap between AI implementation and operation: “data awareness” that matters. Ann. Transl. Med. 2020, 8, 501. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.P.; Senadeera, M.; Jacobs, S.; Coghlan, S.; Le, V. Trust and medical AI: The challenges we face and the expertise needed to overcome them. J. Am. Med. Inform. Assoc. 2021, 28, 890–894. [Google Scholar] [CrossRef] [PubMed]
- Markus, A.F.; Kors, J.A.; Rijnbeek, P.R. The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies. J. Biomed. Inform. 2021, 113, 103655. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, Z.; Xu, X.; Zhan, Y.; Jin, X.; Wang, L.; Qiu, Y. Opportunities and challenges of artificial intelligence in the medical field: Current application, emerging problems, and problem-solving strategies. J. Int. Med. Res. 2021, 49, 03000605211000157. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019, 17, 195. [Google Scholar] [CrossRef]
- Thesmar, D.; Sraer, D.; Pinheiro, L.; Dadson, N.; Veliche, R.; Greenberg, P. Combining the Power of Artificial Intelligence with the Richness of Healthcare Claims Data: Opportunities and Challenges. PharmacoEconomics 2019, 37, 745–752. [Google Scholar] [CrossRef]
- Esmaeilzadeh, P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artif. Intell. Med. 2024, 151, 102861. [Google Scholar] [CrossRef]
- Maleki, F.; Ovens, K.; Gupta, R.; Reinhold, C.; Spatz, A.; Forghani, R. Generalizability of Machine Learning Models: Quantitative Evaluation of Three Methodological Pitfalls. Radiol. Artif. Intell. 2023, 5, e220028. [Google Scholar] [CrossRef]
- Chan, A. Current Applications and Future Roles of AI in Rheumatology. AMJ Rheumatol. 2024, 1, 53–58. [Google Scholar] [CrossRef]
- Attaripour Esfahani, S.; Baba Ali, N.; Farina, J.M.; Scalia, I.G.; Pereyra, M.; Abbas, M.T.; Javadi, N.; Bismee, N.N.; Abdelfattah, F.E.; Awad, K.; et al. A Comprehensive Review of Artificial Intelligence (AI) Applications in Pulmonary Hypertension (PH). Medicina 2025, 61, 85. [Google Scholar] [CrossRef]
Study Author | Year | Modality | AI- Technology | Process | Outcomes | Advantages | Future Potential of AI in SSc-PAH |
---|---|---|---|---|---|---|---|
Charters et al. [137] | 2022 | CTPA | ResNet-18 + SegNet (CNN) | Automated RV/LV ratio calculation using CT images | ICC: 0.878 (vs. manual RV/LV), AUROC: 0.752 for PH detection, Sensitivity 73%, Specificity 67% (threshold ≥ 1.12) | Reduces inter-observer variability (manual ICC 0.791–0.928); Stronger correlation with RHC; Predicts mortality; Screening in suspected PH | Combine CTPA with PFTs/ECG for multimodal screening of suspected SSc-PAH. |
Zhang et al. [138] | 2023 | CTPA | 3D nnU-Net + XGBoost | Extracted 1D/2D metrics (e.g., LV diameter, RAd/LAd ratio) and correlated with RHC-derived PAP | ICC (vs. RHC mPAP): 0.934, AUC for classification: mPAP ≥ 40 mmHg: 0.911 | Non-invasive PAP estimation; High accuracy in severe PH detection (mPAP ≥ 40 mmHg) | Extend to detect early PAH in SSc with fine-tuned metrics. |
Kwon et al. [119] | 2020 | ECG | DL | Wave pattern analysis (S/P/T waves) | Early PAH prediction even before symptom onset | Superior to human interpretation; Low-cost; scalable; Useful in resource-limited settings | PAH-specific fine-tuning using SSc patient data. |
Liu et al. [120] | 2022 | ECG | DL | Evaluated 10 AI models using 12-lead ECGs paired with ECHO estimates of PAP) | AUC: 0.88; Sensitivity: 81%, Specificity: 80%, Accuracy: ~80% | Identify patients at risk before clinical PH develops | Can flag high-risk SSc patients for follow-up before symptoms appear. |
DuBrock et al. [121] | 2024 | ECG | DL-CNNs | Developed PH Early Detection Algorithm (PH-EDA) trained on ECGs of PH and non-PH patients. | AUC 0.92 (internal), 0.88 (external); long-term predictive accuracy | Outperforms human interpretation; works on normal-appearing ECGs | Train PH-EDA on SSc cohorts to identify asymptomatic early SSc-PAH cases. |
Zou et al. [129] | 2020 | CXR | DL | Classifies PH vs. normal CXR | AUC up to 0.945; Accuracy 86.14% | Better than subjective human CXR review | Train to separate SSc-PAH from other PH types for targeted management. |
Imai et al. [128] | 2024 | CXR | CNNs | Classifies PAH vs. normal CXR | sensitivity of 93.3%, specificity of 98.2%, and an AUC of 0.988 | Early, non-invasive detection with high diagnostic accuracy | Fine-tune using CXR datasets from SSc patients with and without PAH. |
Kusunose et al. [127] | 2022 | CXR | DL | Analyzes pre- and post-exercise CXRs | 82% accuracy | Identifies early vascular changes; No need for stress ECHO; Widely accessible | Combine with EHR data for resting PAH prediction. |
Rasmy et al. [125] | 2021 | EHR | Med-BERT (BERT-based NLP model) | EHR data analysis (ICD codes) | Improved AUC by 1.21–6.14% in disease prediction tasks | Processes large datasets very efficiently; Real-time alerts. | Adapt for early, EHR-based detection of SSc-PAH using structured codes + temporal trends in symptoms and visits; integrate with imaging/ECG models for a multimodal SSc-PAH diagnostic tool. |
Schuler et al. [126] | 2022 | EHR | ML | EHR data analysis (ICD codes, CPT codes and medications) | Sensitivity: 88%, Specificity: 93%, Positive Predictive Value (PPV): 89%, Negative Predictive Value (NPV): 92% | Reducing need for manual chart reviews; scalable; facilitates early identification of PAH | PAH-specific fine-tuning using SSc patient data. |
Elgendi et al. [113] | 2018 | Heart Sounds | Linear Discriminant Analysis (LDA) | Extracted heart sound features (e.g., frequency band power, entropy) and trained on PAH vs. non-PAH data | Sensitivity: 84%, Specificity: 88.57% | Low-cost, non-invasive, interpretable model using standard auscultation | Can be adapted for screening SSc-PAH in remote settings; potential for telehealth integration. |
Wang et al. [114] | 2022 | Heart Sounds | Transfer Learning (ResNet101, DenseNet201) | Used pretrained CNNs to classify PCG recordings into six heart condition categories, including PH | Accuracy: 90–98% for various heart conditions | Robust against noise; generalizable to real-world recordings | Can be developed into mobile-based screening tools in SSc with high specificity. |
Ogawa et al. [111] | 2024 | Heart Sounds | Super Stethoscope + AI | Visual heart sound mapping from ECHO + auscultation | Detects elevated pressures, murmurs | Provides quantitative data vs. subjective auscultation | Use in remote areas for early SSc-PAH flagging from heart sound patterns. |
Guo et al. [112] | 2025 | Heart Sounds | DL Phonocardiogram (spectrogram-based) | Trained on >170,000 PCGs with PASP/ECHO labels; mel-spectrogram input | Sensitivity: 0.71, Specificity: 0.73 | Captures inaudible clues missed by physicians | Deploy for community-level SSc-PAH screening in resource-poor or remote settings. |
Lewis et al. [118] | 2020 | Biomarkers | ML | NT-proBNP + clinical variable analysis | Personalized prediction and risk stratification | Combines lab and clinical context unlike static cutoffs | Develop point-of-care NT-proBNP + AI platforms for SSc-PAH monitoring. |
Salehi et al. [130] | 2025 | ECHO | US2.AI (DL) model | Auto-calculates TR jet velocity | High concordance with RHC; 87% interpretability | Faster and less operator-dependent than manual echo | Use in clinics for early screening of RV pressure in SSc. |
Liao et al. [131] | 2023 | ECHO | ML | PSAX-PML ECHO + ML classification | AUC 0.945 in the internal validation (vs. 0.892, p = 0.027), and 0.950 in the external validation. | Detects subtle ECHO features | Train on SSc-specific ECHO features to detect early vasculopathy. |
Muriyama et al. [132] | 2024 | ECHO | ML | Extracted geometric features from 346 ECHOs with RHC confirmation | AUC: 0.945 (internal), 0.950 (external) | Outperformed traditional methods | Fine-tune with SSc data for early, accurate detection. |
Swift et al. [134] | 2021 | CMR | ML(tensor model) | Feature extraction from cine images | AUC: 0.92; diagnosis time < 10 s | Detects hidden imaging patterns missed in manual CMR reads | Apply to SSc-specific cardiac remodeling patterns. |
Alandejani et al. [135] | 2022 | CMR | DL | RA area contouring | Accurate, consistent RA area measures | Reduces inter-observer variability; matches RHC data | Predict mortality and monitor remodeling in SSc-PAH follow-up. |
Wang et al. [136] | 2024 | CMR | Two-stage AI model (cine + LGE) | Cine + LGE-based disease classification | Outperforms cardiologists for PAH | More efficient than manual reading; wider disease coverage | Identify SSc-PAH progression patterns with fibrosis insight. |
Hughes et al. [123] | 2025 | Wearables | Fitbit + ML | Tracks sleep, activity trends | Decreased REM/light sleep + steps in PAH | Real-world tracking vs. snapshot tests like 6MWT | Incorporate trends into AI models for early decline in SSc-PAH. |
Hesar et al. [124] | 2023 | Wearables | ML + EES | Seismocardiogram + ECG via smartphone | Extracts prognostic index in real time | Continuous, mobile monitoring outside hospital | Add to telehealth platforms for SSc-PAH symptom monitoring. |
Zhao et al. [110] | 2025 | Multimodal | Transformer Model | Tabular + text + imaging fusion | AUC 0.96 for PAH prediction | Integrates multiple data sources and superior to single modality | Deploy as a real-time clinical decision support tool. |
Method | AUC | Sensitivity | Specificity |
---|---|---|---|
AI | 0.826 | 50.00% | 94.10% |
ECHO (TRV) | 0.927 | 58.30% | 100% |
CTR | 0.786 | 66.70% | 79% |
CARDIOLOGISTS | 0.804 | ~70% | ~67% |
DERMATOLOGISTS | 0.756 | ~57% | ~71% |
Model | Accuracy | Sensitivity | Specificity |
---|---|---|---|
RF | 88% | 95% | 80% |
Logistic Regression | 78% | 85% | 70% |
CART | 63% | 55% | 70% |
Algorithm | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Accuracy (%) |
---|---|---|---|---|---|
DETECT | 100 | 26 | 44 | 100 | 53 |
ASIG | 74 | 55 | 49 | 79 | 62 |
ItinerAIR | 100 | 28 | 56 | 100 | 54 |
Simplified model | 96 | 70 | 65 | 97 | 80 |
Biomarker | Level in SSc-PAH | p-Value | 95% CI of Difference |
---|---|---|---|
Endostatin | ↑ Increased | 0.004 | 16 [5 to 27] pg/mL |
sVCAM1 | ↑ Increased | 0.04 | 47 [2 to 92] pg/mL |
VEGF-D | ↑ Increased | 0.03 | 205 [18 to 391] pg/mL |
CXCL4 (PF4) | ↓ Decreased | 0.0002 | −1963 [−2956 to −970] pg/mL |
sVEGFR2 | ↓ Decreased | 0.0009 | −3258 [−5135 to −1381] pg/mL |
PDGF-AB/BB | ↓ Decreased | 0.013 | −3870 [−6913 to −826] pg/mL |
Study Author | Study Year | AI Method | Input Data | Key Findings | Performance | Clinical Implications |
---|---|---|---|---|---|---|
Xu et al. [139] | 2022 | LASSO, SVM-RFE, ANN | Gene expression data focusing on (SRP)-related genes | Identified 30 downregulated SRP-related genes in SSc-PH; narrowed down to 7 key diagnostic genes (SRP-DGs); constructed SRPscore and nomogram; developed ANN for diagnosis | AUC: 0.999 (training), 0.860 (testing) | Demonstrated potential of integrating AI with genomics for early and precise diagnosis of SSc-PH; identified signaling pathways and immune characteristics associated with SRP dysfunction; proposed 10 potential drugs regulating SRP-DGs. |
Shimbo et al. [140] | 2024 | DL model using ResNet-50 architecture | CXRs and RHC data from 230 SSc patients | Detected SSc-PH using CXRs; compared performance with cardiologists, dermatologists, ECHO (TRV), and CTR | AUC: 0.826; Accuracy: 82.6%; Sensitivity: 50.0%; Specificity: 94.1% | AI model’s prediction score correlated strongly with mPAP (r = 0.72) and TRV (r = 0.74), a significant predictor of patient survival and a potential tool for early PAH screening in SSc patients, especially in resource-limited settings. |
Lui et al. [141] | 2024 | RF | Speckle tracking ECHO data from 101 SSc patients | Predicted pre-capillary PH; analyzed regional myocardial longitudinal strain patterns | AUC: 0.805; Sensitivity: 79%; Specificity: 88% | Provided a non-invasive method for early risk stratification and identification of patients who may benefit from confirmatory RHC; aligned with current hemodynamic criteria for SSc-PAH. |
Bauer et al. [142] | 2021 | RF; SPLS regression | Proteomic analysis of serum samples from the DETECT study | Identified an 8-protein panel to distinguish between SSc patients with and without PAH | AUC: 0.741 (DETECT cohort); AUC: 0.866 (Sheffield validation cohort); Sensitivity: 65.1%; Specificity: 69.0% | Demonstrated that AI-based analysis of proteomic data can identify specific biomarkers predictive of PAH in SSc patients; potential for earlier, non-invasive screening before severe symptoms onset. |
Lui et al. [143] | 2023 | RF, CART, Logistic Regression | Combining PFTs, ECG, ECHO, and CT images data | Developed three prediction models for diagnosing PH in SSc; compared the performance of the models | Random Forest performed the best: Accuracy: 88%; Sensitivity: 95%; Specificity: 80%; | Highlighted that ML-based models built from regular, non-invasive diagnostic tests can assist clinicians in flagging patients requiring confirmatory RHC; potential for early and personalized treatment of SSc-PAH. |
Cerasuolo et al. [145] | 2023 | PAM clustering | Laboratory and functional parameters such as FVC, DLCO, troponin, NT-proBNP, EF, and PAPs | Identified SSc patients at high risk of 5-year cardiopulmonary mortality; divided patients into two prognosis clusters with significantly different mortality rates | Mortality rates: High-risk group: 15%; Low-risk group: 0.8% | Demonstrated that AI-driven analysis of routine cardiopulmonary data can be a valuable tool in risk stratification and clinical decision-making, especially in areas where conventional predictors might fail. |
Koyama et al. [146] | 2024 | Random Forest | exDE and peripheral blood gene expression profiling | Focused on the subclinical stage of PAH, particularly exPH; identified TNF as the strongest predictor of early disease progression; combined with TMEM176A/B gene expressions for improved accuracy | Model accuracy: 87%; Increased to 90% when combined with TMEM176A/B expressions | Highlighted the importance of AI in detecting early, subtle, complex patterns in gene expression that conventional methods may miss; revealed that SSc-PAH develops in distinct molecular phases, enabling targeted phase-specific management. |
Launay et al. [147] | 2021 | Unsupervised ML | Integration of clinical data with omics, such as proteomics and transcriptomics | Highlighted the potential of non-supervised ML to combine clinical data and biomarkers to improve the accuracy of RHC decisions | Not specified | Suggested that AI-driven tools could eventually replace or enhance current tools like DETECT; aimed to address heterogeneity in SSc-PAH, optimize screening efficiency, and improve patient outcomes through earlier interventions. |
Lemmers et al. [148] | 2023 | RF | Analysis of 26 soluble serum biomarkers | Identified Endostatin (elevated) and CXCL4 (decreased) as the most predictive biomarkers to distinguish SSc with or without PAH | AUC: 0.92 | Demonstrated that AI can enable early diagnosis and biomarker identification in SSc-PAH, improving treatment outcomes; emphasized the potential of serum biomarkers in non-invasive screening. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Polish Respiratory Society. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, S.; Kaur, A.; Qadeer, A.; Ghosh, V.; Thota, S.; Banala, M.; Lee, J.; Yerrapragada, G.; Elangovan, P.; Shariff, M.N.; et al. Leveraging Artificial Intelligence for the Diagnosis of Systemic Sclerosis Associated Pulmonary Arterial Hypertension: Opportunities, Challenges, and Future Perspectives. Adv. Respir. Med. 2025, 93, 47. https://doi.org/10.3390/arm93050047
Jain S, Kaur A, Qadeer A, Ghosh V, Thota S, Banala M, Lee J, Yerrapragada G, Elangovan P, Shariff MN, et al. Leveraging Artificial Intelligence for the Diagnosis of Systemic Sclerosis Associated Pulmonary Arterial Hypertension: Opportunities, Challenges, and Future Perspectives. Advances in Respiratory Medicine. 2025; 93(5):47. https://doi.org/10.3390/arm93050047
Chicago/Turabian StyleJain, Samiksha, Avneet Kaur, Abdul Qadeer, Victor Ghosh, Shivani Thota, Mallareddy Banala, Jieun Lee, Gayathri Yerrapragada, Poonguzhali Elangovan, Mohammed Naveed Shariff, and et al. 2025. "Leveraging Artificial Intelligence for the Diagnosis of Systemic Sclerosis Associated Pulmonary Arterial Hypertension: Opportunities, Challenges, and Future Perspectives" Advances in Respiratory Medicine 93, no. 5: 47. https://doi.org/10.3390/arm93050047
APA StyleJain, S., Kaur, A., Qadeer, A., Ghosh, V., Thota, S., Banala, M., Lee, J., Yerrapragada, G., Elangovan, P., Shariff, M. N., Natarajan, T., Janarthanan, J., Jayapradhaban Kala, J., Richard, S., Vommi, S. P., Karuppiah, S. S., Muthyala, A., Iyer, V. N., Helgeson, S. A., ... Arunachalam, S. P. (2025). Leveraging Artificial Intelligence for the Diagnosis of Systemic Sclerosis Associated Pulmonary Arterial Hypertension: Opportunities, Challenges, and Future Perspectives. Advances in Respiratory Medicine, 93(5), 47. https://doi.org/10.3390/arm93050047