Fractal Dimension Distributions of Resting-State Electroencephalography (EEG) Improve Detection of Dementia and Alzheimer’s Disease Compared to Traditional Fractal Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Diagnosis
2.3. EEG Collection
2.4. EEG Preprocessing
2.5. Fractal Dimension
2.5.1. Full Time-Course Fractal Dimension
2.5.2. Fractal Dimension Distributions (FDD)
2.6. Group Differences
2.7. Logistic Regressions
3. Results
3.1. FDD Differentiates Dementia Better Than Full Time-Course Fractal Dimension
3.2. FDD Is More Informative Than Full Time-Course Fractal Dimension in Most Frequency Bands
3.3. FDD Differentiates Alzheimer’s Disease Better Than Full Time-Course Fractal Dimension
3.4. FDD Is More Informative for Alzheimer’s Disease in Most Frequency Bands
3.5. Features Useful for Distinguishing AD and Dementia Partially Overlap
3.6. FDD Provides Information about Dementia across Different Window Lengths
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kochanek, K.D.; Murphy, S.L.; Xu, J.; Arias, E. Mortality in the United States, 2022; NCHS Data Brief; National Center for Health Statistics: Hyattsville, MD, USA, 2024. [Google Scholar]
- Rajan, K.B.; Weuve, J.; Barnes, L.L.; McAninch, E.A.; Wilson, R.S.; Evans, D.A. Population Estimate of People with Clinical Alzheimer’s Disease and Mild Cognitive Impairment in the United States (2020–2060). Alzheimers Dement. 2021, 17, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Manly, J.J.; Jones, R.N.; Langa, K.M.; Ryan, L.H.; Levine, D.A.; McCammon, R.; Heeringa, S.G.; Weir, D. Estimating the Prevalence of Dementia and Mild Cognitive Impairment in the US: The 2016 Health and Retirement Study Harmonized Cognitive Assessment Protocol Project. JAMA Neurol. 2022, 79, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- Vaz, M.; Silvestre, S. Alzheimer’s Disease: Recent Treatment Strategies. Eur. J. Pharmacol. 2020, 887, 173554. [Google Scholar] [CrossRef] [PubMed]
- Hebert, L.E.; Beckett, L.A.; Scherr, P.A.; Evans, D.A. Annual Incidence of Alzheimer Disease in the United States Projected to the Years 2000 Through 2050. Alzheimer Dis. Assoc. Disord. 2001, 15, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Reisberg, B.; Prichep, L.; Mosconi, L.; John, E.R.; Glodzik-Sobanska, L.; Boksay, I.; Monteiro, I.; Torossian, C.; Vedvyas, A.; Ashraf, N.; et al. The Pre–Mild Cognitive Impairment, Subjective Cognitive Impairment Stage of Alzheimer’s Disease. Alzheimers Dement. 2008, 4, S98–S108. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Arevalo-Rodriguez, I.; Smailagic, N.; Figuls, M.R.i.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Cosp, X.B.; Cullum, S. Mini-Mental State Examination (MMSE) for the Detection of Alzheimer’s Disease and Other Dementias in People with Mild Cognitive Impairment (MCI). Cochrane Database Syst. Rev. 2015, 3, 1–74. [Google Scholar] [CrossRef]
- Schmand, B.; Eikelenboom, P.; van Gool, W.A.; Alzheimer’s Disease Neuroimaging Initiative. Value of Neuropsychological Tests, Neuroimaging, and Biomarkers for Diagnosing Alzheimer’s Disease in Younger and Older Age Cohorts. J. Am. Geriatr. Soc. 2011, 59, 1705–1710. [Google Scholar] [CrossRef] [PubMed]
- Therriault, J.; Vermeiren, M.; Servaes, S.; Tissot, C.; Ashton, N.J.; Benedet, A.L.; Karikari, T.K.; Lantero-Rodriguez, J.; Brum, W.S.; Lussier, F.Z.; et al. Association of Phosphorylated Tau Biomarkers With Amyloid Positron Emission Tomography vs Tau Positron Emission Tomography. JAMA Neurol. 2023, 80, 188–199. [Google Scholar] [CrossRef]
- Rossini, P.M.; Di Iorio, R.; Vecchio, F.; Anfossi, M.; Babiloni, C.; Bozzali, M.; Bruni, A.C.; Cappa, S.F.; Escudero, J.; Fraga, F.J.; et al. Early Diagnosis of Alzheimer’s Disease: The Role of Biomarkers Including Advanced EEG Signal Analysis. Report from the IFCN-Sponsored Panel of Experts. Clin. Neurophysiol. 2020, 131, 1287–1310. [Google Scholar] [CrossRef]
- Al-Nuaimi, A.H.H.; Jammeh, E.; Sun, L.; Ifeachor, E. Complexity Measures for Quantifying Changes in Electroencephalogram in Alzheimer’s Disease. Complexity 2018, 2018, 8915079. [Google Scholar] [CrossRef]
- Sun, J.; Wang, B.; Niu, Y.; Tan, Y.; Fan, C.; Zhang, N.; Xue, J.; Wei, J.; Xiang, J. Complexity Analysis of EEG, MEG, and fMRI in Mild Cognitive Impairment and Alzheimer’s Disease: A Review. Entropy 2020, 22, 239. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.C.; Wang, S.-J.; Lai, K.-L.; Tsai, C.-F.; Yang, C.-H.; Hwang, J.-P.; Lo, M.-T.; Huang, N.E.; Peng, C.-K.; Fuh, J.-L. Cognitive and Neuropsychiatric Correlates of EEG Dynamic Complexity in Patients with Alzheimer’s Disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 47, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.J. Fractals and the Analysis of Waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Approach to an Irregular Time Series on the Basis of the Fractal Theory. Phys. Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Lau, Z.J.; Pham, T.; Chen, S.H.A.; Makowski, D. Brain Entropy, Fractal Dimensions and Predictability: A Review of Complexity Measures for EEG in Healthy and Neuropsychiatric Populations. Eur. J. Neurosci. 2022, 56, 5047–5069. [Google Scholar] [CrossRef] [PubMed]
- Al-Nuaimi, A.H.H.; Jammeh, E.; Sun, L.; Ifeachor, E. Higuchi Fractal Dimension of the Electroencephalogram as a Biomarker for Early Detection of Alzheimer’s Disease. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2320–2324. [Google Scholar]
- Gómez, C.; Hornero, R. Entropy and Complexity Analyses in Alzheimer’s Disease: An MEG Study. Open Biomed. Eng. J. 2010, 4, 223–235. [Google Scholar] [CrossRef]
- Gómez, C.; Mediavilla, Á.; Hornero, R.; Abásolo, D.; Fernández, A. Use of the Higuchi’s Fractal Dimension for the Analysis of MEG Recordings from Alzheimer’s Disease Patients. Med. Eng. Phys. 2009, 31, 306–313. [Google Scholar] [CrossRef]
- Nobukawa, S.; Yamanishi, T.; Nishimura, H.; Wada, Y.; Kikuchi, M.; Takahashi, T. Atypical Temporal-Scale-Specific Fractal Changes in Alzheimer’s Disease EEG and Their Relevance to Cognitive Decline. Cogn. Neurodyn. 2019, 13, 1–11. [Google Scholar] [CrossRef]
- Smits, F.M.; Porcaro, C.; Cottone, C.; Cancelli, A.; Rossini, P.M.; Tecchio, F. Electroencephalographic Fractal Dimension in Healthy Ageing and Alzheimer’s Disease. PLoS ONE 2016, 11, e0149587. [Google Scholar] [CrossRef]
- Ahmadlou, M.; Adeli, H.; Adeli, A. Fractality and a Wavelet-Chaos-Methodology for EEG-Based Diagnosis of Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 2011, 25, 85–92. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Mammone, N.; Morabito, F.C.; Marino, S.; Adeli, H. A Novel Methodology for Automated Differential Diagnosis of Mild Cognitive Impairment and the Alzheimer’s Disease Using EEG Signals. J. Neurosci. Methods 2019, 322, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Staudinger, T.; Polikar, R. Analysis of Complexity Based EEG Features for the Diagnosis of Alzheimer’s Disease. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2033–2036. [Google Scholar]
- Puri, D.V.; Nalbalwar, S.; Nandgaonkar, A.; Wagh, A. Alzheimer’s Disease Detection from Optimal EEG Channels and Tunable Q-Wavelet Transform. Indones. J. Electr. Eng. Comput. Sci. 2022, 25, 1420–1428. [Google Scholar] [CrossRef]
- Yoder, K.J.; Brookshire, G.; Gerrol, S.; Quirk, C.; Lucero, C. Identifying and Differentiating Dementias with EEG Fractal Dimension Distributions. Alzheimers Dement. 2023, 19, e079732. [Google Scholar] [CrossRef]
- Yoder, K.J.; Brookshire, G.; Gerrol, S.; Quirk, C.; Lucero, C. Differential Diagnosis of Lewy Body Dementias Using Multivariate EEG Classifiers. Alzheimers Dement. 2023, 19, e080264. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Bergeron, D.; Flynn, K.; Verret, L.; Poulin, S.; Bouchard, R.W.; Bocti, C.; Fülöp, T.; Lacombe, G.; Gauthier, S.; Nasreddine, Z.; et al. Multicenter Validation of an MMSE-MoCA Conversion Table. J. Am. Geriatr. Soc. 2017, 65, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Langa, K.M.; Levine, D.A. The Diagnosis and Management of Mild Cognitive Impairment: A Clinical Review. JAMA 2014, 312, 2551–2561. [Google Scholar] [CrossRef]
- Accardo, A.; Affinito, M.; Carrozzi, M.; Bouquet, F. Use of the Fractal Dimension for the Analysis of Electroencephalographic Time Series. Biol. Cybern. 1997, 77, 339–350. [Google Scholar] [CrossRef]
- Doyle, T.L.A.; Dugan, E.L.; Humphries, B.; Newton, R.U. Discriminating between Elderly and Young Using a Fractal Dimension Analysis of Centre of Pressure. Int. J. Med. Sci. 2004, 1, 11–20. [Google Scholar] [CrossRef]
- Wajnsztejn, R.; de Carvalho, T.D.; Garner, D.M.; Raimundo, R.D.; Vanderlei, L.C.M.; Godoy, M.F.; Ferreira, C.; Valenti, V.E.; Abreu, L.C. de Higuchi Fractal Dimension Applied to RR Intervals in Children with Attention Deficit Hyperactivity Disorder. J. Hum. Growth Dev. 2016, 26, 147–153. [Google Scholar] [CrossRef]
- Wanliss, J.A.; Wanliss, G.E. Efficient Calculation of Fractal Properties via the Higuchi Method. Nonlinear Dyn. 2022, 109, 2893–2904. [Google Scholar] [CrossRef] [PubMed]
- Mensen, A.; Khatami, R. Advanced EEG Analysis Using Threshold-Free Cluster-Enhancement and Non-Parametric Statistics. NeuroImage 2013, 67, 111–118. [Google Scholar] [CrossRef]
- Smith, S.M.; Nichols, T.E. Threshold-Free Cluster Enhancement: Addressing Problems of Smoothing, Threshold Dependence and Localisation in Cluster Inference. NeuroImage 2009, 44, 83–98. [Google Scholar] [CrossRef]
- Tjur, T. Coefficients of Determination in Logistic Regression Models—A New Proposal: The Coefficient of Discrimination. Am. Stat. 2009, 63, 366–372. [Google Scholar] [CrossRef]
- Klimesch, W. EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef] [PubMed]
- Herweg, N.A.; Solomon, E.A.; Kahana, M.J. Theta Oscillations in Human Memory. Trends Cogn. Sci. 2020, 24, 208–227. [Google Scholar] [CrossRef]
- Jacob, J.E.; Gopakumar, K. Automated Diagnosis of Encephalopathy Using Fractal Dimensions of EEG Sub-Bands. In Proceedings of the 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS), Thiruvananthapuram, India, 6–8 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 94–97. [Google Scholar]
- Cummings, J.L. Alzheimer’s Disease. N. Engl. J. Med. 2004, 351, 56–67. [Google Scholar] [CrossRef]
- Hanseeuw, B.J.; Betensky, R.A.; Jacobs, H.I.L.; Schultz, A.P.; Sepulcre, J.; Becker, J.A.; Cosio, D.M.O.; Farrell, M.; Quiroz, Y.T.; Mormino, E.C.; et al. Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. JAMA Neurol. 2019, 76, 915–924. [Google Scholar] [CrossRef]
- Lauterborn, J.C.; Scaduto, P.; Cox, C.D.; Schulmann, A.; Lynch, G.; Gall, C.M.; Keene, C.D.; Limon, A. Increased Excitatory to Inhibitory Synaptic Ratio in Parietal Cortex Samples from Individuals with Alzheimer’s Disease. Nat. Commun. 2021, 12, 2603. [Google Scholar] [CrossRef]
- Ranasinghe, K.G.; Verma, P.; Cai, C.; Xie, X.; Kudo, K.; Gao, X.; Lerner, H.M.; Mizuiri, D.; Strom, A.; Iaccarino, L.; et al. Abnormal Neural Oscillations Depicting Excitatory-inhibitory Imbalance Are Distinctly Associated with Amyloid and Tau Depositions in Alzheimer’s Disease. Alzheimers Dement. 2021, 17, e055588. [Google Scholar] [CrossRef]
- Dauwels, J.; Srinivasan, K.; Ramasubba Reddy, M.; Musha, T.; Vialatte, F.-B.; Latchoumane, C.; Jeong, J.; Cichocki, A. Slowing and Loss of Complexity in Alzheimer’s EEG: Two Sides of the Same Coin? Int. J. Alzheimers Dis. 2011, 2011, 539621. [Google Scholar] [CrossRef] [PubMed]
- Akar, S.A.; Kara, S.; Latifoğlu, F.; Bilgiç, V. Investigation of the Noise Effect on Fractal Dimension of EEG in Schizophrenia Patients Using Wavelet and SSA-Based Approaches. Biomed. Signal Process. Control 2015, 18, 42–48. [Google Scholar] [CrossRef]
- Fernández, A.; Gómez, C.; Hornero, R.; López-Ibor, J.J. Complexity and Schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 45, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, B.S.; Dutt, D.N.; Halahalli, H.N.; John, J.P. Complexity Analysis of EEG in Patients with Schizophrenia Using Fractal Dimension. Physiol. Meas. 2009, 30, 795–808. [Google Scholar] [CrossRef]
- Sabeti, M.; Katebi, S.; Boostani, R. Entropy and Complexity Measures for EEG Signal Classification of Schizophrenic and Control Participants. Artif. Intell. Med. 2009, 47, 263–274. [Google Scholar] [CrossRef]
- Goshvarpour, A.; Goshvarpour, A. Schizophrenia Diagnosis Using Innovative EEG Feature-Level Fusion Schemes. Phys. Eng. Sci. Med. 2020, 43, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.; Päeske, L.; Kalev, K.; Aarma, K.; Lehtmets, A.; Ööpik, P.; Lass, J.; Hinrikus, H. Methods for Classifying Depression in Single Channel EEG Using Linear and Nonlinear Signal Analysis. Comput. Methods Programs Biomed. 2018, 155, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Čukić, M.; Stokić, M.; Radenković, S.; Ljubisavljević, M.; Simić, S.; Savić, D. Nonlinear Analysis of EEG Complexity in Episode and Remission Phase of Recurrent Depression. Int. J. Methods Psychiatr. Res. 2020, 29, e1816. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, B.; Seyedsadjadi, R.; Babadi, B.; Noroozian, M. Brain Complexity Increases in Mania. NeuroReport 2005, 16, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.R.; Khaleghi, A.; Nasrabadi, A.M.; Rafieivand, S.; Begol, M.; Zarafshan, H. EEG Classification of ADHD and Normal Children Using Non-Linear Features and Neural Network. Biomed. Eng. Lett. 2016, 6, 66–73. [Google Scholar] [CrossRef]
- Ganapathi, A.S.; Glatt, R.M.; Bookheimer, T.H.; Popa, E.S.; Ingemanson, M.L.; Richards, C.J.; Hodes, J.F.; Pierce, K.P.; Slyapich, C.B.; Iqbal, F.; et al. Differentiation of Subjective Cognitive Decline, Mild Cognitive Impairment, and Dementia Using qEEG/ERP-Based Cognitive Testing and Volumetric MRI in an Outpatient Specialty Memory Clinic. J. Alzheimers Dis. 2022, 90, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
Group | ||||
---|---|---|---|---|
Variable | Full Sample | SCI | Dementia | AD-Dementia |
N | 148 | 97 | 51 | 38 |
Age (Mean [SD]) | 71.3 (7.5) | 70.2 (7.1) | 73.7 (7.8) | 74.2 (7.1) |
Female (%) | 91 (61.4%) | 59 (60.8%) | 32 (62.7%) | 26 (68.4%) |
Band | Fractal Features | AIC | Pseudo R2 | L1 Penalty | nparams | X2 | p |
---|---|---|---|---|---|---|---|
Broadband | Full time-course | 180.3 | 0.290 | 1.60 | 11 | 24.74 | 0.0033 |
FDD | 163.6 | 0.446 | 1.85 | 6 | 47.40 | 0.0111 | |
Delta | Full time-course | 178.8 | 0.425 | 0.25 | 19 | 42.20 | 0.0006 |
FDD | 176.1 | 0.397 | 1.90 | 19 | 44.91 | 0.0003 | |
Theta | Full time-course | 174.9 | 0.269 | 1.70 | 6 | 20.13 | 0.0005 |
FDD | 159.6 | 0.592 | 0.85 | 23 | 69.44 | 0.0000 | |
Alpha | Full time-course | 182.0 | 0.262 | 1.85 | 6 | 13.04 | 0.0111 |
FDD | 166.6 | 0.644 | 0.75 | 25 | 66.42 | 0.0000 | |
Beta | Full time-course | 179.5 | 0.240 | 2.15 | 7 | 17.57 | 0.0035 |
FDD | 173.0 | 0.377 | 1.90 | 14 | 38.05 | 0.0002 | |
Gamma | Full time-course | 184.4 | 0.298 | 0.60 | 14 | 26.65 | 0.0087 |
FDD | 184.7 | 0.220 | 4.75 | 5 | 8.33 | 0.0396 |
Band | Fractal Features | AIC | Pseudo R2 | L1 Penalty | nparams | X2 | p |
---|---|---|---|---|---|---|---|
Broadband | Full time-course | 189.2 | 0.058 | 2.15 | 7 | −2.17 | 0.0035 |
FDD | 176.5 | 0.299 | 0.25 | 19 | 16.54 | 0.0006 | |
Delta | Full time-course | 190.8 | 0.087 | 3.7 | 4 | 0.28 | 0.8698 |
FDD | 183.0 | 0.261 | 3.55 | 11 | 22.09 | 0.0086 | |
Theta | Full time-course | 179.6 | 0.398 | 0.6 | 16 | 35.46 | 0.0013 |
FDD | 174.8 | 0.358 | 2.4 | 8 | 24.20 | 0.0005 | |
Alpha | Full time-course | 187.0 | 0.223 | 3.5 | 5 | 6.03 | 0.1100 |
FDD | 186.1 | 0.229 | 5.05 | 6 | 8.96 | 0.0622 | |
Beta | Full time-course | 188.1 | 0.133 | 2.45 | 7 | 8.93 | 0.1120 |
FDD | 178.9 | 0.270 | 4.25 | 7 | 18.12 | 0.0028 | |
Gamma | Full time-course | 189.1 | 0.135 | 2.85 | 4 | 1.99 | 0.3705 |
FDD | 194.1 | 0.232 | 4.7 | 9 | 6.98 | 0.4313 |
Band | Fractal Features | AIC | Pseudo R2 | L1 Penalty | nparams | X2 | p |
---|---|---|---|---|---|---|---|
Broadband | Full time-course | 157.0 | 0.204 | 1.45 | 10 | 24.40 | 0.0020 |
FDD | 151.6 | 0.331 | 0.85 | 22 | 53.77 | 0.0001 | |
Delta | Full time-course | 153.8 | 0.291 | 0.05 | 20 | 47.60 | 0.0002 |
FDD | 144.0 | 0.342 | 1.80 | 17 | 51.40 | 0.0000 | |
Theta | Full time-course | 145.6 | 0.400 | 0.40 | 16 | 47.83 | 0.0000 |
FDD | 147.5 | 0.487 | 0.15 | 33 | 79.86 | 0.0000 | |
Alpha | Full time-course | 165.3 | 0.058 | 1.35 | 8 | 12.13 | 0.0592 |
FDD | 159.8 | 0.360 | 0.40 | 29 | 59.55 | 0.0003 | |
Beta | Full time-course | 149.7 | 0.300 | 0.35 | 18 | 47.70 | 0.0001 |
FDD | 152.9 | 0.214 | 1.80 | 14 | 36.54 | 0.0003 | |
Gamma | Full time-course | 156.7 | 0.067 | 1.30 | 8 | 20.74 | 0.0020 |
FDD | 165.6 | 0.117 | 2.25 | 11 | 17.84 | 0.0371 |
Band | Fractal Features | AIC | Pseudo R2 | L1 Penalty | nparams | X2 | p |
---|---|---|---|---|---|---|---|
Broadband | Full time-course | 159.6 | 0.088 | 2.90 | 4 | 9.77 | 0.0076 |
FDD | 148.9 | 0.507 | 0.30 | 32 | 76.48 | 0.0000 | |
Delta | Full time-course | 167.6 | 0.009 | 2.45 | 5 | 3.83 | 0.2804 |
FDD | 155.5 | 0.224 | 2.15 | 15 | 35.90 | 0.0006 | |
Theta | Full time-course | 156.8 | 0.341 | 0.15 | 19 | 42.64 | 0.0005 |
FDD | 154.8 | 0.126 | 2.25 | 8 | 22.64 | 0.0009 | |
Alpha | Full time-course | 162.7 | 0.165 | 1.25 | 13 | 24.68 | 0.0101 |
FDD | 164.9 | 0.107 | 2.75 | 8 | 12.49 | 0.0519 | |
Beta | Full time-course | 159.1 | 0.252 | 0.65 | 15 | 32.26 | 0.0022 |
FDD | 163.6 | 0.049 | 4.45 | 5 | 7.83 | 0.0496 | |
Gamma | Full time-course | 168.5 | 0.000 | 3.80 | 4 | 0.93 | 0.6266 |
FDD | 161.7 | 0.233 | 1.20 | 21 | 41.69 | 0.0020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoder, K.J.; Brookshire, G.; Glatt, R.M.; Merrill, D.A.; Gerrol, S.; Quirk, C.; Lucero, C. Fractal Dimension Distributions of Resting-State Electroencephalography (EEG) Improve Detection of Dementia and Alzheimer’s Disease Compared to Traditional Fractal Analysis. Clin. Transl. Neurosci. 2024, 8, 27. https://doi.org/10.3390/ctn8030027
Yoder KJ, Brookshire G, Glatt RM, Merrill DA, Gerrol S, Quirk C, Lucero C. Fractal Dimension Distributions of Resting-State Electroencephalography (EEG) Improve Detection of Dementia and Alzheimer’s Disease Compared to Traditional Fractal Analysis. Clinical and Translational Neuroscience. 2024; 8(3):27. https://doi.org/10.3390/ctn8030027
Chicago/Turabian StyleYoder, Keith J., Geoffrey Brookshire, Ryan M. Glatt, David A. Merrill, Spencer Gerrol, Colin Quirk, and Ché Lucero. 2024. "Fractal Dimension Distributions of Resting-State Electroencephalography (EEG) Improve Detection of Dementia and Alzheimer’s Disease Compared to Traditional Fractal Analysis" Clinical and Translational Neuroscience 8, no. 3: 27. https://doi.org/10.3390/ctn8030027
APA StyleYoder, K. J., Brookshire, G., Glatt, R. M., Merrill, D. A., Gerrol, S., Quirk, C., & Lucero, C. (2024). Fractal Dimension Distributions of Resting-State Electroencephalography (EEG) Improve Detection of Dementia and Alzheimer’s Disease Compared to Traditional Fractal Analysis. Clinical and Translational Neuroscience, 8(3), 27. https://doi.org/10.3390/ctn8030027