Mind–Body Integration in Brain Health
Abstract
1. Introduction
2. Literature Selection and Approach
3. The WHO Declaration on Brain Health and the Swiss Brain Health Plan
4. Bidirectional Mind–Body Interaction
5. Psychosomatic Medicine
6. Discussion
7. Future Directions
7.1. Explicit Mind–Body Integration in Brain Health Plans
7.2. Comprehensive Interdisciplinary Training
7.3. Transdiagnostic and Transdisciplinary Research
7.4. Concepts of Mind–Body Integration
7.5. Addressing Barriers to Implementation
- Although the benefits of integrated care are well documented, its implementation is often hindered by persistent barriers, including fragmented funding models, rigid institutional structures, professional silos, and prevailing mind–body dualism in medical culture. Future research should therefore not only demonstrate effectiveness but also systematically investigate these real-world obstacles and design context-sensitive strategies to overcome them.
- Successful implementation requires more than the goodwill of individual clinicians or departments. It cannot depend solely on local enthusiasm, nor should it become an institutional burden due to undervaluation or insufficient reimbursement of integrated services. Instead, meaningful progress demands coordinated collaboration across all relevant stakeholders—clinicians, hospital administrators, policymakers, insurers, and patient representatives.
- Concrete organizational measures include the development of structured care pathways, such as the establishment of interdisciplinary outpatient clinics and co-managed inpatient units, as well as the integration of regular joint case boards that embed mind–body principles into everyday clinical workflows. At the same time, existing treatment approaches should be critically reviewed for their applicability across disciplinary boundaries.
- Ultimately, the success of integrated care also relies on empowering patients themselves. Public health campaigns and self-help groups can contribute to reducing stigma, fostering mutual understanding, and promoting equitable access to care. In addition to raising awareness about mind–body interactions and promoting adequate treatment, public education can help to counteract common misconceptions and the potential misuse of self-diagnosis, particularly as disseminated via social media. Misuse and arbitrary remote or self-diagnosis can discourage affected individuals from seeking appropriate care and contribute to a distorted public understanding of psychosomatic symptom processes—misrepresenting them as arbitrary, non-specific, or detached from evidence-based medical practice.
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, E.; Williamson, S.; Barron, J. Unlocking Reform and Financial Sustainability: NHS Payment Mechanisms for the Integrated Care Age; NHS Confederation: London, UK, 2024. [Google Scholar]
- Rocks, S.; Berntson, D.; Gil-Salmerón, A.; Kadu, M.; Ehrenberg, N.; Stein, V.; Tsiachristas, A. Cost and effects of integrated care: A systematic literature review and meta-analysis. Eur. J. Health Econ. 2020, 21, 1211–1221. [Google Scholar] [CrossRef]
- Desmedt, M.; Vertriest, S.; Hellings, J.; Bergs, J.; Dessers, E.; Vankrunkelsven, P.; Vrijhoef, H.; Annemans, L.; Verhaeghe, N.; Petrovic, M.; et al. Economic Impact of Integrated Care Models for Patients with Chronic Diseases: A Systematic Review. Value Health 2016, 19, 892–902. [Google Scholar] [CrossRef] [PubMed]
- Hellstern, R.B.; Lamson, A.L.; Jensen, J.F.; Martin, M.P.; Hylock, R.H. Physical and mental health outcomes of integrated care: Systematic review of study. Fam. Syst. Health 2025. [Google Scholar] [CrossRef] [PubMed]
- Jäger, M.; Sobocki, P.; Rössler, W. Cost of disorders of the brain in Switzerland with a focus on mental disorders. Swiss Med. Wkly. 2008, 138, 4–11. [Google Scholar] [CrossRef]
- Stucki, M.; Schärer, X.; Trottmann, M.; Scholz-Odermatt, S.; Wieser, S. What drives health care spending in Switzerland? Findings from a decomposition by disease, health service, sex, and age. BMC Health Serv. Res. 2023, 23, 1149. [Google Scholar] [CrossRef] [PubMed]
- Arias, D.; Saxena, S.; Verguet, S. Quantifying the global burden of mental disorders and their economic value. EClinicalMedicine 2022, 54, 101675. [Google Scholar] [CrossRef]
- Stubhaug, A.; Hansen, J.L.; Hallberg, S.; Gustavsson, A.; Eggen, A.E.; Nielsen, C.S. The costs of chronic pain-Long-term estimates. Eur. J. Pain 2024, 28, 960–977. [Google Scholar] [CrossRef]
- Rayner, L.; Hotopf, M.; Petkova, H.; Matcham, F.; Simpson, A.; McCracken, L.M. Depression in patients with chronic pain attending a specialised pain treatment centre: Prevalence and impact on health care costs. Pain 2016, 157, 1472–1479. [Google Scholar] [CrossRef]
- Bartolomeu Pires, S.; Kunkel, D.; Kipps, C.; Goodwin, N.; Portillo, M.C. Person-centred integrated care for people living with Parkinson’s, Huntington’s and Multiple Sclerosis: A systematic review. Health Expect. 2024, 27, e13948. [Google Scholar] [CrossRef]
- Baxter, S.; Johnson, M.; Chambers, D.; Sutton, A.; Goyder, E.; Booth, A. The effects of integrated care: A systematic review of UK and international evidence. BMC Health Serv. Res. 2018, 18, 350. [Google Scholar] [CrossRef]
- Palmer, D.D.G.; Gamble, M.; Higgins, M.; Maley, J.; Watson, E. Outcomes of an Integrated Multidisciplinary Clinic for People with Functional Neurological Disorder. Mov. Disord. Clin. Pract. 2023, 10, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Saunders, C.; Bawa, H.; Aslanyan, D.; Coleman, F.; Jinadu, H.; Sigala, N.; Medford, N. Treatment outcomes in the inpatient management of severe functional neurological disorder: A retrospective cohort study. BMJ Neurol. Open 2024, 6, e000675. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.R.; McGee, R.E.; Druss, B.G. Mortality in mental disorders and global disease burden implications: A systematic review and meta-analysis. JAMA Psychiatry 2015, 72, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Elbers, S.; Wittink, H.; Konings, S.; Kaiser, U.; Kleijnen, J.; Pool, J.; Köke, A.; Smeets, R. Longitudinal outcome evaluations of Interdisciplinary Multimodal Pain Treatment programmes for patients with chronic primary musculoskeletal pain: A systematic review and meta-analysis. Eur. J. Pain 2022, 26, 310–335. [Google Scholar] [CrossRef]
- Parsonage, M.; Fossey, M.; Tutty, C. Liaison Psychiatry in the Modern NHS; Centre for Mental Health: London, UK, 2012. [Google Scholar]
- Patel, M.; James, K.; Moss-Morris, R.; Husain, M.; Ashworth, M.; Frank, P.; Ferreira, N.; Mosweu, I.; McCrone, P.; Hotopf, M.; et al. Persistent physical symptoms reduction intervention: A system change and evaluation (PRINCE)-integrated GP care for persistent physical symptoms: Protocol for a feasibility and cluster randomised waiting list, controlled trial. BMJ Open 2019, 9, e025513. [Google Scholar] [CrossRef]
- Wortman, M.S.H.; Lokkerbol, J.; van der Wouden, J.C.; Visser, B.; van der Horst, H.E.; Olde Hartman, T.C. Cost-effectiveness of interventions for medically unexplained symptoms: A systematic review. PLoS ONE 2018, 13, e0205278. [Google Scholar] [CrossRef]
- Wortman, M.S.H.; van der Wouden, J.C.; Twisk, J.W.R.; Visser, B.; Assendelft, W.J.J.; van der Horst, H.E.; Olde Hartman, T.C. Effectiveness of psychosomatic therapy for patients with persistent somatic symptoms: Results from the CORPUS randomised controlled trial in primary care. J. Psychosom. Res. 2023, 167, 111178. [Google Scholar] [CrossRef]
- Rosendal, M.; Olesen, F.; Fink, P. Management of medically unexplained symptoms. BMJ 2005, 330, 4–5. [Google Scholar] [CrossRef]
- Rosendal, M.; Olesen, F.; Fink, P.; Toft, T.; Sokolowski, I.; Bro, F. A randomized controlled trial of brief training in the assessment and treatment of somatization in primary care: Effects on patient outcome. Gen. Hosp. Psychiatry 2007, 29, 364–373. [Google Scholar] [CrossRef]
- Doose, M.; Sidhu, S.; Oladeinde, Y.; White, D.P.; Padgett, L.S.; Livinski, A.A.; Rider, R.; Hannoush, H.; Avilés-Santa, L. Health Care Models for Persons with Multiple Chronic Conditions from Populations that Experience Health Disparities: A Scoping Review. J. Gen. Intern. Med. 2025, 40, 2346–2357. [Google Scholar] [CrossRef]
- Rohwer, A.; Toews, I.; Uwimana-Nicol, J.; Nyirenda, J.L.Z.; Niyibizi, J.B.; Akiteng, A.R.; Meerpohl, J.J.; Bavuma, C.M.; Kredo, T.; Young, T. Models of integrated care for multi-morbidity assessed in systematic reviews: A scoping review. BMC Health Serv. Res. 2023, 23, 894. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Optimizing Brain Health Across the Life Course: WHO Position Paper; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240054561 (accessed on 30 June 2025).
- Bassetti, C.L.A.; Heldner, M.R.; Adorjan, K.; Albanese, E.; Allali, G.; Arnold, M.; Bègue, I.; Bochud, M.; Chan, A.; do Cuénod, K.Q.; et al. The Swiss Brain Health Plan 2023–2033. Clin. Transl. Neurosci. 2023, 7, 38. [Google Scholar] [CrossRef]
- The Lancet Global Health. No health without brain health. Lancet Glob. Health 2024, 12, e530. [Google Scholar] [CrossRef] [PubMed]
- Joshua, S.-H.; Sophie, E.L.; Emily, S.; Jun, H.; Michael, J.O.; Michael, O.D.; George, K.; Valentina, E.-P. Severe psychiatric disorders are associated with increased risk of dementia. BMJ Ment. Health 2024, 27, e301097. [Google Scholar] [CrossRef]
- Jha, M.K.; Chin Fatt, C.; Minhajuddin, A.; Mayes, T.L.; Trivedi, M.H. Accelerated brain ageing in major depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2023, 8, 462–470. [Google Scholar]
- Yin, J.; John, A.; Cadar, D. Bidirectional associations of depression and cognition over time. JAMA Netw. Open 2024, 7, e2416305. [Google Scholar] [CrossRef]
- Mayer, E.A.; Nance, K.; Chen, S. The Gut-Brain Axis. Annu. Rev. Med. 2022, 73, 439–453. [Google Scholar] [CrossRef]
- Mazza, M.; Biondi-Zoccai, G.; Lisci, F.M.; Brisi, C.; Sfratta, G.; Rossi, S.; Traversi, G.; Gaetani, E.; Pola, R.; Morini, S.; et al. The Brain–Heart Axis: An Umbrella Review on Impact of Psychiatric Disease on Incidence, Management, and Outlook of Cardiovascular Disease. Life 2024, 14, 919. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Hsu, J.-Y.; Lin, C.-H.; Kuo, Y.-C.; Chen, C.-H.; Chen, H.-Y.; Liu, S.-J.; Chien, K.-L. Association of stress hormones and the risk of cardiovascular diseases systematic review and meta-analysis. Int. J. Cardiol. Cardiovasc. Risk Prev. 2024, 23, 200305. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Sun, S.; Mi, G.; Liu, C.; Ding, G.; Wang, C.; Tang, F. Elucidating the bidirectional association between autoimmune diseases and depression: A systematic review and meta-analysis. BMJ Ment. Health 2024, 27, e301252. [Google Scholar] [CrossRef]
- Alotiby, A. Immunology of Stress: A Review Article. J. Clin. Med. 2024, 13, 6394. [Google Scholar] [CrossRef]
- Perez, D.L.; Edwards, M.J.; Nielsen, G.; Kozlowska, K.; Hallett, M.; LaFrance, W.C., Jr. Decade of progress in motor functional neurological disorder: Continuing the momentum. J. Neurol. Neurosurg. Psychiatry 2021, 92, 668–677. [Google Scholar] [CrossRef]
- Edwards, M.J.; Adams, R.A.; Brown, H.; Pareés, I.; Friston, K.J. A Bayesian account of ‘hysteria’. Brain 2012, 135, 3495–3512. [Google Scholar] [CrossRef]
- Pizzol, D.; Trott, M.; Butler, L.; Barnett, Y.; Ford, T.; Neufeld, S.A.; Ragnhildstveit, A.; Parris, C.N.; Underwood, B.R.; López Sánchez, G.F.; et al. Relationship between severe mental illness and physical multimorbidity: A meta-analysis and call for action. BMJ Ment. Health 2023, 26, e300870. [Google Scholar] [CrossRef] [PubMed]
- Głowacka, M.; Przybyła, N.; Humańska, M.; Kornatowski, M. Depression and anxiety as predictors of performance status and life satisfaction in older adult neurological patients: A cross-sectional cohort study. Front. Psychiatry 2024, 15, 1412747. [Google Scholar] [CrossRef] [PubMed]
- Junaid Farrukh, M.; Makmor Bakry, M.; Hatah, E.; Hui Jan, T. Medication adherence status among patients with neurological conditions and its association with quality of life. Saudi Pharm. J. 2021, 29, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Margoni, M.; Preziosa, P.; Rocca, M.A.; Filippi, M. Depressive symptoms, anxiety and cognitive impairment: Emerging evidence in multiple sclerosis. Transl. Psychiatry 2023, 13, 264. [Google Scholar] [CrossRef]
- Kwon, C.-S.; Rafati, A.; Ottman, R.; Christensen, J.; Kanner, A.M.; Jetté, N.; Newton, C.R. Psychiatric Comorbidities in Persons with Epilepsy Compared with Persons Without Epilepsy: A Systematic Review and Meta-Analysis. JAMA Neurol. 2025, 82, 72–84. [Google Scholar] [CrossRef]
- Cummings, J.; Lanctot, K.; Grossberg, G.; Ballard, C. Progress in Pharmacologic Management of Neuropsychiatric Syndromes in Neurodegenerative Disorders: A Review. JAMA Neurol. 2024, 81, 645–653. [Google Scholar] [CrossRef]
- Waddington, J.L. Psychosis in Parkinson’s disease and parkinsonism in antipsychotic-naive schizophrenia spectrum psychosis: Clinical, nosological and pathobiological challenges. Acta Pharmacol. Sin. 2020, 41, 464–470. [Google Scholar] [CrossRef]
- Pieters, L.E.; Nadesalingam, N.; Walther, S.; van Harten, P.N. A systematic review of the prognostic value of motor abnormalities on clinical outcome in psychosis. Neurosci. Biobehav. Rev. 2022, 132, 691–705. [Google Scholar] [CrossRef]
- Bernard, J.A.; Mittal, V.A. Updating the research domain criteria: The utility of a motor dimension. Psychol. Med. 2015, 45, 2685–2689. [Google Scholar] [CrossRef]
- Walther, S.; van Harten, P.N.; Waddington, J.L.; Cuesta, M.J.; Peralta, V.; Dupin, L.; Foucher, J.R.; Sambataro, F.; Morrens, M.; Kubera, K.M.; et al. Movement disorder and sensorimotor abnormalities in schizophrenia and other psychoses—European consensus on assessment and perspectives. Eur. Neuropsychopharmacol. 2020, 38, 25–39. [Google Scholar] [CrossRef] [PubMed]
- von Känel, S.; Pavlidou, A.; Nadesalingam, N.; Chapellier, V.; Nuoffer, M.G.; Kyrou, A.; Maderthaner, L.; Wüthrich, F.; Lefebvre, S.; Walther, S. Manual dexterity and grip force are distinctly linked to domains of neurological soft signs in schizophrenia spectrum disorders. Schizophr. Res. 2025, 277, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Maderthaner, L.; Pavlidou, A.; Lefebvre, S.; Nadesalingam, N.; Chapellier, V.; von Känel, S.; Kyrou, A.; Alexaki, D.; Wüthrich, F.; Weiss, F.; et al. Neural Correlates of Formal Thought Disorder Dimensions in Psychosis. Schizophr. Bull. 2023, 49 (Suppl. 2), S104–S114. [Google Scholar] [CrossRef]
- Fitzsimmons, S.; Oostra, E.; Postma, T.S.; van der Werf, Y.D.; van den Heuvel, O.A. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities. Biol. Psychiatry 2024, 95, 592–600. [Google Scholar] [CrossRef]
- Davis, S.W.; Beynel, L.; Neacsiu, A.D.; Luber, B.M.; Bernhardt, E.; Lisanby, S.H.; Strauman, T.J. Network-level dynamics underlying a combined rTMS and psychotherapy treatment for major depressive disorder: An exploratory network analysis. Int. J. Clin. Health Psychol. 2023, 23, 100382. [Google Scholar] [CrossRef]
- Popovic, D.; Dragic, M. Repetitive transcranial magnetic stimulation as a universal modulator of synaptic plasticity: Bridging the gap between functional and structural plasticity. Neurochem. Int. 2025, 188, 106021. [Google Scholar] [CrossRef]
- Aceves-Serrano, L.; Neva, J.L.; Doudet, D.J. Insight Into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain From Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review. Front. Neurosci. 2022, 16, 787403. [Google Scholar] [CrossRef]
- Balderston, N.L.; Duprat, R.J.; Long, H.; Scully, M.; Deluisi, J.A.; Figueroa-Gonzalez, A.; Teferi, M.; Sheline, Y.I.; Oathes, D.J. Neuromodulatory transcranial magnetic stimulation (TMS) changes functional connectivity proportional to the electric-field induced by the TMS pulse. Clin. Neurophysiol. 2024, 165, 16–25. [Google Scholar] [CrossRef]
- Giron, C.G.; Tang, A.H.P.; Jin, M.; Kranz, G.S. Antidepressant efficacy of administering repetitive transcranial magnetic stimulation (rTMS) with psychological and other non-pharmacological methods: A scoping review and meta-analysis. Psychol. Med. 2025, 55, e64. [Google Scholar] [CrossRef]
- Kita, A.; Ishida, T.; Kita, N.; Tabata, M.; Tamaki, A.; Uenishi, S.; Yasuda, K.; Takahashi, S.; Matsuura, H.; Yamada, S.; et al. Exploring the capabilities of repetitive transcranial magnetic stimulation in major depressive disorder: Dynamic causal modeling of the neural network. Transl. Psychiatry 2025, 15, 257. [Google Scholar] [CrossRef]
- Sack, A.T.; Paneva, J.; Küthe, T.; Dijkstra, E.; Zwienenberg, L.; Arns, M.; Schuhmann, T. Target Engagement and Brain State Dependence of Transcranial Magnetic Stimulation: Implications for Clinical Practice. Biol. Psychiatry 2024, 95, 536–544. [Google Scholar] [CrossRef]
- Finkelstein, S.A.; Diamond, C.; Carson, A.; Stone, J. Incidence and prevalence of functional neurological disorder: A systematic review. J. Neurol. Neurosurg. Psychiatry 2025, 96, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.; Bühler, J.; Bolton, T.A.W.; Aybek, S. Altered brain network dynamics in motor functional neurological disorders: The role of the right temporo-parietal junction. Transl. Psychiatry 2025, 15, 167. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.; Růžička, F.; Slovák, M.; Forejtová, Z.; Dušek, P.; Dušek, P.; Jech, R.; Serranová, T. Symptom-severity-related brain connectivity alterations in functional movement disorders. Neuroimage Clin. 2022, 34, 102981. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, S.; Strafella, A.P. The neuroimaging evidence of brain abnormalities in functional movement disorders. Brain 2021, 144, 2278–2283. [Google Scholar] [CrossRef]
- Demartini, B.; Nisticò, V.; Edwards, M.J.; Gambini, O.; Priori, A. The pathophysiology of functional movement disorders. Neurosci. Biobehav. Rev. 2021, 120, 387–400. [Google Scholar] [CrossRef]
- Espay, A.J.; Aybek, S.; Carson, A.; Edwards, M.J.; Goldstein, L.H.; Hallett, M.; LaFaver, K.; LaFrance, W.C., Jr.; Lang, A.E.; Nicholson, T.; et al. Current Concepts in Diagnosis and Treatment of Functional Neurological Disorders. JAMA Neurol. 2018, 75, 1132–1141. [Google Scholar] [CrossRef]
- Edwards, M.J.; Bhatia, K.P. Functional (psychogenic) movement disorders: Merging mind and brain. Lancet Neurol. 2012, 11, 250–260. [Google Scholar] [CrossRef]
- Hallett, M.; Aybek, S.; Dworetzky, B.A.; McWhirter, L.; Staab, J.P.; Stone, J. Functional neurological disorder: New subtypes and shared mechanisms. Lancet Neurol. 2022, 21, 537–550. [Google Scholar] [CrossRef]
- Aybek, S.; Perez, D.L. Diagnosis and management of functional neurological disorder. BMJ 2022, 376, o64. [Google Scholar] [CrossRef] [PubMed]
- Varley, D.; Scorer, L.; Bramley, S.; van der Feltz-Cornelis, C. Dismissed, anxious, and feeling abandoned: The experiences and perspectives of people with functional neurological disorder accessing UK healthcare services. General Hosp. Psychiatry 2024, 90, 171–172. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.T.; Bussell, J.K. Medication adherence: WHO cares? Mayo Clin. Proc. 2011, 86, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Kleinsinger, F. The unmet challenge of medication nonadherence. Perm. J. 2018, 22, 18–033. [Google Scholar] [CrossRef]
- Boonpattharatthiti, K.; Songkla, P.N.; Chantara, J.; Koomsri, C.; Krass, I.; Chaiyakunapruk, N.; Dhippayom, T. Prevalence of adherence to oral antidiabetic drugs in patients with type 2 diabetes: A systematic review and meta-analysis. J. Diabetes Investig. 2024, 15, 1614–1625. [Google Scholar] [CrossRef]
- National Center for Statistics and Analysis. Overview of Motor Vehicle Traffic Crashes in 2022 [Traffic Safety Facts—Research Note]; Statistical Report; Report No.: DOT HS 813 560; National Highway Traffic Safety Administration: Washington, DC, USA, 2024. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813560 (accessed on 30 June 2025).
- Mongkhon, P.; Ashcroft, D.M.; Scholfield, C.N.; Kongkaew, C. Hospital admissions associated with medication non-adherence: A systematic review of prospective observational studies. BMJ Qual. Saf. 2018, 27, 902–914. [Google Scholar] [CrossRef]
- Kini, V.; Ho, P.M. Interventions to Improve Medication Adherence: A Review. JAMA 2018, 320, 2461–2473. [Google Scholar] [CrossRef]
- Neiman, A.B.; Ruppar, T.; Ho, M.; Garber, L.; Weidle, P.J.; Hong, Y.; George, M.G.; Thorpe, P.G. CDC Grand Rounds: Improving Medication Adherence for Chronic Disease Management—Innovations and Opportunities. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1248–1251. [Google Scholar] [CrossRef]
- Kaptchuk, T.J.; Miller, F.G. Placebo Effects in Medicine. N. Engl. J. Med. 2015, 373, 8–9. [Google Scholar] [CrossRef]
- Swerts, D.B.; Benedetti, F.; Peres, M.F.P. Different routes of administration in chronic migraine prevention lead to different placebo responses: A meta-analysis. Pain 2022, 163, 415–424. [Google Scholar] [CrossRef]
- Dumitriu, A.; Popescu, B.O. Placebo effects in neurological diseases. J. Med. Life 2010, 3, 114–121. [Google Scholar]
- Goldenholz, D.M.; Goldenholz, S.R. Response to placebo in clinical epilepsy trials--Old ideas and new insights. Epilepsy Res. 2016, 122, 15–25. [Google Scholar] [CrossRef]
- Knezevic, N.N.; Sic, A.; Worobey, S.; Knezevic, E. Justice for Placebo: Placebo Effect in Clinical Trials and Everyday Practice. Medicines 2025, 12, 5. [Google Scholar] [CrossRef]
- Asan, L.; Bingel, U.; Kunkel, A. Neurobiologische und neurochemische Mechanismen der Placeboanalgesie. Der Schmerz 2022, 36, 205–212. [Google Scholar] [CrossRef]
- Frisaldi, E.; Shaibani, A.; Benedetti, F.; Pagnini, F. Placebo and nocebo effects and mechanisms associated with pharmacological interventions: An umbrella review. BMJ Open 2023, 13, e077243. [Google Scholar] [CrossRef]
- Fiorio, M.; Braga, M.; Marotta, A.; Villa-Sánchez, B.; Edwards, M.J.; Tinazzi, M.; Barbiani, D. Functional neurological disorder and placebo and nocebo effects: Shared mechanisms. Nat. Rev. Neurol. 2022, 18, 624–635. [Google Scholar] [CrossRef]
- Engel, G.L. The need for a new medical model: A challenge for biomedicine. Science 1977, 196, 129–136. [Google Scholar] [CrossRef]
- Oken, D. Psychosomatic Medicine. In International Encyclopedia of the Social & Behavioral Sciences, 1st ed.; Smelser, N.J., Baltes, P.B., Eds.; Pergamon: Oxford, UK, 2001; pp. 12452–12457. [Google Scholar]
- von Boetticher, D. Conceptual competence in medicine: Promoting psychosomatic awareness in clinics, research and education. Front. Psychiatry 2025, 16, 1500638. [Google Scholar] [CrossRef]
- Egloff, N.; European Association of Psychosomatic Medicine (EAPM). The Swiss Academy of Psychosomatic and Psychosocial Medicine SAPPM. 2019. Available online: https://www.eapm.eu.com/eapm/eapm-affiliated-national-associations/switzerland-sappm/ (accessed on 30 June 2025).
- South London and Maudsley NHS Foundation Trust. Persistent Physical Symptoms Research and Treatment Unit. 2024. Available online: https://slam.nhs.uk/service-detail/service/persistent-physical-symptoms-research-and-treatment-unit-278/ (accessed on 30 June 2025).
- Löwe, B.; Toussaint, A.; Rosmalen, J.G.M.; Huang, W.L.; Burton, C.; Weigel, A.; Levenson, J.L.; Henningsen, P. Persistent physical symptoms: Definition, genesis, and management. Lancet 2024, 403, 2649–2662. [Google Scholar] [CrossRef]
- Chalder, T.; Patel, M.; James, K.; Hotopf, M.; Frank, P.; Watts, K.; McCrone, P.; David, A.; Ashworth, M.; Husain, M.; et al. Persistent physical symptoms reduction intervention: A system change and evaluation in secondary care (PRINCE secondary)—A CBT-based transdiagnostic approach: Study protocol for a randomised controlled trial. BMC Psychiatry 2019, 19, 307. [Google Scholar] [CrossRef]
- Wilkinson, P.; Whiteman, R. Pain management programmes. BJA Educ. 2017, 17, 10–15. [Google Scholar] [CrossRef]
- University of Oxford. NHS Pain Management Programmes. 2018. Available online: https://healthtalk.org/experiences/chronic-pain/nhs-pain-management-programmes/ (accessed on 30 June 2025).
- Efremov, A. Psychosomatics: Communication of the Central Nervous System through Connection to Tissues, Organs, and Cells. Clin. Psychopharmacol. Neurosci. 2024, 22, 565–577. [Google Scholar] [CrossRef]
- Egle, U.T.; Heim, C.; Strauß, B.; von Känel, R. Psychosomatik—Neurobiologisch Fundiert und Evidenzbasiert: Ein Lehr- und Handbuch; Kohlhammer: Stuttgart, Germany, 2024. [Google Scholar]
- Grossmann, T. The social self in the developing brain. Neurosci. Biobehav. Rev. 2025, 169, 106023. [Google Scholar] [CrossRef]
- Singer, T. A neuroscience perspective on the plasticity of the social and relational brain. Ann. N. Y. Acad. Sci. 2025, 1547, 52–74. [Google Scholar] [CrossRef]
- Faraji, J.; Metz, G.A.S. Toward reframing brain-social dynamics: Current assumptions and future challenges. Front. Psychiatry 2023, 14, 1211442. [Google Scholar] [CrossRef]
- Deter, H.C.; Kruse, J.; Zipfel, S. History, aims and present structure of psychosomatic medicine in Germany. Biopsychosoc. Med. 2018, 12, 1. [Google Scholar] [CrossRef]
- Leue, C.; van Schijndel, M.A.; Keszthelyi, D.; van Koeveringe, G.; Ponds, R.W.; Kathol, R.G.; Rutten, B.P. The multi-disciplinary arena of psychosomatic medicine—Time for a transitional network approach. Eur. J. Psychiatry 2020, 34, 63–73. [Google Scholar] [CrossRef]
- Bolton, D. A revitalized biopsychosocial model: Core theory, research paradigms, and clinical implications. Psychol. Med. 2023, 53, 7504–7511. [Google Scholar] [CrossRef]
- Roberts, A. The biopsychosocial model: Its use and abuse. Med. Health Care Philos. 2023, 26, 367–384. [Google Scholar] [CrossRef]
- Williamson, S. The biopsychosocial model: Not dead, but in need of revival. BJPsych Bull. 2022, 46, 232–234. [Google Scholar] [CrossRef]
- Karunamuni, N.; Imayama, I.; Goonetilleke, D. Pathways to well-being: Untangling the causal relationships among biopsychosocial variables. Soc. Sci. Med. 2021, 272, 112846. [Google Scholar] [CrossRef]
- Felsky, D.; Cannitelli, A.; Pipitone, J. Whole Person Modeling: A transdisciplinary approach to mental health research. Discov. Ment. Health 2023, 3, 16. [Google Scholar] [CrossRef]
- Cuthbert, B.N. Research Domain Criteria (RDoC): Progress and Potential. Curr. Dir. Psychol. Sci. 2022, 31, 107–114. [Google Scholar] [CrossRef]
- Michelini, G.; Palumbo, I.M.; DeYoung, C.G.; Latzman, R.D.; Kotov, R. Linking RDoC and HiTOP: A new interface for advancing psychiatric nosology and neuroscience. Clin. Psychol. Rev. 2021, 86, 102025. [Google Scholar] [CrossRef]
- Smith, R.; Weihs, K.L.; Alkozei, A.; Killgore, W.D.S.; Lane, R.D. An Embodied Neurocomputational Framework for Organically Integrating Biopsychosocial Processes: An Application to the Role of Social Support in Health and Disease. Psychosom. Med. 2019, 81, 125–145. [Google Scholar] [CrossRef]
- Parr, T.; Rees, G.; Friston, K.J. Computational Neuropsychology and Bayesian Inference. Front. Hum. Neurosci. 2018, 12, 61. [Google Scholar] [CrossRef]
- Criscuolo, A.; Czepiel, A.; Schwartze, M.; Kotz, S.A. A body-brain (dis)equilibrium regulating transitions from health to pathology. Phys. Life Rev. 2025, 54, 94–111. [Google Scholar] [CrossRef]
- Hilal, S.; Brayne, C. Epidemiologic Trends, Social Determinants, and Brain Health: The Role of Life Course Inequalities. Stroke 2022, 53, 437–443. [Google Scholar] [CrossRef]
- Avan, A.; Hachinski, V. Brain health: Key to health, productivity, and well-being. Alzheimers Dement. 2022, 18, 1396–1407. [Google Scholar] [CrossRef]
- University Hospital Bern. CAS in Brain Health. Department of Neurology, Faculty of Medicine, Inselspital. 2024. Available online: https://www.unibe.ch/continuing_education_programs/cas_in_brain_health/index_eng.html (accessed on 30 June 2025).
- Boeckle, M.; Schrimpf, M.; Liegl, G.; Pieh, C. Neural correlates of somatoform disorders from a meta-analytic perspective on neuroimaging studies. Neuroimage Clin. 2016, 11, 606–613. [Google Scholar] [CrossRef]
- Perez, D.L.; Barsky, A.J.; Vago, D.R.; Baslet, G.; Silbersweig, D.A. A neural circuit framework for somatosensory amplification in somatoform disorders. J. Neuropsychiatry Clin. Neurosci. 2015, 27, e40–e50. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Swiss Federation of Clinical Neuro-Societies. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maderthaner, L.; Edwards, M.J. Mind–Body Integration in Brain Health. Clin. Transl. Neurosci. 2025, 9, 37. https://doi.org/10.3390/ctn9030037
Maderthaner L, Edwards MJ. Mind–Body Integration in Brain Health. Clinical and Translational Neuroscience. 2025; 9(3):37. https://doi.org/10.3390/ctn9030037
Chicago/Turabian StyleMaderthaner, Lydia, and Mark J. Edwards. 2025. "Mind–Body Integration in Brain Health" Clinical and Translational Neuroscience 9, no. 3: 37. https://doi.org/10.3390/ctn9030037
APA StyleMaderthaner, L., & Edwards, M. J. (2025). Mind–Body Integration in Brain Health. Clinical and Translational Neuroscience, 9(3), 37. https://doi.org/10.3390/ctn9030037