Prospects for Treatment of Lung Cancer Using Activated Lymphocytes Combined with Other Anti-Cancer Modalities
Abstract
:Highlights
- The article explores the use of autologous activated lymphocytes with their ability to elicit robust anti-tumor immune responses as a promising complex treatment strategy for lung cancer.
- The application of various types of T-cell therapy in complex lung cancer treatment in >2000 patients, with a special focus on the autologous activated lymphocytes and infusion protocols, was examined and thoroughly discussed.
- The article emphasizes the benefits of combining activated lymphocyte therapy with existing treatments like radiation therapy, checkpoint inhibitors, and chemotherapy to improve efficacy and reduce resistance.
- Various cell types like natural killer cells, cytotoxic T lymphocytes, lymphokine-activated killer cells, and tumor-infiltrating lymphocytes contribute to immune responses that assist in eliminating cancer cells.
- The potential research gaps are identified, and a wider adoption of immune cell therapy as a component of combination strategies for the treatment of lung cancer is proposed.
- The article highlights ongoing research into the tumor microenvironment and its role in immune evasion, suggesting that targeting these mechanisms could boost treatment success, and discusses the significance of clinical trials in validating the effectiveness of activated lymphocyte therapies and the importance of real-world evidence in guiding clinical practice.
Abstract
1. Introduction
2. Immunotherapy Combined with Other Anti-Cancer Therapies
3. The Vital Role of T-Cells in the Treatment of Lung Cancer
4. Expanded Activated Autologous Lymphocyte Therapy
5. Adoptive Immunotherapy of Cancer Using Tumor-Infiltrating Lymphocytes
6. Lymphokine-Activated Killer Cells
7. Discussion
8. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAR | chimeric antigen receptor |
CIK | cytokine-induced killer |
EAAL | expanded activated autologous lymphocyte |
IFN-γ | interferon γ |
LAK | lymphokine-activated killer |
MHC | major histocompatibility complex |
NKT | natural killer T-cells |
NSCLC | non-small cell lung cancer |
PBMC | peripheral blood mononuclear cells |
SCLC | small cell lung cancer |
TIL | tumor-infiltrating lymphocyte |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016, 5, 288–300. [Google Scholar] [CrossRef]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef]
- Zhang, Y.; Vaccarella, S.; Morgan, E.; Li, M.; Etxeberria, J.; Chokunonga, E.; Manraj, S.S.; Kamate, B.; Omonisi, A.; Bray, F. Global variations in lung cancer incidence by histological subtype in 2020: A population-based study. Lancet Oncol. 2023, 24, 1206–1218. [Google Scholar] [CrossRef]
- Li, D.; Shi, J.; Dong, X.; Liang, D.; Jin, J.; He, Y. Epidemiological characteristics and risk factors of lung adenocarcinoma: A retrospective observational study from North China. Front. Oncol. 2022, 12, 892571. [Google Scholar] [CrossRef] [PubMed]
- Houston, K.A.; Mitchell, K.A.; King, J.; White, A.; Ryan, B.M. Histologic Lung Cancer Incidence Rates and Trends Vary by Race/Ethnicity and Residential County. J. Thorac. Oncol. 2018, 13, 497–509. [Google Scholar] [CrossRef]
- Araghi, M.; Mannani, R.; Heidarnejad Maleki, A.; Hamidi, A.; Rostami, S.; Safa, S.H.; Faramarzi, F.; Khorasani, S.; Alimohammadi, M.; Tahmasebi, S.; et al. Recent advances in non-small cell lung cancer targeted therapy; an update review. Cancer Cell Int. 2023, 23, 162. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, P.; Wei, J.; Zhang, X.; Guo, J.; Lin, Y. Recent progress in targeted therapy for non-small cell lung cancer. Front. Pharmacol. 2023, 14, 1125547. [Google Scholar] [CrossRef] [PubMed]
- Schabath, M.B.; Cote, M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Jumeau, R.; Vilotte, F.; Durham, A.D.; Ozsahin, E.M. Current landscape of palliative radiotherapy for non-small-cell lung cancer. Transl. Lung Cancer Res. 2019, 8 (Suppl. 2), S192–S201. [Google Scholar] [CrossRef]
- Paoletti, L.; Pastis, N.J.; Denlinger, C.E.; Silvestri, G.A. A decade of advances in treatment of early-stage lung cancer. Clin. Chest Med. 2011, 32, 827–838. [Google Scholar] [CrossRef]
- McDonald, F.; De Waele, M.; Hendriks, L.E.; Faivre-Finn, C.; Dingemans, A.C.; Van Schil, P.E. Management of stage I and II nonsmall cell lung cancer. Eur. Respir. J. 2017, 49, 1600764. [Google Scholar] [CrossRef]
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients with Non-Small Cell Lung Cancer in the US. JAMA Oncol. 2021, 7, 1824–1832. [Google Scholar] [CrossRef]
- Domagala-Kulawik, J.; Raniszewska, A. How to evaluate the immune status of lung cancer patients before immunotherapy. Breathe 2017, 13, 291–296. [Google Scholar] [CrossRef]
- Cheng, M.; Jolly, S.; Quarshie, W.O.; Kapadia, N.; Vigneau, F.D.; Kong, F.S. Modern Radiation Further Improves Survival in Non-Small Cell Lung Cancer: An Analysis of 288,670 Patients. J. Cancer 2019, 10, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H. Chemotherapy for Lung Cancer in the Era of Personalized Medicine. Tuberc. Respir. Dis. 2019, 82, 179–189. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Li, B.T.; Chaft, J.E.; Kris, M.G. Chemotherapy remains an essential element of personalized care for persons with lung cancers. Ann. Oncol. 2016, 27, 1829–1835. [Google Scholar] [CrossRef]
- Pirker, R. Adjuvant chemotherapy in patients with completely resected non-small cell lung cancer. Transl. Lung Cancer Res. 2014, 3, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Uramoto, H.; Tanaka, F. Recurrence after surgery in patients with NSCLC. Transl. Lung Cancer Res. 2014, 3, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Potter, A.L.; Costantino, C.L.; Suliman, R.A.; Haridas, C.S.; Senthil, P.; Kumar, A.; Mayne, N.R.; Panda, N.; Martin, L.W.; Yang, C.J. Recurrence After Complete Resection for Non-Small Cell Lung Cancer in the National Lung Screening Trial. Ann. Thorac. Surg. 2023, 116, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.K.; Shaikh, T.; DeMora, L.; Zhang, E.; Borghaei, H.; Hayes, S.B.; Kumar, S.; Meyer, J.E.; Hallman, M.A. Predictors of Distant Recurrence Following Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer. Am. J. Clin. Oncol. 2020, 43, 243–248. [Google Scholar] [CrossRef]
- Cerra-Franco, A.; Liu, S.; Azar, M.; Shiue, K.; Freije, S.; Hinton, J.; Deig, C.R.; Edwards, D.; Estabrook, N.C., 3rd; Ellsworth, S.G.; et al. Predictors of Nodal and Metastatic Failure in Early Stage Non-small-cell Lung Cancer After Stereotactic Body Radiation Therapy. Clin. Lung Cancer 2019, 20, 186–193.e3. [Google Scholar] [CrossRef]
- Spratt, D.E.; Wu, A.J.; Adeseye, V.; Din, S.U.; Shaikh, F.; Woo, K.M.; Zhang, Z.; Foster, A.; Rosenzweig, K.E.; Gewanter, R.; et al. Recurrence Patterns and Second Primary Lung Cancers After Stereotactic Body Radiation Therapy for Early-Stage Non-Small-Cell Lung Cancer: Implications for Surveillance. Clin. Lung Cancer 2016, 17, 177–183.e2. [Google Scholar] [CrossRef]
- Shiue, K.; Cerra-Franco, A.; Shapiro, R.; Estabrook, N.; Mannina, E.M.; Deig, C.R.; Althouse, S.; Liu, S.; Wan, J.; Zang, Y.; et al. Histology, Tumor Volume, and Radiation Dose Predict Outcomes in NSCLC Patients After Stereotactic Ablative Radiotherapy. J. Thorac. Oncol. 2018, 13, 1549–1559. [Google Scholar] [CrossRef]
- Kong, F.M.; Zhao, J.; Wang, J.; Faivre-Finn, C. Radiation dose effect in locally advanced non-small cell lung cancer. J. Thorac. Dis. 2014, 6, 336–347. [Google Scholar] [CrossRef]
- Dhamija, E.; Meena, P.; Ramalingam, V.; Sahoo, R.; Rastogi, S.; Thulkar, S. Chemotherapy-induced pulmonary complications in cancer: Significance of clinicoradiological correlation. Indian J. Radiol. Imaging 2020, 30, 20–26. [Google Scholar] [CrossRef]
- Roden, A.C.; Camus, P. Iatrogenic pulmonary lesions. Semin. Diagn. Pathol. 2018, 35, 260–271. [Google Scholar] [CrossRef] [PubMed]
- SjØgren, K.; Jacobsen, K.A.; GrØnberg, B.H.; Halvorsen, T.O. Timing of Severe Toxicity from Chemotherapy in Patients with Lung Cancer. Anticancer Res. 2020, 40, 6399–6406. [Google Scholar] [CrossRef] [PubMed]
- Angelova, M.; Mascaux, C.; Galon, J. Evasion before invasion: Pre-cancer immunosurveillance. Oncoimmunology 2021, 10, 1912250. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Cho, S.W. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front. Pharmacol. 2022, 13, 868695. [Google Scholar] [CrossRef]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar] [CrossRef]
- Lv, X.; Mao, Z.; Sun, X.; Liu, B. Intratumoral Heterogeneity in Lung Cancer. Cancers 2023, 15, 2709. [Google Scholar] [CrossRef]
- Ashrafi, A.; Akter, Z.; Modareszadeh, P.; Modareszadeh, P.; Berisha, E.; Alemi, P.S.; Chacon Castro, M.D.C.; Deese, A.R.; Zhang, L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers 2022, 14, 4562. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, M.; Zhou, X.; Tian, S.; Yang, X.; Ning, Y.; Li, Y.; Zhang, S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun. Signal. 2023, 21, 8. [Google Scholar] [CrossRef]
- Fregni, G.; Quinodoz, M.; Möller, E.; Vuille, J.; Galland, S.; Fusco, C.; Martin, P.; Letovanec, I.; Provero, P.; Rivolta, C.; et al. Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis. EBioMedicine 2018, 29, 128–145. [Google Scholar] [CrossRef]
- Lahiri, A.; Maji, A.; Potdar, P.D.; Singh, N.; Parikh, P.; Bisht, B.; Mukherjee, A.; Paul, M.K. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer 2023, 22, 40. [Google Scholar] [CrossRef]
- Nicolas, E.; Kosmider, B.; Cukierman, E.; Borghaei, H.; Golemis, E.A.; Borriello, L. Cancer treatments as paradoxical catalysts of tumor awakening in the lung. Cancer Metastasis Rev. 2024, 43, 1165–1183. [Google Scholar] [CrossRef]
- O’Flaherty, J.D.; Gray, S.; Richard, D.; Fennell, D.; O’Leary, J.J.; Blackhall, F.H.; O’Byrne, K.J. Circulating tumour cells, their role in metastasis and their clinical utility in lung cancer. Lung Cancer 2012, 76, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Weiner, L.M. Cancer immunotherapy--the endgame begins. N. Engl. J. Med. 2008, 358, 2664–2665. [Google Scholar] [CrossRef] [PubMed]
- Shankar, B.; Zhang, J.; Naqash, A.R.; Forde, P.M.; Feliciano, J.L.; Marrone, K.A.; Ettinger, D.S.; Hann, C.L.; Brahmer, J.R.; Ricciuti, B.; et al. Multisystem Immune-Related Adverse Events Associated with Immune Checkpoint Inhibitors for Treatment of Non-Small Cell Lung Cancer. JAMA Oncol. 2020, 6, 1952–1956. [Google Scholar] [CrossRef]
- Gaissmaier, L.; Christopoulos, P. Immune Modulation in Lung Cancer: Current Concepts and Future Strategies. Respiration 2020, 8, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Hellmann, M.D.; Rizvi, N.A.; Carcereny, E.; Leighl, N.B.; Ahn, M.J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.; Horn, L.; et al. Five-Year Overall Survival for Patients with Advanced Non–Small-Cell Lung Cancer Treated with Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. J. Clin. Oncol. 2019, 37, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
- Kunimasa, K.; Goto, T. Immunosurveillance and Immunoediting of Lung Cancer: Current Perspectives and Challenges. Int. J. Mol. Sci. 2020, 21, 597. [Google Scholar] [CrossRef]
- Vrankar, M.; Stanic, K. Long-term survival of locally advanced stage III non-small cell lung cancer patients treated with chemoradiotherapy and perspectives for the treatment with immunotherapy. Radiol. Oncol. 2018, 52, 281–288. [Google Scholar] [CrossRef]
- Kojima, K.; Samejima, H.; Iguchi, T.; Tokunaga, T.; Okishio, K.; Yoon, H. Nonlinear association between PD-L1 expression levels and the risk of postoperative recurrence in non-small cell lung cancer. Sci. Rep. 2024, 14, 15369. [Google Scholar] [CrossRef]
- Hossen, M.M.; Ma, Y.; Yin, Z.; Xia, Y.; Du, J.; Huang, J.Y.; Huang, J.J.; Zou, L.; Ye, Z.; Huang, Z. Current understanding of CTLA-4: From mechanism to autoimmune diseases. Front. Immunol. 2023, 14, 1198365. [Google Scholar] [CrossRef]
- Pol, J.; Kroemer, G. Anti-CTLA-4 immunotherapy: Uncoupling toxicity and efficacy. Cell Res. 2018, 28, 501–502. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zheng, P. Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy. Trends Pharmacol. Sci. 2020, 41, 4–12. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X.; Chen, D.; Yu, J. Radiotherapy combined with immunotherapy: The dawn of cancer treatment. Signal Transduct. Target. Ther. 2022, 7, 258. [Google Scholar] [CrossRef]
- Divan, H.A.; Bittoni, M.A.; Krishna, A.; Carbone, D.P. Real-world patient characteristics and treatment patterns in US patients with advanced non-small cell lung cancer. BMC Cancer 2024, 24, 424. [Google Scholar] [CrossRef] [PubMed]
- Hui, R.; Özgüroğlu, M.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Patient-reported outcomes with durvalumab after chemoradiotherapy in stage III, unresectable non-small-cell lung cancer (PACIFIC): A randomised, controlled, phase 3 study. Lancet Oncol. 2019, 20, 1670–1680. [Google Scholar] [CrossRef]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef]
- Gajewski, T.F. The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Tumor Microenvironment. Semin. Oncol. 2015, 2, 663–671. [Google Scholar] [CrossRef]
- Gomez, D.R.; Blumenschein, G.R., Jr.; Lee, J.J.; Hernandez, M.; Ye, R.; Camidge, D.R.; Doebele, R.C.; Skoulidis, F.; Gaspar, L.E.; Gibbons, D.L.; et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: A multicentre, randomised, controlled, phase 2 study. Lancet Oncol. 2016, 17, 1672–1682. [Google Scholar] [CrossRef]
- Ball, D.; Mai, G.T.; Vinod, S.; Babington, S.; Ruben, J.; Kron, T.; Chesson, B.; Herschtal, A.; Vanevski, M.; Rezo, A.; et al. Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): A phase 3, open-label, randomised controlled trial. Lancet Oncol. 2019, 20, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Formenti, S.C.; Rudqvist, N.P.; Golden, E.; Cooper, B.; Wennerberg, E.; Lhuillier, C.; Vanpouille-Box, C.; Friedman, K.; Ferrari de Andrade, L.; Wucherpfennig, K.W.; et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 2018, 24, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhang, A. Low-dose radiotherapy effects the progression of anti-tumor response. Transl. Oncol. 2023, 35, 101710. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wu, Z.; Muluh, T.A.; Fu, S.; Wu, J. Effect of low-dose total-body radiotherapy on immune microenvironment. Transl. Oncol. 2021, 14, 101118. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Y.; Wu, Y.; Yang, X.; Spring Kong, F.M.; Lu, Y.; Xue, J. Low-dose radiation therapy mobilizes antitumor immunity: New findings and future perspectives. Int. J. Cancer 2024, 154, 1143–1157. [Google Scholar] [CrossRef]
- Herrera, F.G.; Romero, P.; Coukos, G. Lighting up the tumor fire with low-dose irradiation. Trends Immunol. 2022, 43, 173–179. [Google Scholar] [CrossRef]
- Savage, T.; Pandey, S.; Guha, C. Postablation Modulation after Single High-Dose Radiation Therapy Improves Tumor Control via Enhanced Immunomodulation. Clin. Cancer Res. 2020, 26, 910–921. [Google Scholar] [CrossRef]
- Torasawa, M.; Yoshida, T.; Yagishita, S.; Shimoda, Y.; Shirasawa, M.; Matsumoto, Y.; Masuda, K.; Shinno, Y.; Okuma, Y.; Goto, Y.; et al. Nivolumab versus pembrolizumab in previously-treated advanced non-small cell lung cancer patients: A propensity-matched real-world analysis. Lung Cancer 2022, 167, 49–57. [Google Scholar] [CrossRef]
- Cui, P.; Li, R.; Huang, Z.; Wu, Z.; Tao, H.; Zhang, S.; Hu, Y. Comparative effectiveness of pembrolizumab vs. nivolumab in patients with recurrent or advanced NSCLC. Sci. Rep. 2020, 10, 13160. [Google Scholar] [CrossRef]
- Geng, Y.; Shao, Y.; He, W.; Hu, W.; Xu, Y.; Chen, J.; Wu, C.; Jiang, J. Prognostic Role of Tumor-Infiltrating Lymphocytes in Lung Cancer: A Meta-Analysis. Cell Physiol. Biochem. 2015, 37, 1560–1571. [Google Scholar] [CrossRef]
- Kuznetsova, A.V.; Glukhova, X.A.; Popova, O.P.; Beletsky, I.P.; Ivanov, A.A. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers 2024, 16, 2270. [Google Scholar] [CrossRef] [PubMed]
- Gladue, R.P.; Paradis, T.; Cole, S.H.; Donovan, C.; Nelson, R.; Alpert, R.; Gardner, J.; Natoli, E.; Elliott, E.; Shepard, R.; et al. The CD40 agonist antibody CP-870893 enhances dendritic cell and B-cell activity and promotes anti-tumor efficacy in SCID-hu mice. Cancer Immunol. Immunother. 2011, 60, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Veatch, J.R.; Jesernig, B.L.; Kargl, J.; Fitzgibbon, M.; Lee, S.M.; Baik, C.; Martins, R.; Houghton, A.M.; Riddell, S.R. Endogenous CD4+ T Cells Recognize Neoantigens in Lung Cancer Patients, Including Recurrent Oncogenic KRAS and ERBB2 (Her2) Driver Mutations. Cancer Immunol. Res. 2019, 7, 910–922. [Google Scholar] [CrossRef] [PubMed]
- Ara, A.; Ahmed, K.A.; Xiang, J. Multiple effects of CD40-CD40L axis in immunity against infection and cancer. ImmunoTargets Ther. 2018, 7, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Topchyan, P.; Lin, S.; Cui, W. The Role of CD4 T Cell Help in CD8 T Cell Differentiation and Function During Chronic Infection and Cancer. Immune Netw. 2023, 23, e41. [Google Scholar] [CrossRef]
- Bos, R.; Sherman, L.A. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res. 2010, 70, 8368–8377. [Google Scholar] [CrossRef]
- Met, Ö.; Jensen, K.M.; Chamberlain, C.A.; Donia, M.; Svane, I.M. Principles of adoptive T cell therapy in cancer. Semin. Immunopathol. 2019, 41, 49–58. [Google Scholar] [CrossRef]
- Schoenfeld, A.J.; Lee, S.M.; Doger de Spéville, B.; Gettinger, S.N.; Häfliger, S.; Sukari, A.; Papa, S.; Rodríguez-Moreno, J.F.; Graf Finckenstein, F.; Fiaz, R.; et al. Lifileucel, an Autologous Tumor-Infiltrating Lymphocyte Monotherapy, in Patients with Advanced Non-Small Cell Lung Cancer Resistant to Immune Checkpoint Inhibitors. Cancer Discov. 2024, 14, 1389–1402. [Google Scholar] [CrossRef]
- Creelan, B.C.; Wang, C.; Teer, J.K.; Toloza, E.M.; Yao, J.; Kim, S.; Landin, A.M.; Mullinax, J.E.; Saller, J.J.; Saltos, A.N.; et al. Tumor-infiltrating lymphocyte treatment for an-ti-PD-1-resistant metastatic lung cancer: A phase 1 trial. Nat. Med. 2021, 27, 1410–1418. [Google Scholar] [CrossRef]
- Betof Warner, A.; Hamid, O.; Komanduri, K.; Amaria, R.; Butler, M.O.; Haanen, J.; Nikiforow, S.; Puzanov, I.; Sarnaik, A.; Bishop, M.R.; et al. Expert consensus guidelines on management and best practices for tumor-infiltrating lymphocyte cell therapy. J. Immunother. Cancer 2024, 12, e008735. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Q.; Zhang, Y.; Yang, J.; Zheng, J. T-cell-associated cellular immunotherapy for lung cancer. J. Cancer Res. Clin. Oncol. 2015, 141, 1249–1258. [Google Scholar] [CrossRef]
- Hiltbold, E.M.; Ciborowski, P.; Finn, O.J. Naturally processed class II epitope from the tumor antigen MUC1 primes human CD4+ T cells. Cancer Res. 1998, 58, 5066–5070. [Google Scholar] [PubMed]
- Jäger, E.; Jäger, D.; Karbach, J.; Chen, Y.T.; Ritter, G.; Nagata, Y.; Gnjatic, S.; Stockert, E.; Arand, M.; Old, L.J.; et al. Identification of NY-ESO-1 epitopes presented by human histocompatibility antigen (HLA)-DRB4*0101-0103 and recognized by CD4(+) T lymphocytes of patients with NY-ESO-1-expressing melanoma. J. Exp. Med. 2000, 191, 625–630. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Zhu, Q.; Qin, X.; Cao, Y.; Lou, J.; Xu, Y.; Ke, X.; Li, Q.; Xie, E.; et al. Downregulation of IFNG in CD4(+) T cells in lung cancer through hypermethylation: A possible mechanism of tumor-induced immunosuppression. PLoS ONE 2013, 8, e79064. [Google Scholar] [CrossRef]
- de Araújo-Souza, P.S.; Hanschke, S.C.; Viola, J.P. Epigenetic control of interferon-gamma expression in CD8 T cells. J. Immunol. Res. 2015, 2015, 849573. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, L.; Zhang, H.; Shao, Y.; Wang, Y.; Lin, Y.; Li, X.; Bai, C. Immune modulation and safety profile of adoptive immunotherapy using expanded autologous activated lymphocytes against advanced cancer. Clin. Immunol. 2011, 138, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Zahavi, D.; AlDeghaither, D.; O’Connell, A.; Weiner, L.M. Enhancing antibody-dependent cell-mediated cytotoxicity: A strategy for improving antibody-based immunotherapy. Antib. Ther. 2018, 1, 7–12. [Google Scholar] [CrossRef]
- Kurai, J.; Chikumi, H.; Hashimoto, K.; Yamaguchi, K.; Yamasaki, A.; Sako, T.; Touge, H.; Makino, H.; Takata, M.; Miyata, M.; et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin. Cancer Res. 2007, 13, 1552–1561. [Google Scholar] [CrossRef] [PubMed]
- Pahl, J.H.; Ruslan, S.E.; Buddingh, E.P.; Santos, S.J.; Szuhai, K.; Serra, M.; Gelderblom, H.; Hogendoorn, P.C.; Egeler, R.M.; Schilham, M.W.; et al. Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clin. Cancer Res. 2012, 18, 432–441. [Google Scholar] [CrossRef]
- Xie, S.; Wu, Z.; Niu, L.; Chen, J.; Ma, Y.; Zhang, M. Preparation of highly activated natural killer cells for advanced lung cancer therapy. OncoTargets Ther. 2019, 12, 5077–5086. [Google Scholar] [CrossRef] [PubMed]
- Thanendrarajan, S.; Kim, Y.; Schmidt-Wolf, I. New adoptive immunotherapy strategies for solid tumours with CIK cells. Expert. Opin. Biol. Ther. 2012, 12, 565–572. [Google Scholar] [CrossRef]
- Men, Y.; Yu, Z.; Wu, Y.; Du, T.; Chen, S.; Meng, F.; Su, N.; Ma, Y.; Li, X.; Sun, S.; et al. Cell-based immunotherapy with cytokine-induced killer (CIK) cells: From preparation and testing to clinical application. Hum. Vaccin. Immunother. 2017, 13, 1–9. [Google Scholar] [CrossRef]
- Li, R.; Wang, C.; Liu, L.; Du, C.; Cao, S.; Yu, J.; Wang, S.E.; Hao, X.; Ren, X.; Li, H. Autologous cytokine-induced killer cell immunotherapy in lung cancer: A phase II clinical study. Cancer Immunol. Immunother. 2012, 61, 2125–2133. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, W.S.; Zhu, W.F.; Lin, J.; Zhou, Z.F.; Huang, C.Z.; Chen, G.; Shi, Y.; Guo, Z.Q.; Ye, Y.B. Tumor MICA status predicts the efficacy of immunotherapy with cytokine-induced killer cells for patients with gastric cancer. Immunol. Res. 2016, 64, 251–259. [Google Scholar] [CrossRef]
- Wang, M.; Cao, J.X.; Pan, J.H.; Liu, Y.S.; Xu, B.L.; Li, D.; Zhang, X.Y.; Li, J.L.; Liu, J.L.; Wang, H.B.; et al. Adoptive immunotherapy of cytokine-induced killer cell therapy in the treatment of non-small cell lung cancer. PLoS ONE 2014, 9, e112662. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Li, F.; Sun, S.J.; Hu, Y.; Wang, G.; Wang, Y.; Cui, X.X.; Jiao, S.C. Adoptive immunotherapy for small cell lung cancer by expanded activated autologous lymphocytes: A retrospective clinical analysis. Asian Pac. J. Cancer Prev. 2015, 16, 1487–1494. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wu, F.Y.; Li, A.W.; Zheng, D.; Liu, J.M. Comparison of vinorelbine, ifosfamide and cisplatin (NIP) and etoposide and cisplatin (EP) for treatment of advanced combined small cell lung cancer (cSCLC) patients: A retrospective study. Asian Pac. J. Cancer Prev. 2012, 13, 4703–4706. [Google Scholar] [CrossRef] [PubMed]
- Klebanoff, C.A.; Khong, H.T.; Antony, P.A.; Palmer, D.C.; Restifo, N.P. Sinks, suppressors and antigen presenters: How lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 2005, 26, 111–117. [Google Scholar] [CrossRef]
- Peng, P.; Lou, Y.; Wang, J.; Wang, S.; Liu, P.; Xu, L.X. Th1-Dominant CD4+ T Cells Orchestrate Endogenous Systematic Antitumor Immune Memory After Cryo-Thermal Therapy. Front. Immunol. 2022, 13, 944115. [Google Scholar] [CrossRef]
- Galeano Niño, J.L.; Kwan, R.Y.; Weninger, W.; Biro, M. Antigen-specific T cells fully conserve antitumour function following cryopreservation. Immunol. Cell Biol. 2016, 94, 411–418. [Google Scholar] [CrossRef]
- Chodon, T.; Comin-Anduix, B.; Chmielowski, B.; Koya, R.C.; Wu, Z.; Auerbach, M.; Ng, C.; Avramis, E.; Seja, E.; Villanueva, A.; et al. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin. Cancer Res. 2014, 20, 2457–2465. [Google Scholar] [CrossRef]
- Hadrup, S.; Donia, M.; Thor Straten, P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron. 2013, 6, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.A.; June, C.H. The Principles of Engineering Immune Cells to Treat Cancer. Cell 2017, 168, 724–740. [Google Scholar] [CrossRef]
- Perica, K.; Varela, J.C.; Oelke, M.; Schneck, J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med. J. 2015, 6, e0004. [Google Scholar] [CrossRef] [PubMed]
- Thommen, D.S.; Koelzer, V.H.; Herzig, P.; Roller, A.; Trefny, M.; Dimeloe, S.; Kiialainen, A.; Hanhart, J.; Schill, C.; Hess, C.; et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 2018, 24, 994–1004. [Google Scholar] [CrossRef]
- McGray, A.J.; Hallett, R.; Bernard, D.; Swift, S.L.; Zhu, Z.; Teoderascu, F.; Vanseggelen, H.; Hassell, J.A.; Hurwitz, A.A.; Wan, Y.; et al. Immunotherapy-induced CD8+ T cells instigate immune suppression in the tumor. Mol. Ther. 2014, 22, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Chikileva, I.O.; Velizheva, N.P.; Shubina, I.Z.; Titov, K.S.; Kiselevsky, M.V. Content of T-regulatory lymphocytes CD4+CD25+FOXP3+ in lymphokine-activated killer population. Bulletin of the Russian Oncological Research Center named after, N.N. Blokhin 2008, 73, 16–25. [Google Scholar]
- Crespo, J.; Sun, H.; Welling, T.H.; Tian, Z.; Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 2013, 25, 214–221. [Google Scholar] [CrossRef]
- Marabelle, A.; Kohrt, H.; Sagiv-Barfi, I.; Ajami, B.; Axtell, R.C.; Zhou, G.; Rajapaksa, R.; Green, M.R.; Torchia, J.; Brody, J.; et al. Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J. Clin. Investig. 2013, 123, 2447–2463. [Google Scholar] [CrossRef]
- Patel, S.; Mehta-Damani, A.; Shu, H.; Le Pecq, J.B. An analysis of variability in the manufacturing of dexosomes: Implications for development of an autologous therapy. Biotechnol. Bioeng. 2005, 92, 238–249. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, L.; Du, H.; He, X.; Yin, Y.; Gu, Y.; Liu, L.; Lu, K.; Guo, R.; Liu, P.; et al. Autologous cytokine-induced killer cell therapy in lung cancer patients: A retrospective study. Biomed. Pharmacother. 2015, 70, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Gammaitoni, L.; Giraudo, L.; Macagno, M.; Leuci, V.; Mesiano, G.; Rotolo, R.; Sassi, F.; Sanlorenzo, M.; Zaccagna, A.; Pisacane, A.; et al. Cytokine-Induced Killer Cells Kill Chemo-surviving Melanoma Cancer Stem Cells. Clin. Cancer Res. 2017, 23, 2277–2288. [Google Scholar] [CrossRef] [PubMed]
- Li, D.P.; Li, W.; Feng, J.; Chen, K.; Tao, M. Adjuvant chemotherapy with sequential cytokine-induced killer (CIK) cells in stage IB non-small cell lung cancer. Oncol. Res. 2015, 22, 67–74. [Google Scholar] [CrossRef]
- Zhong, R.; Teng, J.; Han, B.; Zhong, H. Dendritic cells combining with cytokine-induced killer cells synergize chemotherapy in patients with late-stage non-small cell lung cancer. Cancer Immunol. Immunother. 2011, 60, 1497–1502. [Google Scholar] [CrossRef]
- Huang, J.; Kan, Q.; Lan; Zhao, X.; Zhang, Z.; Yang, S.; Li, H.; Wang, L.; Xu, L.; Cheng, Z.; et al. Chemotherapy in combination with cytokine-induced killer cell transfusion: An effective therapeutic option for patients with extensive stage small cell lung cancer. Int. Immunopharmacol. 2017, 46, 170–177. [Google Scholar] [CrossRef]
- Yang, L.; Ren, B.; Li, H.; Yu, J.; Cao, S.; Hao, X.; Ren, X. Enhanced antitumor effects of DC-activated CIKs to chemotherapy treatment in a single cohort of advanced non-small-cell lung cancer patients. Cancer Immunol. Immunother. 2013, 62, 65–73. [Google Scholar] [CrossRef]
- Saka, H.; Kitagawa, C.; Ichinose, Y.; Takenoyama, M.; Ibata, H.; Kato, T.; Takami, K.; Yamashita, M.; Maeda, T.; Takeo, S.; et al. A randomized phase II study to assess the effect of adjuvant immunotherapy using α-GalCer-pulsed dendritic cells in the patients with completely resected stage II-IIIA non-small cell lung cancer: Study protocol for a randomized controlled trial. Trials 2017, 18, 429. [Google Scholar] [CrossRef]
- Shi, S.; Wang, R.; Chen, Y.; Song, H.; Chen, L.; Huang, G. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models. PLoS ONE 2013, 8, e65757. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Han, B.; Zhong, H. A prospective study of the efficacy of a combination of autologous dendritic cells, cytokine-induced killer cells, and chemotherapy in advanced non-small cell lung cancer patients. Tumour Biol. 2014, 35, 987–994. [Google Scholar] [CrossRef]
- Kradin, R.L.; Boyle, L.A.; Preffer, F.I.; Callahan, R.J.; Barlai-Kovach, M.; Strauss, H.W.; Dubinett, S.; Kurnick, J.T. Tumor-derived interleukin-2-dependent lymphocytes in adoptive immunotherapy of lung cancer. Cancer Immunol. Immunother. 1987, 24, 76–85. [Google Scholar] [CrossRef]
- Banerjee, A.; Li, D.; Guo, Y.; Mahgoub, B.; Paragas, L.; Slobin, J.; Mei, Z.; Manafi, A.; Hata, A.; Li, K.; et al. Retargeting IL-2 Signaling to NKG2D-Expressing Tumor-Infiltrating Leukocytes Improves Adoptive Transfer Immunotherapy. J. Immunol. 2021, 207, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Horne, Z.D.; Jack, R.; Gray, Z.T.; Siegfried, J.M.; Wilson, D.O.; Yousem, S.A.; Nason, K.S.; Landreneau, R.J.; Luketich, J.D.; Schuchert, M.J. Increased levels of tumor-infiltrating lymphocytes are associated with improved recurrence-free survival in stage 1A non-small-cell lung cancer. J. Surg. Res. 2011, 171, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ben-Avi, R.; Farhi, R.; Ben-Nun, A.; Gorodner, M.; Greenberg, E.; Markel, G.; Schachter, J.; Itzhaki, O.; Besser, M.J. Establishment of adoptive cell therapy with tumor infiltrating lymphocytes for non-small cell lung cancer patients. Cancer Immunol. Immunother. 2018, 67, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, D.; Zhang, C.; Ba, D.; Liu, J.; Wan, T.; Li, Z.; Jin, Y.; He, Y. Treatment of 121 patients with malignant effusion due to advanced lung cancer by intrapleural transfer of autologous or allogeneic LAK cells combined with rIL-2. Chin. Med. Sci. J. 1993, 8, 186–189. [Google Scholar]
- Kimura, H.; Yamaguchi, Y. Adjuvant immunotherapy with interleukin 2 and lymphokine-activated killer cells after noncurative resection of primary lung cancer. Lung Cancer 1995, 13, 31–44. [Google Scholar] [CrossRef]
- Kimura, H.; Yamaguchi, Y. A phase III randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma. Cancer 1997, 80, 42–49. [Google Scholar] [CrossRef]
- Izzedine, H.; Mathian, A.; Amoura, Z.; Ng, J.H.; Jhaveri, K.D. Anticancer Drug-Induced Capillary Leak Syndrome. Kidney Int. Rep. 2022, 7, 945–953. [Google Scholar] [CrossRef]
- Azuma, A.; Yagita, H.; Okumura, K.; Kudoh, S.; Niitani, H. Potentiation of long-term-cultured lymphokine-activated killer cell cytotoxicity against small-cell lung carcinoma by anti-CD3 x anti-(tumor-associated antigen) bispecific antibody. Cancer Immunol. Immunother. 1994, 38, 294–298. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, H.; Wu, J.; Li, J.; Xiang, Y.; Wang, G.; Wu, L.; Jiao, S. Adoptive immunotherapy for non-small cell lung cancer by NK and cytotoxic T lymphocytes mixed effector cells: Retrospective clinical observation. Int. Immunopharmacol. 2014, 21, 396–405. [Google Scholar] [CrossRef]
- Kimura, H.; Yamaguchi, Y.; Fujisawa, T. Cytotoxicity of autologous and allogeneic lymphocytes against cultured human lung cancer cells: Optimal conditions for the production of cytotoxic lymphocytes. Gan 1984, 75, 1006–1016. [Google Scholar] [CrossRef]
- Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the Human Development Index (2008-2030): A population-based study. Lancet Oncol. 2012, 13, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, L.; Ma, P.; Ju, D.; Zhao, M.; Shi, Y. Enhancing anti-tumor immune responses through combination therapies: Epigenetic drugs and immune checkpoint inhibitors. Front. Immunol. 2023, 14, 1308264. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, D.; Cai, F.; Jiang, M.; Liu, X.; Li, T.; Zheng, Z. Current Situation and Prospect of Adoptive Cellular Im-mu-notherapy for Malignancies. Technol. Cancer Res. Treat. 2023, 22, 15330338231204198. [Google Scholar] [CrossRef]
- Boissonnas, A.; Licata, F.; Poupel, L.; Jacquelin, S.; Fetler, L.; Krumeich, S.; Théry, C.; Amigorena, S.; Combadière, C. CD8+ tumor-infiltrating T cells are trapped in the tumor-dendritic cell network. Neoplasia 2013, 15, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Corthay, A. Does the immune system naturally protect against cancer? Front. Immunol. 2014, 5, 197. [Google Scholar] [CrossRef] [PubMed]
- Rajbhandary, S.; Zhao, M.F.; Zhao, N.; Lu, W.Y.; Zhu, H.B.; Xiao, X.; Deng, Q.; Li, Y.M. Multiple cytotoxic factors involved in IL-21 enhanced antitumor function of CIK cells signaled through STAT-3 and STAT5b pathways. Asian Pac. J. Cancer Prev. 2013, 14, 5825–5831. [Google Scholar] [CrossRef]
- Hosoi, A.; Matsushita, H.; Shimizu, K.; Fujii, S.; Ueha, S.; Abe, J.; Kurachi, M.; Maekawa, R.; Matsushima, K.; Kakimi, K. Adoptive cytotoxic T lymphocyte therapy triggers a counter-regulatory immunosuppressive mechanism via recruitment of myeloid-derived suppressor cells. Int. J. Cancer 2014, 134, 1810–1822. [Google Scholar] [CrossRef]
- Kelderman, S.; Schumacher, T.N.; Haanen, J.B. Acquired and intrinsic resistance in cancer immunotherapy. Mol. Oncol. 2014, 8, 1132–1139. [Google Scholar] [CrossRef]
- Goyco Vera, D.; Waghela, H.; Nuh, M.; Pan, J.; Lulla, P. Approved CAR-T therapies have reproducible efficacy and safety in clinical practice. Hum. Vaccin. Immunother. 2024, 20, 2378543. [Google Scholar] [CrossRef]
- Ma, S.; Li, X.; Wang, X.; Cheng, L.; Li, Z.; Zhang, C.; Ye, Z.; Qian, Q. Current Progress in CAR-T Cell Therapy for Solid Tumors. Int. J. Biol. Sci. 2019, 15, 2548–2560. [Google Scholar] [CrossRef] [PubMed]
- Rabie, L.E.; Mohran, A.A.; Gaber, K.A.; Ali, N.M.; Abd El Naby, A.M.; Ghoniem, E.A.; Abd Elmaksod, B.A.; Abdallah, A.N. Beyond Conventional Treatments: Exploring CAR-T Cell Therapy for Cancer Stem Cell Eradication. Stem Cell Rev. Rep. 2024, 20, 2001–2015. [Google Scholar] [CrossRef] [PubMed]
- Maalej, K.M.; Merhi, M.; Inchakalody, V.P.; Mestiri, S.; Alam, M.; Maccalli, C.; Cherif, H.; Uddin, S.; Steinhoff, M.; Marincola, F.M.; et al. CAR-cell therapy in the era of solid tumor treatment: Current challenges and emerging therapeutic advances. Mol. Cancer 2023, 22, 20. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Xie, S.; Chen, M.; Li, Y.; Yue, J.; Ma, J.; Shu, X.; He, Y.; Xiao, W.; Tian, Z. Advances in NK cell production. Cell. Mol. Immunol. 2022, 19, 460–481. [Google Scholar] [CrossRef]
- Burki, T.K. CAR T-cell therapy roll-out in low-income and middle-income countries. Lancet Haematol. 2021, 8, e252–e253. [Google Scholar] [CrossRef]
Type of Cells | In Vivo/In Vitro Activation Factors | In Vivo Anti-Tumor Mechanisms and Factors |
---|---|---|
CD4+ T-cells | TCR + CD28 + anti-CD3/ anti-CD28 antibodies, IFN-γ, TNF-α, TGF-β, IL-4, IL-12, TGF-b, IL-6, IL-23, IL-21 | Lyse tumor cells by secretion of IFN-γ, TNF-α Mediate activity of other immune cells and tumor microenvironment by secretion of IFN-γ, TNF-α, GM-CSF, IL3, CXCR3, IL2, IL10 (for Th1 population) IL-4, IL-5, IL-6, IL-9, IL-13, IL-25 (for Th2 population) |
CD8+ T-cells | CD3 + CD28, IL-2, IFN-γ, TNF-α, IL-1, IL-12, IL-4, IL-6, IL-21, TGF-β, TRAIL, TCR, CD80/CD86 | Lyse tumor cells by perforin, Granzyme B Mediate activity of other immune cells and tumor microenvironment by secretion of IFN-γ, TNF-α, IL-2, IL-12 Cytotoxic via cell-cell interaction Mediate tumor cell apoptosis via Fas/FasL |
Natural killer T (NKT) cells | IL-2, IL-15, IL-12, IL-18, TCR, CD1d, lipid stimulation, CD16, NK receptor CD28, CD80/CD86 | Lyse tumor cells by perforin, Granzyme B Mediate cytotoxic effects by secretion of IL-2, TNF-α, GM-CSF |
Tumor-infiltrating lymphocytes (TILs) | IL-2, CD3, TCR + CD28 | Lyse tumor cells by perforin, Granzyme B, IFN-γ, TNF-α Mediate cell-cell interaction and cytotoxic effects by secretion of CD86, CD137-ligand, membrane-bound variant of CD15 Contribute to CXCL-mediated activity |
Lymphokine-activated killer (LAK) cells | IL-2, IL-3, IL-4, IL-5, IL-6, IFN-γ, GM-CSF | Lyse tumor cells by perforin, Granzyme B Mediate cytotoxic effects by secretion of IL-2, TNF-α, GM-CSF |
Cytokine-induced killer (CIK) cells | IL-2, IL-3, IL-4, IL-5, IL-6, IFN-γ, GM-CSF, CD3, CD16a, interaction via dendritic cells | Lyse tumor cells via TCR/CD3 complex and by cell-cell contact |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Polish Respiratory Society. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganina, A.; Askarov, M.; Kozina, L.; Karimova, M.; Shayakhmetov, Y.; Mukhamedzhanova, P.; Brimova, A.; Berikbol, D.; Chuvakova, E.; Zaripova, L.; et al. Prospects for Treatment of Lung Cancer Using Activated Lymphocytes Combined with Other Anti-Cancer Modalities. Adv. Respir. Med. 2024, 92, 504-525. https://doi.org/10.3390/arm92060045
Ganina A, Askarov M, Kozina L, Karimova M, Shayakhmetov Y, Mukhamedzhanova P, Brimova A, Berikbol D, Chuvakova E, Zaripova L, et al. Prospects for Treatment of Lung Cancer Using Activated Lymphocytes Combined with Other Anti-Cancer Modalities. Advances in Respiratory Medicine. 2024; 92(6):504-525. https://doi.org/10.3390/arm92060045
Chicago/Turabian StyleGanina, Anastasia, Manarbek Askarov, Larissa Kozina, Madina Karimova, Yerzhan Shayakhmetov, Perizat Mukhamedzhanova, Aigul Brimova, Daulet Berikbol, Elmira Chuvakova, Lina Zaripova, and et al. 2024. "Prospects for Treatment of Lung Cancer Using Activated Lymphocytes Combined with Other Anti-Cancer Modalities" Advances in Respiratory Medicine 92, no. 6: 504-525. https://doi.org/10.3390/arm92060045
APA StyleGanina, A., Askarov, M., Kozina, L., Karimova, M., Shayakhmetov, Y., Mukhamedzhanova, P., Brimova, A., Berikbol, D., Chuvakova, E., Zaripova, L., & Baigenzhin, A. (2024). Prospects for Treatment of Lung Cancer Using Activated Lymphocytes Combined with Other Anti-Cancer Modalities. Advances in Respiratory Medicine, 92(6), 504-525. https://doi.org/10.3390/arm92060045