A Comparison of Impulse Oscillometry and Spirometry by Percent Predicted in Identifying Uncontrolled Asthma
Abstract
Highlights
- Spirometry does not always correlate closely with asthma control.
- The IOS showed a greater ability to detect asthma control than spirometry.
- R5-R20 ≥ 200 %-predicted is the best point for identifying uncontrolled asthma.
- IOS can be used to assess asthma control.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Lung Function Test
2.3. Study Size Estimation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Available online: https://ginasthma.org/2024-report/ (accessed on 5 December 2024).
- Pothirat, C.; Phetsuk, N.; Liwsrisakun, C.; Bumroongkit, C.; Deesomchok, A.; Theerakittikul, T. Major Chronic Respiratory Diseases in Chiang Mai: Prevalence, Clinical Characteristics, and Their Correlations. J. Med. Assoc. Thai 2016, 99, 1005–1013. [Google Scholar] [PubMed]
- Chiu, K.C.; Boonsawat, W.; Cho, S.H.; Cho, Y.J.; Hsu, J.Y.; Liam, C.K.; Muttalif, A.R.; Nguyen, H.D.; Nguyen, V.N.; Wang, C.; et al. Patients’ beliefs and behaviors related to treatment adherence in patients with asthma requiring maintenance treatment in Asia. J. Asthma 2014, 51, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Mathieson, N.; Scowcroft, A.; Pedersini, R.; Isherwood, G.; Price, D. The impact of poor asthma control among asthma patients treated with inhaled corticosteroids plus long-acting β2-agonists in the United Kingdom: A cross-sectional analysis. NPJ Prim. Care Respir. Med. 2017, 27, 17. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.R.; Boulet, L.P.; Rea, R.M.; Franssen, E. Suboptimal asthma control: Prevalence, detection and consequences in general practice. Eur. Respir. J. 2008, 31, 320–325. [Google Scholar] [CrossRef]
- Bateman, E.D.; Reddel, H.K.; Eriksson, G.; Peterson, S.; Ostlund, O.; Sears, M.R.; Jenkins, C.; Humbert, M.; Buhl, R.; Harrison, T.W.; et al. Overall asthma control: The relationship between current control and future risk. J. Allergy Clin. Immunol. 2010, 125, 600–608. [Google Scholar] [CrossRef]
- Bickel, S.; Popler, J.; Lesnick, B.; Eid, N. Impulse oscillometry: Interpretation and practical applications. Chest 2014, 146, 841–847. [Google Scholar] [CrossRef]
- Shi, Y.; Aledia, A.S.; Galant, S.P.; George, S.C. Peripheral airway impairment measured by oscillometry predicts loss of asthma control in children. J. Allergy Clin. Immunol. 2013, 131, 718–723. [Google Scholar] [CrossRef]
- Shi, Y.; Aledia, A.S.; Tatavoosian, A.V.; Vijayalakshmi, S.; Galant, S.P.; George, S.C. Relating small airways to asthma control by using impulse oscillometry in children. J. Allergy Clin. Immunol. 2012, 129, 671–678. [Google Scholar] [CrossRef]
- Takeda, T.; Oga, T.; Niimi, A.; Matsumoto, H.; Ito, I.; Yamaguchi, M.; Matsuoka, H.; Jinnai, M.; Otsuka, K.; Oguma, T.; et al. Relationship between small airway function and health status, dyspnea and disease control in asthma. Respiration 2010, 80, 120–126. [Google Scholar] [CrossRef]
- Gonem, S.; Umar, I.; Burke, D.; Desai, D.; Corkill, S.; Owers-Bradley, J.; Brightling, C.E.; Siddiqui, S. Airway impedance entropy and exacerbations in severe asthma. Eur. Respir. J. 2012, 40, 1156–1163. [Google Scholar] [CrossRef]
- Smith, C.J.; Spaeder, M.C.; Sorkness, R.L.; Teague, W.G. Disparate diagnostic accuracy of lung function tests as predictors of poor asthma control in children. J. Asthma 2020, 57, 327–334. [Google Scholar] [CrossRef]
- Dawman, L.; Mukherjee, A.; Sethi, T.; Agrawal, A.; Kabra, S.K.; Lodha, R. Role of Impulse Oscillometry in Assessing Asthma Control in Children. Indian. Pediatr. 2020, 57, 119–123. [Google Scholar] [CrossRef]
- Kreetapirom, P.; Kiewngam, P.; Jotikasthira, W.; Kamchaisatian, W.; Benjaponpitak, S.; Manuyakorn, W. Forced oscillation technique as a predictor for loss of control in asthmatic children. Asia Pac. Allergy 2020, 10, e3. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Chen, Z.; Hu, Y.; Hu, Q.; Zhong, S.; Liao, W. Asthma control in preschool children with small airway function as measured by IOS and fractional exhaled nitric oxide. Respir. Med. 2018, 145, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Tirakitsoontorn, P.; Crookes, M.; Fregeau, W.; Pabelonio, N.; Morphew, T.; Shin, H.W.; Galant, S.P. Recognition of the peripheral airway impairment phenotype in children with well-controlled asthma. Ann. Allergy Asthma Immunol. 2018, 121, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Chaiwong, W.; Namwongprom, S.; Liwsrisakun, C.; Pothirat, C. The roles of impulse oscillometry in detection of poorly controlled asthma in adults with normal spirometry. J. Asthma 2022, 59, 561–571. [Google Scholar] [CrossRef]
- Yun, H.J.; Eom, S.Y.; Hahn, Y.S. Assessing Asthma Control by Impulse Oscillometry and Fractional Expiratory Nitric Oxide in Children with Normal Spirometry. J. Allergy Clin. Immunol. Pract. 2023, 11, 2822–2829. [Google Scholar] [CrossRef]
- Galant, S.P.; Morphew, T. Adding oscillometry to spirometry in guidelines better identifies uncontrolled asthma, future exacerbations, and potential targeted therapy. Ann. Allergy Asthma Immunol. 2024, 132, 21–29. [Google Scholar] [CrossRef]
- Manoharan, A.; Anderson, W.J.; Lipworth, J.; Lipworth, B.J. Assessment of spirometry and impulse oscillometry in relation to asthma control. Lung 2015, 193, 47–51. [Google Scholar] [CrossRef]
- Díaz Palacios, M.Á.; Hervás Marín, D.; Giner Valero, A.; Colomer Hernández, N.; Torán Barona, C.; Hernández Fernández de Rojas, D. Correlation between impulse oscillometry parameters and asthma control in an adult population. J. Asthma Allergy 2019, 12, 195–203. [Google Scholar] [CrossRef]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef] [PubMed]
- Deesomchok, A.; Chaiwong, W.; Liwsrisakun, C.; Namwongprom, S.; Pothirat, C. Reference equations of the impulse oscillatory in healthy Thai adults. J. Thorac. Dis. 2022, 14, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- King, G.G.; Bates, J.; Berger, K.I.; Calverley, P.; de Melo, P.L.; Dellacà, R.L.; Farré, R.; Hall, G.L.; Ioan, I.; Irvin, C.G.; et al. Technical standards for respiratory oscillometry. Eur. Respir. J. 2020, 55, 1900753. [Google Scholar] [CrossRef] [PubMed]
- Niyatiwatchanchai, N.; Chaiwong, W.; Pothirat, C. The validity and reliability of the Thai version of the asthma control test. Asian Pac. J. Allergy Immunol. 2024, 42, 24–29. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- Pisi, R.; Aiello, M.; Frizzelli, A.; Feci, D.; Aredano, I.; Manari, G.; Calzetta, L.; Pelà, G.; Chetta, A. Detection of Small Airway Dysfunction in Asthmatic Patients by Spirometry and Impulse Oscillometry System. Respiration 2023, 102, 487–494. [Google Scholar] [CrossRef]
- Spahn, J.D.; Cherniack, R.; Paull, K.; Gelfand, E.W. Is forced expiratory volume in one second the best measure of severity in childhood asthma? Am. J. Respir. Crit. Care Med. 2004, 169, 784–786. [Google Scholar] [CrossRef]
- Beinart, D.; Goh, E.S.Y.; Boardman, G.; Chung, L.P. Small airway dysfunction measured by impulse oscillometry is associated with exacerbations and poor symptom control in patients with asthma treated in a tertiary hospital subspecialist airways disease clinic. Front. Allergy 2024, 5, 1403894. [Google Scholar] [CrossRef]
- Annesi, I.; Oryszczyn, M.P.; Neukirch, F.; Orvoen-Frija, E.; Korobaeff, M.; Kauffmann, F. Relationship of upper airways disorders to FEV1 and bronchial hyperresponsiveness in an epidemiological study. Eur. Respir. J. 1992, 5, 1104–1110. [Google Scholar] [CrossRef]
- Cottini, M.; Bondi, B.; Bagnasco, D.; Braido, F.; Passalacqua, G.; Licini, A.; Lombardi, C.; Berti, A.; Comberiati, P.; Landi, M.; et al. Impulse oscillometry defined small airway dysfunction in asthmatic patients with normal spirometry: Prevalence, clinical associations, and impact on asthma control. Respir. Med. 2023, 218, 107391. [Google Scholar] [CrossRef]
- Liwsrisakun, C.; Chaiwong, W.; Pothirat, C. Comparative assessment of small airway dysfunction by impulse oscillometry and spirometry in chronic obstructive pulmonary disease and asthma with and without fixed airflow obstruction. Front. Med. (Lausanne) 2023, 10, 1181188. [Google Scholar] [CrossRef]
- Cottini, M.; Lombardi, C.; Comberiati, P.; Berti, A.; Menzella, F.; Dandurand, R.J.; Diamant, Z.; Chan, R. Oscillometry-defined small airways dysfunction as a treatable trait in asthma. Ann. Allergy Asthma Immunol. 2025, 134, 151–158. [Google Scholar] [CrossRef]
Clinical Characteristics | Uncontrolled (n = 35) | Well-Controlled (n = 74) | p-Value |
---|---|---|---|
Age (years) | 56.7 ± 15.9 | 53.6 ± 15.4 | 0.333 |
Female sex n (%) | 27 (77.1) | 57 (70.3) | 0.500 |
Body mass index (BMI) | 28.6 ± 3.9 | 24.9 ± 3.9 | <0.001 |
Age of disease onset (year) (median, IQR) | 34.0 (27.0, 60.0) | 36.0 (22.0, 54.0) | 0.393 |
Duration of disease (year) (median, IQR) | 11.0 (3.0, 33.0) | 12.0 (3.0, 27.0) | 0.997 |
Family history of asthma (yes) | 18 (51.4) | 42 (56.8) | 0.682 |
ACT score | 16.8 ± 2.7 | 23.0 ± 1.6 | <0.001 |
Inhaled medication used | 0.001 | ||
ICS | 5 (14.3) | 3 (4.1) | |
ICS + LABA | 20 (57.1) | 65 (87.8) | |
ICS + LABA + LAMA | 10 (20.6) | 6 (8.1) | |
Daily dose of ICS | 0.116 | ||
Low | 13 (37.1) | 43 (58.1) | |
Medium | 19 (54.3) | 25 (33.8) | |
High | 3 (8.6) | 6 (8.1) | |
Oral medication used | |||
Antileukotriene | 23 (65.7) | 45 (60.8) | 0.676 |
Oral bronchodilator | 3 (8.6) | 2 (2.7) | 0.325 |
Omalizumab | 2 (5.7) | 2 (2.7) | 0.592 |
Comorbidities n (%) | |||
Rhinitis | 30 (85.7) | 65 (87.8) | 0.765 |
Hypertension | 11 (31.4) | 19 (25.7) | 0.647 |
Diabetes mellitus | 6 (17.1) | 5 (6.8) | 0.169 |
History of AE in the previous year | 14 (40.0) | 8 (10.8) | 0.001 |
Spirometry Parameters | Uncontrolled (n = 35) | Well-Controlled (n = 74) | p-Value |
---|---|---|---|
FVC (L) | 2.29 ± 0.64 | 2.74 ± 0.68 | 0.002 |
%-predicted of FVC | 92.0 ± 13.3 | 99.9 ± 13.7 | 0.006 |
z-score of FVC | −0.59 ± 0.87 | −0.01 ± 0.97 | 0.002 |
FEV1 (L) | 1.77 ± 0.54 | 2.16 ± 0.56 | 0.001 |
%-predicted of FEV1 | 84.9 ± 11.2 | 94.6 ± 14.4 | <0.001 |
z-score of FEV1 | −1.01 ± 0.71 | −0.31 ± 1.00 | <0.001 |
FEV1/FVC (%) | 78.0 ± 5.1 | 79.1 ± 6.5 | 0.382 |
z-score of FEV1/FVC | −0.94 ± 0.69 | −0.65 ± 0.88 | 0.097 |
FEF 25–75% (L/sec) | 1.59 ± 0.78 | 2.07 ± 0.89 | 0.008 |
%-predicted of FEF 25–75% | 69.3 ± 17.6 | 84.8 ± 27.8 | 0.003 |
z-score of FEF 25–75% | −1.10 ± 0.64 | −0.58 ± 0.98 | 0.005 |
IOS Parameters | Uncontrolled (n = 35) | Well-Controlled (n = 74) | p-Value |
---|---|---|---|
Absolute value | |||
R5 (cmH2O/L/s) | 5.99 ± 1.64 | 3.79 ± 1.08 | <0.001 |
R20 (cmH2O/L/s) | 3.88 ± 0.94 | 3.17 ± 0.95 | <0.001 |
R5-R20 (cmH2O/L/s) | 1.92 (1.55, 2.42) | 0.53 (0.30, 0.84) | <0.001 |
X5 (cmH2O/L/s) | −2.11 (−3.02, −1.52) | −1.09 (−1.50, −0.77) | <0.001 |
Fres (Hz) | 22.24 ± 4.42 | 14.61 ± 3.33 | <0.001 |
AX (cmH2O/L) | 17.43 (11.97, 26.66) | 3.78 (2.21, 6.58) | <0.001 |
%-Predicted value | |||
R5 | 120.4 ± 30.5 | 91.9 ± 25.4 | <0.001 |
R20 | 94.6 ± 22.3 | 92.4 ± 28.6 | 0.687 |
R5-R20 | 325.6 (236.8, 432.6) | 96.9 (50.4, 162.9) | <0.001 |
X5 | 170.6 (140.9, 237.6) | 108.2 (75.6, 147.1) | <0.001 |
Fres | 151.3 ± 29.2 | 112.8 ± 28.4 | <0.001 |
AX | 376.6 (233.3, 576.0) | 107.9 (56.9, 158.3) | <0.001 |
ACT | %-Predicted Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FVC | FEV1 | FEF 25–75% | R5 | R20 | R5-R20 | X5 | Fres | AX | |||
ACT | 1.000 | ||||||||||
%-Predicted value | FVC | 0.260 * | 1.000 | ||||||||
FEV1 | 0.302 * | 0.897 * | 1.000 | ||||||||
FEF 25–75% | 0.259 * | 0.379 * | 0.705 * | 1.000 | |||||||
R5 | −0.323 * | −0.205 * | −0.234 * | −0.149 | 1.000 | ||||||
R20 | −0.008 | −0.076 | −0.084 | −0.013 | 0.811 * | 1.000 | |||||
R5-R20 | −0.643 * | −0.201 * | −0.247 * | −0.221 * | 0.514 * | 0.016 | 1.000 | ||||
X5 | −0.333 * | −0.268 * | −0.236 * | −0.109 * | 0.664 * | 0.304 * | 0.499 * | 1.000 | |||
Fres | −0.447 * | −0.314 * | −0.301 * | −0.206 * | 0.502 * | 0.098 | 0.724 * | 0.415 * | 1.000 | ||
AX | −0.537 * | −0.267 * | −0.302 * | −0.236 * | 0.703 * | 0.247 | 0.795 * | 0.776 * | 0.711 * | 1.000 |
Cut-Off | Sensitivity (95%CI) | Specificity (95%CI) | +LR | −LR | AUC | Youden Index |
---|---|---|---|---|---|---|
≥150 | 94.3 (80.8, 99.3) | 70.3 (58.5, 80.3) | 3.17 (2.21, 4.54) | 0.08 (0.02, 0.32) | 0.82 (0.76, 0.89) | 64.6 |
≥200 | 88.6 (73.3, 96.8) | 87.8 (78.2, 94.3) | 7.28 (3.90, 13.60) | 0.13 (0.05, 0.33) | 0.88 (0.82, 0.95) | 76.4 |
≥250 | 74.3 (56.7, 87.5) | 93.2 (84.9, 97.8) | 11.0 (4.61, 26.20) | 0.28 (0.16, 0.49) | 0.84 (0.76, 0.92) | 67.5 |
Factors | Univariable Analysis | Multivariable Analysis | ||
---|---|---|---|---|
RR (95%CI) | p-Value | Adjusted RR (95%CI) | p-Value | |
R5-R20 ≥ 200% of predicted value | 13.37 (5.09, 35.11) | <0.001 | 10.86 (3.77, 31.29) | <0.001 |
Age | 1.01 (0.99, 1.03) | 0.329 | 0.99 (0.97, 1.02) | 0.547 |
Female gender | 1.28 (0.66, 2.49) | 0.466 | 1.56 (0.61, 4.00) | 0.355 |
Body mass index (BMI) | 1.09 (1.05, 1.14) | <0.001 | 1.14 (1.04, 1.25) | 0.005 |
Allergic rhinitis | 0.88 (0.41, 1.89) | 0.752 | 1.14 (0.38, 3.36) | 0.818 |
Diabetes mellitus | 1.84 (0.99, 3.43) | 0.053 | 1.64 (0.65, 4.14) | 0.291 |
History of AE in the previous year | 2.64 (1.62, 4.29) | <0.001 | 1.98 (0.91, 4.32) | 0.087 |
ICS dose | ||||
Low | Ref. | Ref. | ||
Medium | 1.86 (1.03, 3.34) | 0.037 | 0.98 (0.46, 2.09) | 0.965 |
High | 1.44 (0.51, 4.06) | 0.495 | 0.91 (0.23, 3.67) | 0.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Polish Respiratory Society. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liwsrisakun, C.; Pothirat, C.; Deesomchok, A.; Duangjit, P.; Chaiwong, W. A Comparison of Impulse Oscillometry and Spirometry by Percent Predicted in Identifying Uncontrolled Asthma. Adv. Respir. Med. 2025, 93, 25. https://doi.org/10.3390/arm93040025
Liwsrisakun C, Pothirat C, Deesomchok A, Duangjit P, Chaiwong W. A Comparison of Impulse Oscillometry and Spirometry by Percent Predicted in Identifying Uncontrolled Asthma. Advances in Respiratory Medicine. 2025; 93(4):25. https://doi.org/10.3390/arm93040025
Chicago/Turabian StyleLiwsrisakun, Chalerm, Chaicharn Pothirat, Athavudh Deesomchok, Pilaiporn Duangjit, and Warawut Chaiwong. 2025. "A Comparison of Impulse Oscillometry and Spirometry by Percent Predicted in Identifying Uncontrolled Asthma" Advances in Respiratory Medicine 93, no. 4: 25. https://doi.org/10.3390/arm93040025
APA StyleLiwsrisakun, C., Pothirat, C., Deesomchok, A., Duangjit, P., & Chaiwong, W. (2025). A Comparison of Impulse Oscillometry and Spirometry by Percent Predicted in Identifying Uncontrolled Asthma. Advances in Respiratory Medicine, 93(4), 25. https://doi.org/10.3390/arm93040025