Recommendations for the Treatment of Multiple Sclerosis in Family Planning, Pregnancy and Lactation in Switzerland: Immunotherapy
Abstract
:1. Introduction
2. Methods
3. General Aspects of Immunotherapy and Family Planning
3.1. Prepartum Management of Immunotherapy
Counseling about Contraception
Non-Active Relapsing-Remitting MS at Baseline | |||
---|---|---|---|
Initiation of Treatment with Wish to Conceive in Short to Medium Term | Wash-Out Period before Conception | Treatment Continuation during Pregnancy | Treatment Restart after Delivery |
Glatiramer acetate Interferon beta preparations Dimethyl fumarate/diroximel fumarate | Glatiramer acetate/Interferon beta preparations/dimethyl fumarate/diroximel fumarate: stop at pregnancy diagnosis (no washout period) Teriflunomide: accelerated elimination procedure with repeated measurement of drug blood levels before pregnancy planning‡ | Not recommended in non-active RRMS at baseline with stability one year before conception. However, theoretically possible for glatiramer acetate/interferon beta preparations/dimethyl fumarate/diroximel fumarate | If stable during pregnancy, patient can breastfeed. If breastfeeding is not an option, restart previous DMT If disease activity during pregnancy, evaluate DMTs mentioned under “active/highly MS” |
Active multiple sclerosis at baseline | |||
Initiation of treatment with wish to conceive in short- to medium-term | Wash-out period before conception | Treatment continuation during pregnancy | Treatment restart after delivery |
Glatiramer acetate Interferon beta preparations Dimethyl fumarate/diroximel fumarate Cladribine (pulsed treatment): complete 2 cycles of treatment before pregnancy planning and follow wash-out period. Natalizumab if anti JCV negative; ocrelizumab if anti JCV positive; ofatumumab if anti JCV positive, and natalizumab/ocrelizumab no feasible alternative | Dimethyl fumarate/diroximel fumarate: stop at pregnancy diagnosis Sphingosine-1-phosphate receptor modulators: consider risk of rebound upon stopping and bridging to other DMT before pregnancy ‡ Wash out period: Fingolimod: 2 months; Ozanimod: 3 months; Ponesimod: 7 days Teriflunomide: accelerated elimination procedure with repeated measurement of blood levels ‡ Cladribine: 6 months wash-out period after the last dose Natalizumab: No wash-out period. Consider risk of rebound upon stopping and bridging to other DMT before pregnancy ‡ or continuation during pregnancy † Ocrelizumab: wash out 2 months before pregnancy planning † Ofatumumab: 80–112 days when planning pregnancy † | Natalizumab: discuss continuation during pregnancy (increased interval dosing to 6–8 weeks with last dose 30–34th gestational week) † Ocrelizumab/ofatumumab possible if clinical situation requires (e.g., relapses during pregnancy), usually not needed | Glatiramer acetate/Interferon beta preparations: breastfeeding possible Dimethyl fumarate/diroximel fumarate: possible as 2nd line during breastfeeding, depending on disease activity during pregnancy † Natalizumab/Ocrelizumab: breastfeeding possible † Ofatumumab: breastfeeding is possible if OCR and NTZ are not a suitable option Sphingosine-1-phosphate receptor modulators/teriflunomide are not recommended while breastfeeding Cladribine is usually not necessary (pulsed treatment) |
Highly active multiple sclerosis at baseline | |||
Initiation of treatment with wish to conceive in short- to medium-term | Wash-out period before conception | Treatment continuation during pregnancy | Treatment restart after delivery |
Cladribine (pulsed treatment): completes 2 cycles of treatment before pregnancy planning and follows wash-out period. Natalizumab if anti JCV negative; ocrelizumab if anti JCV positive; ofatumumab if anti JCV positive, and natalizumab/ocrelizumab no feasible alternative Alemtuzumab (pulsed treatment) completes 2 cycles of treatment before pregnancy planning and follows wash-out period. | Cladribine (pulsed treatment): complete the 2 treatment cycles over 2 years before pregnancy planning and follow 6-month wash-out period after the last dose Natalizumab: continue during pregnancy † (increased interval dosing to 6–8 weeks with last dose 30–34th gestational week) ‡ Ocrelizumab: wash out 2 months before pregnancy planning †. If disease is stable before pregnancy, it can be stopped during pregnancy (no rebound relapses) Ofatumumab until pregnancy diagnosis possible (try synchronization of injection schedules with menses) † Alemtuzumab (pulsed treatment) completes 2 treatment cycles over 2 years before pregnancy planning. Last dose 4 months before conception. Test for thyroid function monthly during pregnancy | No for cladribine (complete pulsed treatment before pregnancy) Natalizumab: continue during pregnancy † (increased interval dosing to 6–8 weeks with last dose 30–34th gestational week) ‡ Ocrelizumab is usually discontinued during pregnancy (no rebound rjelapse); if disease is very active, can be continued during pregnancy †, last dose at 28–30th gestational week Ofatumumab is usually discontinued during pregnancy (no rebound relapse), but if disease is very active, can be continued during pregnancy if OCR and NTZ are not suitable options No for alemtuzumab (complete pulsed treatment before pregnancy). Test for thyroid function monthly during pregnancy | Cladribine is usually not necessary (pulsed treatment) Natalizumab: rapid restart after delivery. Breastfeeding possible † Ocrelizumab: rapid restart after delivery. Breastfeeding is possible, but wait 4 h between pre-infusion antihistamines before next breastfeeding † Ofatumumab: rapid restart after delivery if ocrelizumab and natalizumab are not a suitable option Alemtuzumab is usually not necessary (pulsed treatment). Not a treatment option while breastfeeding |
DMT | Pharmacokinetics | Preclinical Data for Pregnancy | Evidence for Exposure during Pregnancy | Exposure during Breastfeeding | Reproductive Data in Men | CH SmPC | Our Recommendations |
---|---|---|---|---|---|---|---|
Interferon beta preparations | t ½: 5–78 h PT: unknown but unlikely (high molecular weight ) [26] | Dose-dependent abortive effect from 3-fold the human dose [26,27,28,29] | No evidence for increased risk for spontaneous abortions or major malformations in >3500 pregnancies [30,31,32,33,34,35,36,37,38,39,40,41,42,43,44] | RID < 0.1% Breastfed infant exposure unlikely due to poor oral bioavailability [45,46,47] No adverse events in 40 exposed infants [45,48,49,50,51] | No data on fertility available, but an effect on spermatozoid genetic material not expected [26] Few clinical cases with no evidence of embryo–fetal toxicity [52,53,54] | Pregnancy: may be used when clinically necessary Breastfeeding: can be used Contraception: n/a | The safety profile in pregnancy makes it a first-choice drug in pregnant pwMS if IFNB was the appropriate treatment beforehand (RRMS with no/low disease activity). We generally consider IFNB safe in breastfeeding and to be one of the preferred DMTs for treating MS during breastfeeding when effective. In men, IFNB can be used without restriction. |
Glatiramer acetate | t ½: unclear PT: unlikely as parent drug degraded at injection site [55] | None [55]. | No evidence of increased risk for spontaneous abortions or major malformations in >5500 pregnancies [34,49,56,57,58,59,60]. | RID 0.2% data [55] Breastfed Infant exposure unlikely due to poor oral bioavailability [8]. No adverse events in more than 100 exposed infants [49,51,58,61,62] | No data on fertility available, but an effect on spermatozoid genetic material not expected Few clinical cases with no evidence for embryo–fetal toxicity [52,53,54,55]. | Pregnancy: may be used when clinically necessary Breastfeeding: can be used Contraception: n/a | The safety profile in pregnancy makes it a first-choice drug in pregnant pwMS if GA was the appropriate treatment beforehand (RRMS with low disease activity). We generally consider GA as safe in breastfeeding and to be one of the preferred DMT during breastfeeding. In men, GA can be used without restriction. |
Teriflunomide | t½: 18–19 d PT: yes [13] | Growth disturbance, malformations, embryo–fetal death in even small doses [13] At supratherapeutic doses reduction in sperm count and semen DNA alteration [63]. | In nearly 400 patients, pregnancy outcomes were comparable to general population [64,65,66] No teratogenic effects in >1000 leflunomide-exposed pregnancies [67,68] | RID unknown Proven in animal data [13] No clinical data available [13] Accumulation in infant possible due to long t ½ | Transition in human semen, with possible transmission to partner during intercourse [69,70] No mutagenic/clastogenic effects in preclinical tests, and few clinical cases published [69] | Pregnancy: must not be used Breastfeeding: must not breastfeed during treatment Contraception: contraindicated without reliable contraception; must be continued after discontinuation and rapid elimination until plasma levels < 0.02 mg/L | Not a treatment option during pregnancy because of the teratogenic effects observed in preclinical models and the availability of safer alternatives. TERI is not a treatment option during breastfeeding. In men, TERI can be used without restriction. |
Dimethyl fumarate | t ½: 1 h PT: likely due to low molecular weight [71] | Lower birth weight, ossification disorders, maternal toxicity at 3 times the human dose, increased miscarriage rate at 16 times the human dose [72] | >500 first-trimester exposures published with pregnancy outcomes comparable to general population [72,73,74,75,76,77]. | RID < 0.02% [78] No clinical data available [72] | No mutagenic/clastogenic effects in preclinical tests No clinical data available [72] | Pregnancy: should only be used if the benefits outweigh the risks Breastfeeding: must not breastfeed during treatment Contraception: n/a | The safety profile in pregnancy makes it a possible choice in pregnant pwMS if DMF/DRF was the appropriate treatment beforehand † (active RRMS, continuation of treatment). DMF/DRF can be evaluated as treatment during breastfeeding because the very low RID suggests limited exposure of the infant †. In men, DMF/DRF can be used without restriction. |
Diroximel fumarate | t ½: 1 h PT: see dimethyl fumarate | Lower birth weight, skeletal abnormalities, increase in embryofetal deaths at supratherapeutic doses [79]. | No clinical data specific to diroximel fumarate | Probably same RID as Dimethyl fumarate [80] No clinical data specific to diroximel fumarate [80] | No mutagenic/clastogenic effects in preclinical tests No clinical data available [79] | Pregnancy: should only be used if the benefits outweigh the risks Breastfeeding: must not breastfeed during treatment | The safety profile in pregnancy makes it a possible choice in pregnant pwMS if DMF/DRF was the appropriate treatment beforehand † (active RRMS, continuation of treatment). DRF can be evaluated as treatment during breastfeeding because the very low RID suggests limited exposure of the infant †. In men, DMF/DRF can be used without restriction. |
Fingolimod | t ½: 6–9 d PT: yes [81] | At doses below human dose, increased incidence of malformations and embryo–fetal mortality (most commonly persistent truncus arteriosus and ventricular septal defects) [10,82] | >1000 first trimester exposure published with pregnancy outcomes comparable to general population [83,84] As reported by EMA, there is a 2-fold increased risk of birth defects on basis of EUROCAT data [85] | No clinical data available Accumulation in infant possible due to long t ½RID unknown but transfer likely | Low doses detected in male semen, and potentially very low, clinically not relevant plasma concentrations in the sexual partner [86] No mutagenic/clastogenic effects in preclinical tests [10] | Pregnancy: must not be used Breastfeeding: must not breastfeed during treatment Contraception: effective contraception necessary until 2 months after discontinuation | S1PRMs are not a treatment option in pregnancy because of the teratogenic effects observed in preclinical models, the availability of safer alternatives, and the possible teratogenic signal observed in humans. Due to the lack of data, S1PRMs are not a treatment option during breastfeeding. In men, S1PRMs can be used without restriction. |
Ozanimod | t ½: 10 d PT: probably similar to Fingolimod | embryo–fetal death, abnormal and delayed ossification, visceral anomalies and malformations of the large blood vessels [87] | <100 clinical cases without evidence for increased risk of adverse pregnancy outcomes [88] | Proven in animal data [87] RID unknown No clinical data available Accumulation in infant possible due to long t ½ | No mutagenic/clastogenic effects in preclinical tests [87]. | Pregnancy: must not be used Breastfeeding: must not breastfeed during treatment Contraception: effective contraception necessary until 3 months after discontinuation | S1PRMs are not a treatment option in pregnancy because of the teratogenic effects observed in preclinical models, the availability of safer alternatives, and the possible teratogenic signal observed in humans. Due to the lack of data, S1PRMs are not a treatment option during breastfeeding. In men, S1PRMs can be used without restriction. |
Ponesimod | t ½: 33 h PT: probably similar to Fingolimod | embryo–fetal death, severe disturbances in morphological development and embryo–fetal growth, teratogenic effects [89] | Few clinical cases without evidence of increased risk of adverse pregnancy outcomes [90,91] | Proven in animal data with decreased survival rate, body weight gain, and delayed sexual maturation in offspring [89] No clinical data available Accumulation in infant possible due to long t ½ | No mutagenic/clastogenic effects in preclinical tests [89] | Pregnancy: must not be used Breastfeeding: must not breastfeed during treatment Contraception: effective contraception necessary until 1 week after discontinuation | S1PRMs are not a treatment option in pregnancy because of the teratogenic effects observed in preclinical models, the availability of safer alternatives, and the possible teratogenic signal observed in humans. Due to the lack of data, S1PRMs are not a treatment option during breastfeeding. In men, S1PRMs can be used without restriction. |
Cladribine | t ½: 7–19 h PT: likely (low molecular weight) [92,93]. | Increased risk for severe malformations and embryonic death rate [11] | Less than 70 cases published without major clinical concerns so far [94,95,96] | RID 3% [97,98] Undetectable after 48 h in one patient [99] No clinical data available | Testicular changes in preclinical tests [11]. Due to mutagenicity of cladribine, genetic changes in sperm cells possible [12]. | Pregnancy: must not be used Breastfeeding: contraindicated until 1 week after last dose Contraception: effective contraception necessary up to 6 months after last dose | CLAD is not a treatment option in pregnancy because of the teratogenic effects observed in the preclinical models and the absence of human safety data in pregnancy. Breastfeeding should be withheld for one week after the last dose of cladribine. In both women and men, contraception should be used for six months after the last CLAD dose. |
Natalizumab | t ½: 16 d PT: expected from 14 GW as for endogenous IgG4–antibody | Abortive effect at 7-fold, hematological abnormalities and morphological changes at 2.4-fold the human dose [100] | >1000 cases first trimester exposures without major warning signals [101,102,103,104,105]; recent data with probable higher risk for small gestational age [106] Up to 61% of neonates of mothers treated up to the third trimester with transient anemia, thrombocytopenia, and reversible leukocytosis have been reported [102,106,107,108] | RID 0.22%, very low concentration measured [109,110,111] Breastfed Infant exposure unlikely due to poor bioavailability (i.e., polypeptide structure, probably destroyed in the gastrointestinal tract) Approx. 40 infants without adverse events [111,112] | No disruption of the hormonal axis or fertility in 7 men [113]. | Pregnancy: should not be used unless clinical findings necessitate treatment Breastfeeding: should be discontinued during treatment Contraception: n/a | NTZ safety profile in pregnancy makes it a first-choice drug in pwMS during pregnancy when NTZ was the appropriate treatment beforehand †. NTZ can also be used if the clinical situation requires intensification of previous immunotherapy during pregnancy. NTZ can be evaluated as second-line treatment during breastfeeding because the very low RID and poor oral bioavailability suggest limited exposure of the infant†. In men, NTZ can be used without restriction. |
Ocrelizumab | t ½: 26 d PT: expected from 14 GW as for endogenous IgG1–antibody | Transient B-cell depletion of the offspring with repopulation starting after 6 months [114]. | Pregnancy outcomes comparable to the general population in ~500 first-trimester exposures [115,116,117,118,119] Possible neonatal hematological toxicity with transient lymphopenia [115] Possible increased risk of maternal–fetal infections [115]. | RID < 1% [118] Breastfed Infant exposure unlikely due to poor bioavailability (i.e., polypeptide structure, probably destroyed in the gastrointestinal tract) >60 infants exposed through breast milk without reported adverse events [111,119] | No disruption of the hormonal axis or fertility in nine men [113] | Pregnancy: should not be used unless clinical findings necessitate treatment Breastfeeding: should be discontinued during treatment Contraception: use reliable contraception during and up to 6 months after last infusion | OCR safety profile in pregnancy makes it a 2nd-choice drug in pregnant pwMS when OCR was the appropriate treatment beforehand †. In this patient population, OCR can be evaluated as second-line treatment during breastfeeding because the very low RID and poor oral bioavailability suggest limited exposure of the infant†. In men, OCR can be used without restriction. |
Ofatumumab | t ½: 16 d PT: expected from 14 GW as for endogenous IgG1–antibody | B-cell depletion of the fetus, reduction of the humoral immune response, and decrease in spleen weight at 160 times the human dose [120] | 30 exposed pregnancies reported without adverse outcomes reported [121]. | RID 0.03% Breastfed Infant exposure unlikely due to poor bioavailability (i.e., polypeptide structure, probably destroyed in the gastrointestinal tract [122] 12 infants exposed with no B-cell depletion in available B-cell measurements (n = 5) [122] | No clinical data available No mutagenic/clastogenic effects in preclinical tests [120] | Pregnancy: should not be used unless clinical findings necessitate treatment Breastfeeding: benefits of breastfeeding should be considered along with the benefits of treatment Contraception: use reliable contraception during and up to 6 months after last infusion | OFA should only be used during pregnancy and breastfeeding if the clinical need is appropriate and alternatives with more data (natalizumab, ocrelizumab) are not feasible. In men, OFA can be used without restriction. |
Alemtuzumab | t ½: 4–5 d PT: expected from 14 GW as for endogenous IgG1–antibody | At 2.4 times the human dose increased embryo–fetal mortality, there is reduced number of corpora lutea and implantation sites [12] | 271 exposed pregnancies without major warning signals [123,124,125]. | Proven in animal data [12] RID unknown Breastfed Infant exposure unlikely due to poor bioavailability (i.e., polypeptide structure, probably destroyed in the gastrointestinal tract) No clinical data | Higher proportion of abnormal spermatozoa in preclinical tests [12] No clinical data available | Pregnancy: should not be used unless clearly necessary Breastfeeding: should be discontinued until 4 months after the last infusion Contraception: use reliable contraception during and up to 4 months after last infusion | ALE is considered a third-line treatment. Due to the absence of data in pregnancy and possible neonatal hematological toxicity, ALE should not be used during pregnancy unless in situations with no other therapeutic option. We do not consider ALE a suitable immunotherapy during breastfeeding. In men, ALE can be used without restriction. |
3.2. Postpartum Management of Immunotherapy
3.3. MRI Monitoring of Disease Activity during Pregnancy, Post-Partum, and Lactation
3.4. Obstetrical Pre- and Postpartum Follow-Up
3.5. Drug Safety in Pregnancy and Lactation
3.6. General Considerations on DMT Use in Pregnancy Outside the Approval (Off-Label Use)
4. Specific Immunotherapy Considerations
4.1. Injectable Therapies
4.1.1. Interferon Beta Preparations (Avonex®, Betaferon®, Plegridy®, Rebif®)
4.1.2. Glatiramer Acetate (Copaxone®, Glatiramyl®)
4.2. Oral Therapies
4.2.1. Teriflunomide (Aubagio ®, Teriflunomid Sandoz/Spirig HC/-Mepha)
4.2.2. Dimethylfumarate (Tecfidera®)/Diroximel Fumarate (Vumerity®)
4.2.3. Sphingosine-1-Phosphate Receptor Modulators (Fingolimod/Gilenya®, Fingolimod Accordis/-Mepha/Sandoz/Devatis/Viatris; Ozanimod/Zeposia®; Ponesimod/Ponvory®)
4.2.4. Cladribine (Mavenclad®)
4.3. Monoclonal Antibodies
4.3.1. Natalizumab (Tysabri ®) (Intravenous and Subcutaneous)
4.3.2. Ocrelizumab (Ocrevus®)
4.3.3. Ofatumumab (Kesimpta®)
4.3.4. Alemtuzumab (Lemtrada®)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- MS-Betroffene in der Schweiz: Ein Blick auf die Neuesten Zahlen. Available online: https://www.multiplesklerose.ch/de/aktuelles/detail/neue-hochrechnung-18000-ms-betroffene-in-der-schweiz/ (accessed on 21 May 2024).
- Harbo, H.F.; Gold, R.; Tintoré, M. Sex and gender issues in multiple sclerosis. Ther. Adv. Neurol. Disord. 2013, 6, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Friedli, C.; Salmen, A.; Hoepner, R.; Achtnichts, L.; Bigi, S.; Derfuss, T.; Gobbi, C.; Kamber, N.; Kamm, C.P.; Kuhle, J.; et al. Specific Aspects of Immunotherapy for Multiple Sclerosis in Switzerland—A Structured Commentary, Update 2022. Clin. Transl. Neurosci. 2023, 7, 2. [Google Scholar] [CrossRef]
- Alwan, S.; Yee, I.; Dybalski, M.; Guimond, C.; Dwosh, E.; Greenwood, T.; Butler, R.; Sadovnick, A. Reproductive decision making after the diagnosis of multiple sclerosis (MS). Mult. Scler. J. 2013, 19, 351–358. [Google Scholar] [CrossRef] [PubMed]
- D’hooghe, M.B.; Haentjens, P.; Nagels, G.; D’hooghe, T.; De Keyser, J. Menarche, oral contraceptives, pregnancy and progression of disability in relapsing onset and pro-gressive onset multiple sclerosis. J. Neurol. 2012, 259, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Villaverde-González, R. Updated Perspectives on the Challenges of Managing Multiple Sclerosis During Pregnancy. Degener. Neurol. Neuromuscul. Dis. 2022, 12, 1–21. [Google Scholar] [CrossRef]
- Achtnichts, L.; Chan, A.; Czaplinski, A.; Derfuss, T.; Du Pasquier, R.; Findling, O.; Gobbi, C.; Hoepner, R.; Kamber, N.; Kamm, C.; et al. Specific aspects of immunotherapy for multiple sclerosis in Switzerland: A structured commentary. Clin. Transl. Neurosci. 2019, 3, 2514183X18822073. [Google Scholar] [CrossRef]
- Briggs, G.G.; Freeman, R.K.; Yaffe, S.J. Drugs in Pregnancy and Lactation: A Reference Guide to Fetal and Neonatal Risk, 12th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011; ISBN 978-1-60831-708-0. [Google Scholar]
- Vukusic, S.; Carra-Dalliere, C.; Ciron, J.; Maillart, E.; Michel, L.; Leray, E.; Guennoc, A.-M.; Bourre, B.; Laplaud, D.; Androdias, G.; et al. Pregnancy and multiple sclerosis: 2022 recommendations from the French multiple sclerosis society. Mult. Scler. J. 2023, 29, 11–36. [Google Scholar] [CrossRef]
- Swiss-Medic Authorisierte Fachinformation: Fingolimod. Available online: https://compendium.ch/product/1168364-gilenya-kaps-0-5-mg/mpro (accessed on 13 October 2020).
- Swissmedic Authorisierte Fachinformation: Mavenclad. Available online: https://compendium.ch/product/1407709-mavenclad-tabl-10-mg/mpro (accessed on 13 October 2020).
- Swissmedic Authorisierte Fachinformation: Lemtrada. Available online: https://compendium.ch/product/1284097-lemtrada-inf-konz-12-mg-1-2ml (accessed on 12 October 2020).
- Swissmedic Authorisierte Fachinformation: Aubagio. Available online: https://compendium.ch/product/1254698-aubagio-filmtabl-14-mg/mpro (accessed on 12 July 2020).
- Canibaño, B.; Ali, M.; Mesraoua, B.; Melikyan, G.; Al Hail, H.; Ibrahim, F.; Hanssens, Y.; Deleu, D. Severe rebound disease activity after fingolimod withdrawal in a pregnant woman with multiple sclerosis managed with rituximab: A case study. Case Rep. Women’s Heal 2020, 25, e00162. [Google Scholar] [CrossRef] [PubMed]
- Novi, G.; Ghezzi, A.; Pizzorno, M.; Lapucci, C.; Bandini, F.; Annovazzi, P.; Mancardi, G.L.; Uccelli, A. Dramatic rebounds of MS during pregnancy following fingolimod withdrawal. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e377. [Google Scholar] [CrossRef]
- Meinl, I.; Havla, J.; Hohlfeld, R.; Kümpfel, T. Recurrence of disease activity during pregnancy after cessation of fingolimod in multiple sclerosis. Mult. Scler. J. 2018, 24, 991–994. [Google Scholar] [CrossRef]
- Sempere, A.P.; Berenguer-Ruiz, L.; Feliu-Rey, E. Rebound of disease activity during pregnancy after withdrawal of fingolimod. Eur. J. Neurol. 2013, 20, e109–e110. [Google Scholar] [CrossRef]
- Portaccio, E.; Annovazzi, P.; Ghezzi, A.; Zaffaroni, M.; Moiola, L.; Martinelli, V.; Lanzillo, R.; Brescia Morra, V.; Rinaldi, F.; Gallo, P. Pregnancy decision-making in women with multiple sclerosis treated with natalizumab: I: Fetal risks. Neurology 2018, 90, e823–e831. [Google Scholar] [CrossRef]
- Evangelopoulos, M.E.; Miclea, A.; Schrewe, L.; Briner, M.; Salmen, A.; Engelhardt, B.; Huwiler, A.; Chan, A.; Hoepner, R. Frequency and clinical characteristics of Multiple Sclerosis rebounds after withdrawal of Fin-golimod. CNS Neurosci. Ther. 2018, 24, 984–986. [Google Scholar] [CrossRef]
- Prosperini, L.; Kinkel, R.P.; Miravalle, A.A.; Iaffaldano, P.; Fantaccini, S. Post-natalizumab disease reactivation in multiple sclerosis: Systematic review and meta-analysis. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419837809. [Google Scholar] [CrossRef]
- Iacobaeus, E.; Arrambide, G.; Amato, M.P.; Derfuss, T.; Vukusic, S.; Hemmer, B.; Tintoré, M.; Brundin, L. Aggressive multiple sclerosis (1): Towards a definition of the phenotype. Mult. Scler. J. 2020, 26, 1031–1044. [Google Scholar] [CrossRef]
- Bourre, B.; Casez, O.; Ciron, J.; Gueguen, A.; Kwiatkowski, A.; Moisset, X.; Montcuquet, A.; Ayrignac, X. Paradigm shifts in multiple sclerosis management: Implications for daily clinical practice. Rev. Neurol. 2023, 179, 256–264. [Google Scholar] [CrossRef]
- He, A.; Spelman, T.; Manouchehrinia, A.; Ciccarelli, O.; Hillert, J.; McKay, K. Association between early treatment of multiple sclerosis and patient-reported outcomes: A nationwide observational cohort study. J. Neurol. Neurosurg. Psychiatry 2023, 94, 284–289. [Google Scholar] [CrossRef]
- Bearak, J.; Popinchalk, A.; Ganatra, B.; Moller, A.B.; Tunçalp, Ö.; Beavin, C.; Kwok, L.; Alkema, L. Unintended pregnancy and abortion by income, region, and the legal status of abortion: Estimates from a comprehensive model for 1990-2019. Lancet Glob. Health 2020, 8, e1152–e1161. [Google Scholar] [CrossRef]
- Kirkpatrick, L.; Waters, J.; O’Neal, M.A. O’Neal, Preventive Approaches in Women’s Neurology: Prepartum, Pregnancy, and Postpartum. Semin. Neurol 2022, 42, 665–678. [Google Scholar]
- Swissmedic Authorisierte Fachinformation: Rebif. Available online: https://compendium.ch/product/1204980-rebif-44-rebidose-44-mcg-0-5-ml/mpro (accessed on 8 October 2020).
- Swissmedic Authorisierte Fachinformation: Avonex. Available online: https://compendium.ch/product/1019824-avonex-inj-los (accessed on 13 October 2020).
- Swissmedic Authorisierte Fachinformation: Plegridy. Available online: https://compendium.ch/product/1297227-plegridy-inj-los-125-mcg-0-5-ml-fertpen (accessed on 8 January 2020).
- Swissmedic Authorisierte Fachinformation: Betaferon. Available online: https://compendium.ch/product/1074613-betaferon-trockensub-c-solv/mpro (accessed on 12 October 2020).
- Coyle, P.K.; Sinclair, S.M.; Scheuerle, A.E.; Thorp, J.M., Jr.; Albano, J.D.; Rametta, M.J. Final results from the Betaseron (interferon β-1b) Pregnancy Registry: A prospective observational study of birth defects and pregnancy-related adverse events. BMJ Open 2014, 4, e004536. [Google Scholar] [CrossRef]
- Romero, R.S.; Lünzmann, C.; Bugge, J.-P. Pregnancy outcomes in patients exposed to interferon beta-1b. J. Neurol. Neurosurg. Psychiatry 2015, 86, 587–589. [Google Scholar] [CrossRef]
- Sandberg-Wollheim, M.; Alteri, E.; Moraga, M.S.; Kornmann, G. Pregnancy outcomes in multiple sclerosis following subcutaneous interferon beta-1a therapy. Mult. Scler. J. 2011, 17, 423–430. [Google Scholar] [CrossRef]
- Thiel, S.; Langer-Gould, A.; Rockhoff, M.; Haghikia, A.; Queisser-Wahrendorf, A.; Gold, R.; Hellwig, K. Interferon-beta exposure during first trimester is safe in women with multiple sclerosis—A prospective cohort study from the German Multiple Sclerosis and Pregnancy Registry. Mult. Scler. J. 2016, 22, 801–809. [Google Scholar] [CrossRef]
- Hellwig, K.; Haghikia, A.; Rockhoff, M.; Gold, R. Multiple sclerosis and pregnancy: Experience from a nationwide database in Germany. Ther. Adv. Neurol. Disord. 2012, 5, 247–253. [Google Scholar] [CrossRef]
- Lu, E.; Wang, B.W.; Guimond, C.; Synnes, A.; Sadovnick, D.; Tremlett, H. Disease-Modifying Drugs for Multiple Sclerosis in Pregnancy: A Systematic Review (P06.188). Neurology 2012, 78, 1130–1135. [Google Scholar] [CrossRef]
- Amato, M.; Portaccio, E.; Ghezzi, A.; Hakiki, B.; Zipoli, V.; Martinelli, V.; Moiola, L.; Patti, F.; La Mantia, L.; Mancardi, G.; et al. Pregnancy and fetal outcomes after interferon-β exposure in multiple sclerosis. Neurology 2010, 75, 1794–1802. [Google Scholar] [CrossRef]
- Hellwig, K.; Geissbuehler, Y.; Sabidó, M.; Popescu, C.; Adamo, A.; Klinger, J.; Ornoy, A.; Huppke, P. Pregnancy outcomes in interferon-beta-exposed patients with multiple sclerosis: Results from the European Interferon-beta Pregnancy Registry. J. Neurol. 2020, 267, 1715–1723. [Google Scholar] [CrossRef]
- Korjagina, M.; Hakkarainen, K.M.; Burkill, S.; Geissbühler, Y.; Sabidó, M.; Everage, N.; Suzart-Woischnik, K.; Klement, R.; Hillert, J.; Verkkoniemi-Ahola, A.; et al. Prevalence of adverse pregnancy outcomes after exposure to interferon beta prior to or during pregnancy in women with MS: Stratification by maternal and newborn characteristics in a register-based cohort study in Finland and Sweden. Mult. Scler. Relat. Disord. 2021, 48, 102694. [Google Scholar] [CrossRef]
- Burkill, S.; Vattulainen, P.; Geissbuehler, Y.; Espin, M.S.; Popescu, C.; Suzart-Woischnik, K.; Hillert, J.; Artama, M.; Verkkoniemi-Ahola, A.; Myhr, K.-M.; et al. The association between exposure to interferon-beta during pregnancy and birth measurements in offspring of women with multiple sclerosis. PLoS ONE 2019, 14, e0227120. [Google Scholar] [CrossRef]
- Hakkarainen, K.M.; Juuti, R.; Burkill, S.; Geissbühler, Y.; Sabidó, M.; Popescu, C.; Suzart-Woischnik, K.; Hillert, J.; Artama, M.; Verkkoniemi-Ahola, A.; et al. Pregnancy outcomes after exposure to interferon beta: A register-based cohort study among women with MS in Finland and Sweden. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420951072. [Google Scholar] [CrossRef]
- Barbieri, M.A.; Sorbara, E.E.; Battaglia, A.; Cicala, G.; Rizzo, V.; Spina, E.; Cutroneo, P.M. Adverse Drug Reactions with Drugs Used in Multiple Sclerosis: An Analysis from the Italian Pharma-covigilance Database. Front. Pharmacol. 2022, 13, 808370. [Google Scholar] [CrossRef] [PubMed]
- Weber-Schoendorfer, C.; Schaefer, C. Multiple sclerosis, immunomodulators, and pregnancy outcome: A prospective observational study. Mult. Scler. J. 2009, 15, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Boskovic, R.; Wide, R.; Wolpin, J.; Bauer, D.J.; Koren, G. The reproductive effects of beta interferon therapy in pregnancy. Neurology 2005, 65, 807–811. [Google Scholar] [CrossRef]
- Salvetti, M.; Wray, S.; Nelles, G.; Altincatal, A.; Kumar, A.; Koster, T.; Naylor, M.L. Safety and clinical effectiveness of peginterferon beta-1a for relapsing multiple sclerosis in the real-world setting: Interim results from the Plegridy Observational Program. Mult. Scler. Relat. Disord. 2020, 57, 103350. [Google Scholar] [CrossRef] [PubMed]
- Hale, T.W.; Siddiqui, A.A.; Baker, T.E. Transfer of Interferon β-1a into Human Breastmilk. Breastfeed. Med. 2012, 7, 123–125. [Google Scholar] [CrossRef]
- Polman, C.; Barkhof, F.; Kappos, L.; Pozzilli, C.; Sandbrink, R.; Dahlke, F.; Jakobs, P.; Lorenz, A. European Oral Interferon Beta-1a in Relapsing-Remitting MS Study Group Oral interferon beta-1a in relapsing-remitting multiple sclerosis: A double-blind randomized study. Mult. Scler. J. 2003, 9, 342–348. [Google Scholar] [CrossRef]
- Houtchens, M.; Mahlanza, T.; I Ciplea, A.; Manieri, M.C.; Ramia, N.F.; Zhao, Y.; England, S.; Avila, R.; Altincatal, A.; Vignos, M.; et al. Peginterferon beta-1a concentrations in breast milk of lactating multiple sclerosis patients. Mult. Scler. Relat. Disord. 2022, 60, 103700. [Google Scholar] [CrossRef]
- Rockhoff, M.; Hellwig, K. Kinderwunsch und Interferon β-1b–Fallbericht einer erfolgreichen Hormonstimulation, Schwangerschaft und Stillzeit unter Interferon β-1b. Aktuelle Neurol. 2012, 39, S49–S51. [Google Scholar] [CrossRef]
- Hellwig, K.; Gold, R. Glatiramer acetate and interferon-beta throughout gestation and postpartum in women with multiple sclerosis. J. Neurol. 2011, 258, 502–503. [Google Scholar] [CrossRef]
- Fragoso, Y.D.; Boggild, M.; Macias-Islas, M.A.; Carra, A.; Schaerer, K.D.; Aguayo, A.; de Almeida, S.M.G.; Alvarenga, M.P.; Alvarenga, R.M.P.; Alves-Leon, S.V.; et al. The effects of long-term exposure to disease-modifying drugs during pregnancy in multiple sclerosis. Clin. Neurol. Neurosurg. 2013, 115, 154–159. [Google Scholar] [CrossRef]
- Ciplea, A.I.; Langer-Gould, A.; Stahl, A.; Thiel, S.; Queisser-Wahrendorf, A.; Gold, R.; Hellwig, K. Safety of potential breast milk exposure to IFN-β or glatiramer acetate One-year infant outcomes. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e757. [Google Scholar] [CrossRef] [PubMed]
- Pecori, C.; Giannini, M.; Portaccio, E.; Ghezzi, A.; Hakiki, B.; Pastò, L.; Razzolini, L.; Sturchio, A.; De Giglio, L.; Pozzilli, C.; et al. Paternal therapy with disease modifying drugs in multiple sclerosis and pregnancy outcomes: A prospective observational multicentric study. BMC Neurol. 2014, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, K.; Haghikia, A.; Gold, R. Parenthood and immunomodulation in patients with multiple sclerosis. J. Neurol. 2010, 257, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Lu, E.; Zhu, F.; Zhao, Y.; van der Kop, M.; Synnes, A.; Dahlgren, L.; Sadovnick, A.D.; Traboulsee, A.; Tremlett, H. Birth Outcomes in Newborns Fathered by Men with Multiple Sclerosis Exposed to Disease-Modifying Drugs. CNS Drugs 2014, 28, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Swissmedic Authorisierte Fachinformation: Copaxone. Available online: https://compendium.ch/product/1335203-copaxone-inj-los-40-mg-ml-fertspr/mpro (accessed on 12 October 2020).
- Giannini, M.; Portaccio, E.; Ghezzi, A.; Hakiki, B.; Pastò, L.; Razzolini, L.; Piscolla, E.; De Giglio, L.; Pozzilli, C.; Paolicelli, D.; et al. Pregnancy and fetal outcomes after Glatiramer Acetate exposure in patients with multiple sclerosis: A prospective observational multicentric study. BMC Neurol. 2012, 12, 124. [Google Scholar] [CrossRef]
- Herbstritt, S.; Langer-Gould, A.; Rockhoff, M.; Haghikia, A.; Queisser-Wahrendorf, A.; Gold, R.; Hellwig, K. Glatiramer acetate during early pregnancy: A prospective cohort study. Mult. Scler. J. 2016, 22, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S.; Zeygarnik, M.; Stern, T. Pregnancy, Fetal, and Infant Outcomes Following Maternal Exposure to Glatiramer Acetate During Pregnancy and Breastfeeding. Drug Saf. 2022, 45, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S.; Zeygarnik, M.; Stern, T. Pregnancy and foetal outcomes and breastfeeding practices following maternal ex-posure to glatiramer acetate. In Proceedings of the 29th European Charcot Foundation Annual Meeting, London, UK, 14–18 November 2021. [Google Scholar]
- Sandberg-Wollheim, M.; Neudorfer, O.; Grinspan, A.; Weinstock-Guttman, B.; Haas, J.; Izquierdo, G.; Riley, C.; Ross, A.P.; Baruch, P.; Drillman, T.; et al. Pregnancy Outcomes from the Branded Glatiramer Acetate Pregnancy Database. Int. J. MS Care 2018, 20, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, Y.D.; Finkelsztejn, A.; Kaimen-Maciel, D.R.; Grzesiuk, A.K.; Gallina, A.S.; Lopes, J.; Morales, N.M.; Alves-Leon, S.V.; de Almeida, S.M. Long-term use of glatiramer acetate by 11 pregnant women with multiple sclerosis: A retrospective, multicentre case series. CNS Drugs 2010, 24, 969–976. [Google Scholar] [CrossRef]
- Fragoso, Y.D. Glatiramer acetate to treat multiple sclerosis during pregnancy and lactation: A safety evaluation. Expert Opin. Drug Saf. 2014, 13, 1743–1748. [Google Scholar] [CrossRef]
- Davenport, L.; Czich, A.; Turpault, S. Teriflunomide: Non-Clinical Evaluation Demonstrates No Effect On Sperm DNA or Male Fertility (P2.233). Neurology 2014, 82, P2–233. [Google Scholar] [CrossRef]
- Vukusic, S.; Coyle, P.K.; Jurgensen, S.; Truffinet, P.; Benamor, M.; Afsar, S.; Purvis, A.; Poole, E.M.; Chambers, C. Pregnancy outcomes in patients with multiple sclerosis treated with teriflunomide: Clinical study data and 5 years of post-marketing experience. Mult. Scler. J. 2020, 26, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.B.; Wandall-Holm, M.F.; Magyari, M. Pregnancy outcomes following maternal or paternal exposure to teriflunomide in the Danish MS population. Mult. Scler. Relat. Disord. 2022, 59, 103529. [Google Scholar] [CrossRef] [PubMed]
- Wiese, M.D.; Rowland, A.; Polasek, T.M.; Sorich, M.J.; O’Doherty, C. Pharmacokinetic evaluation of teriflunomide for the treatment of multiple sclerosis. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Henson, L.J.; Afsar, S.; Davenport, L.; Purvis, A.; Poole, E.M.; Truffinet, P. Pregnancy outcomes in patients treated with leflunomide, the parent compound of the multiple sclerosis drug teriflunomide. Reprod. Toxicol. 2020, 95, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Chambers, C.D.; Johnson, D.L.; Robinson, L.K.; Braddock, S.R.; Xu, R.; Lopez-Jimenez, J.; Mirrasoul, N.; Salas, E.; Luo, Y.J.; Jin, S.; et al. Birth outcomes in women who have taken leflunomide during pregnancy. Arthritis Rheum. 2010, 62, 1494–1503. [Google Scholar] [CrossRef] [PubMed]
- Kieseier, B.C.; Benamor, M. Pregnancy Outcomes Following Maternal and Paternal Exposure to Teriflunomide During Treatment for Relapsing–Remitting Multiple Sclerosis. Neurol. Ther. 2014, 3, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Guarnaccia, J.B.; Cabot, A.; Garten, L.L.; Napoli, S.; Hasbani, M.J. Teriflunomide levels in women whose male sexual partner is on teriflunomide for relapsing multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 57, 103347. [Google Scholar] [CrossRef] [PubMed]
- Bomprezzi, R. Dimethyl fumarate in the treatment of relapsing–remitting multiple sclerosis: An overview. Ther. Adv. Neurol. Disord. 2015, 8, 20–30. [Google Scholar] [CrossRef]
- Swissmedic Authorisierte Fachinformation: Tecfidera. Available online: https://compendium.ch/product/1274804-tecfidera-kaps-240-mg/mpro (accessed on 13 October 2020).
- Gold, R.; Phillips, J.T.; Havrdova, E.; Bar-Or, A.; Kappos, L.; Kim, N.; Thullen, T.; Valencia, P.; Oliva, L.; Novas, M.; et al. Delayed-Release Dimethyl Fumarate and Pregnancy: Preclinical Studies and Pregnancy Outcomes from Clinical Trials and Postmarketing Experience. Neurol. Ther. 2015, 4, 93–104. [Google Scholar] [CrossRef]
- Everage, N.J.; Jones, C.C.; Hellwig, K.; Rog, D.; Liu, S.; Mou, J.; Prada, C.; Hanna, J. Pregnancy Outcomes From an International Registry of Patients Treated With Delayed-release Dimethyl Fumarate. Rev. Neurol. 2019, 175, S94. [Google Scholar] [CrossRef]
- Andersen, J.B.; Sellebjerg, F.; Magyari, M. Pregnancy outcomes after early fetal exposure to injectable first-line treatments, dimethyl fumarate, or natalizumab in Danish women with multiple sclerosis. Eur. J. Neurol. 2023, 30, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk, G.; Begus-Nahrmann, Y.; Herold, S.; Grundler, M.T.; Rosenstroem, H.; Sedlmeier, R. Pregnancy reports and outcomes from multiple sclerosis patients primarily treated with peginterferon beta-1a and delayed-release dimethyl fumarate in Germany. Mult. Scler. J. 2018, 24, 732. [Google Scholar]
- Hellwig, K.; Rog, D.; McGuigan, C.; Houtchens, M.K.; Bruen, D.R.; Mokliatchouk, O.; Branco, F.; Levin, S.; Everage, N.; Lin, X. Final analysis of 379 pregnancy outcomes after exposure to dimethyl fumarate in a prospective international registry. Mult. Scler. 2024, 30, 209–215. [Google Scholar] [CrossRef]
- Ciplea, A.I.; Datta, P.; Rewers-Felkins, K.; Baker, T.; Gold, R.; Hale, T.W.; Hellwig, K. Dimethyl fumarate transfer into human milk. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420968414. [Google Scholar] [CrossRef] [PubMed]
- Swissmedic Authorisierte Fachinformation: Vumerity. Available online: https://compendium.ch/product/1473867-vumerity-kaps-231-mg (accessed on 19 September 2022).
- Drugs and Lactation Database: Diroximel Fumarate. Available online: https://www.ncbi.nlm.nih.gov/books/NBK569615/ (accessed on 10 May 2023).
- European Medicines Agency (EMA), Summary of Product Characteristics: Gilenya. Available online: https://www.ema.europa.eu/en/documents/product-information/gilenya-epar-product-information_de.pdf (accessed on 19 December 2020).
- Schmid, G.; Guba, M.; Ischenko, I.; Papyan, A.; Joka, M.; Schrepfer, S.; Bruns, C.J.; Jauch, K.; Heeschen, C.; Graeb, C. The immunosuppressant FTY720 inhibits tumor angiogenesis via the sphingosine 1-phosphate receptor 1. J. Cell. Biochem. 2007, 101, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Geissbühler, Y.; Vile, J.; Koren, G.; Guennec, M.; Butzkueven, H.; Tilson, H.; MacDonald, T.M.; Hellwig, K. Evaluation of pregnancy outcomes in patients with multiple sclerosis after fingolimod exposure. Ther. Adv. Neurol. Disord. 2018, 11, 1756286418804760. [Google Scholar] [CrossRef] [PubMed]
- Prach, L.M.; Moore, A.; Rezaallah, B.; McBride, G.; Khan, I.A.; Guennec, M.; Bhatt, A.; Geissbuehler, Y.; Leon, S.L.; Vukusic, S. Cumulative update on pregnancy outcomes after fingolimod treatment in patients with multiple sclerosis. MSVirtual2020 2020, 8, 11–13. [Google Scholar]
- E.M.A. Updated Restrictions for Gilenya: Multiple Sclerosis Medicine Not to Be Used in Pregnancy. Available online: https://www.ema.europa.eu/en/documents/press-release/updated-restrictions-gilenya-multiple-sclerosis-medicine-not-be-used-pregnancy_en.pdf (accessed on 13 October 2020).
- David, O.J.; Berwick, A.; Pezous, N.; Lang, M.; Tiel-Wilck, K.; Ziemssen, T.; Li, P.; Hara, H.; Schmouder, R. Determination of Seminal Concentration of Fingolimod and Fingolimod-Phosphate in Multiple Sclerosis Patients Receiving Chronic Treatment With Fingolimod. Clin. Pharmacol. Drug Dev. 2018, 7, 217–221. [Google Scholar] [CrossRef]
- Swissmedic Authorisierte Fachinformation: Zeposia. Available online: https://compendium.ch/product/1449133-zeposia-kaps-0-92-mg/mpro (accessed on 13 December 2020).
- Dubinsky, M.C.; Charles, L.; Selmaj, K.W.; Comi, G.; Krakovich, A.; Rosen, M.; Mahadevan, U. Pregnancy Outcomes in the Ozanimod Clinical Development Program in Patients With Ulcerative Colitis, Crohn’s Disease, and Relapsing Multiple Sclerosis. Inflamm. Bowel Dis. 2024, izae011. [Google Scholar] [CrossRef]
- Swissmedic Authorisierte Fachinformation: Ponvory. Available online: https://compendium.ch/product/1485636-ponvory-starterpackung-filmtabl/mpro (accessed on 23 February 2022).
- Rosas-Ballina, M.; Wooller, A.; Jones, R.; Vaclavkova, A.; Havrdova, E.K. Fetal Exposure With Ponesimod Treatment Across Clinical Development Studies. In Proceedings of the 2022 Annual Meeting of the Consortium of Multiple Sclerosis Centers. CMSC, West Palma Beach, FL, USA, 23–26 February 2022. [Google Scholar]
- Use of PONVORY in Pregnancy and in Females of Reproductive Potential. Available online: https://www.janssenmd.com/ponvory/special-populations/pregnancy/use-of-ponvory-in-pregnancy-and-in-females-of-reproductive-potential (accessed on 23 February 2022).
- Orlowski, R.Z. Successful Pregnancy after Cladribine Therapy for Hairy Cell Leukemia. Leuk. Lymphoma 2004, 45, 187–188. [Google Scholar] [CrossRef] [PubMed]
- Alothman, A.; Sparling, T.G. Managing hairy cell leukemia in pregnancy. Ann. Intern. Med. 1994, 120, 1048–1049. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, G.; Berger, J.; Leist, T.; Jack, D.; Galazka, A.; Nolting, A.; Damian, D. Post-approval safety of cladribine tablets with particular reference to COVID-19 outcomes: An update. Mult. Scler. J. 2021, 27, 638–639. [Google Scholar]
- Giovannoni, G.; Galazka, A.; Schick, R.; Leist, T.; Comi, G.; Montalban, X.; Damian, D.; Dangond, F.; Cook, S. Pregnancy Outcomes During the Clinical Development Program of Cladribine in Multiple Sclerosis: An Integrated Analysis of Safety. Drug Saf. 2020, 43, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Dost-Kovalsky, K.; Thiel, S.; I Ciplea, A.; Gold, R.; Hellwig, K. Cladribine and pregnancy in women with multiple sclerosis: The first cohort study. Mult. Scler. J. 2023, 29, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Drugs and Lactation Database: Cladribine. Available online: www.ncbi.nlm.nih.gov/books/NBK500815/ (accessed on 24 April 2023).
- Datta, P.; I Ciplea, A.; Rewers-Felkins, K.; Baker, T.; Gold, R.; Hale, T.W.; Hellwig, K. Cladribine transfer into human milk: A case report. Mult. Scler. J. 2021, 27, 799–801. [Google Scholar] [CrossRef] [PubMed]
- Datta, P.; Hale, T.W.; Thiel, S.; Gold, R.; Hellwig, K. Low transfer of cladribine into human milk. Mult. Scler. J. 2023, 29, 1346–1347. [Google Scholar] [CrossRef] [PubMed]
- Swissmedic Authorisierte Fachinformation: Tysabri. Available online: https://compendium.ch/product/1066126-tysabri-inf-konz-300-mg-15ml/mpro (accessed on 13 October 2020).
- Portaccio, E.; Annovazzi, P.; Ghezzi, A.; Zaffaroni, M.; Moiola, L.; Martinelli, V.; Lanzillo, R.; Brescia Morra, V.; Rinaldi, F.; Gallo, P. Pregnancy decision-making in women with multiple sclerosis treated with natalizumab: II: Maternal risks. Neurology 2018, 90, e832–e839. [Google Scholar] [CrossRef] [PubMed]
- Friend, S.; Richman, S.; Bloomgren, G.; Cristiano, L.M.; Wenten, M. Evaluation of pregnancy outcomes from the Tysabri (natalizumab) pregnancy exposure registry: A global, observational, follow-up study. BMC Neurol. 2016, 16, 150. [Google Scholar] [CrossRef]
- Hellwig, K.; Haghikia, A.; Gold, R. Pregnancy and natalizumab: Results of an observational study in 35 accidental pregnancies during natalizumab treatment. Mult. Scler. J. 2011, 17, 958–963. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Herbstritt, S.; Gold, R.; Amezcua, L.; Koren, G.; Hellwig, K. Pregnancy and fetal outcomes following natalizumab exposure in pregnancy. A prospective, controlled observational study. Mult. Scler. J. 2015, 21, 198–205. [Google Scholar] [CrossRef]
- Portaccio, E.; Pastò, L.; Razzolini, L.; Moiola, L.; Martinelli, V.; Annovazzi, P.; Ghezzi, A.; Zaffaroni, M.; Lanzillo, R.; Morra, V.B.; et al. Natalizumab treatment and pregnancy in multiple sclerosis: A reappraisal of maternal and infant outcomes after 6 years. Mult. Scler. J. 2022, 28, 2137–2141. [Google Scholar] [CrossRef] [PubMed]
- Thiel, S.; Litvin, N.; Haben, S.; Gold, R.; Hellwig, K. Disease activity and neonatal outcomes after exposure to natalizumab throughout pregnancy. J. Neurol. Neurosurg. Psychiatry 2023, 95, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Haghikia, A.; Langer-Gould, A.; Rellensmann, G.; Schneider, H.; Tenenbaum, T.; Elias-Hamp, B.; Menck, S.; Zimmermann, J.; Herbstritt, S.; Marziniak, M.; et al. Natalizumab Use During the Third Trimester of Pregnancy. JAMA Neurol. 2014, 71, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Triplett, J.D.; Vijayan, S.; Rajanayagam, S.; Tuch, P.; Kermode, A.G. Pregnancy outcomes amongst multiple sclerosis females with third trimester natalizumab use. Mult. Scler. Relat. Disord. 2020, 40, 101961. [Google Scholar] [CrossRef]
- Baker, T.E.; Cooper, S.D.; Kessler, L.; Hale, T.W. Transfer of Natalizumab into Breast Milk in a Mother with Multiple Sclerosis. J. Hum. Lact. 2015, 31, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Proschmann, U.; Thomas, K.; Thiel, S.; Hellwig, K.; Ziemssen, T. Natalizumab during pregnancy and lactation. Mult. Scler. J. 2018, 24, 1627–1634. [Google Scholar] [CrossRef]
- Ciplea, A.I.; Langer-Gould, A.; de Vries, A.; Schaap, T.; Thiel, S.; Ringelstein, M.; Gold, R.; Hellwig, K. Monoclonal antibody treatment during pregnancy and/or lactation in women with MS or neuromyelitis optica spectrum disorder. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e723. [Google Scholar] [CrossRef]
- Mahadevan, U.; Robinson, C.; Bernasko, N.; Boland, B.; Chambers, C.; Dubinsky, M.; Friedman, S.; Kane, S.; Manthey, J.; Sauberan, J. Inflammatory Bowel Disease in Pregnancy Clinical Care Pathway: A Report From the American Gastroenterological Association IBD Parenthood Project Working Group. Gastroenterology. Inflamm. Bowel Dis. 2019, 156, 1508–1524. [Google Scholar]
- D’amico, E.; Zanghì, A.; Calogero, A.E.; Patti, F. Male fertility in relapsing-remitting multiple sclerosis patients treated with natalizumab and ocrelizumab: A prospective case-control study. Mult. Scler. J. 2021, 27, 2284–2287. [Google Scholar] [CrossRef]
- Swissmedic Authorisierte Fachinformation: Ocrevus. Available online: https://compendium.ch/product/1366338-ocrevus-inf-konz-300-mg-10ml/mpro (accessed on 13 October 2020).
- Kümpfel, T.; Thiel, S.; Meinl, I.; Ciplea, A.I.; Bayas, A.; Hoffmann, F.; Hofstadt-van Oy, U.; Hoshi, M.; Kluge, J.; Ringelstein, M. Anti-CD20 therapies and pregnancy in neuroimmunologic disorders: A cohort study from Germany. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e913. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Bove, R.; Borriello, F.; Craveiro, L.; Ferreira, G.; Hellwig, K.; McElrath, T.; Pasquarelli, N.; Zecevic, D.; Vukusic, S.; et al. Pregnancy and infant outcomes in women receiving ocrelizumab for the treatment of multiple sclerosis. In Proceedings of the 76th Annual Meeting of the American Academy of Neurology (AAN), Denver, CO, USA, 13–18 April 2021. [Google Scholar]
- Oreja-Guevara, C.; Wray, S.; Buffels, R.; Zecevic, D.; Vukusic, S. Pregnancy outcomes in patients treated with ocrelizumab. J. Neurol. Sci. 2019, 405, 311–312. [Google Scholar] [CrossRef]
- Anderson, A.; Rowles, W.; Poole, S.; Balan, A.; Bevan, C.; Brandstadter, R.; Ciplea, A.I.; Cooper, J.; Fabian, M.; Hale, T.W.; et al. Anti-CD20 monoclonal antibody therapy in postpartum women with neurological conditions. Ann. Clin. Transl. Neurol. 2023, 10, 2053–2064. [Google Scholar] [CrossRef]
- Hellwig, K.; Oreja-Guevara, C.; Vukusic, S.; Pietrasanta, C.; Mcelrath, T.; Dobson, R.; Bove, R. Pregnancy and Infant Outcomes in Women Receiving Ocrelizumab for the Treatment of Multiple Sclerosis: Analysis of the Largest Available Outcomes Database. Mult. Scler. Relat. Disord. 2023, 80, 105306. [Google Scholar] [CrossRef]
- Swissmedic Authorisierte Fachinformation: Kesimpta. Available online: https://compendium.ch/product/1466242-kesimpta-inj-los-20-mg-0-4ml-fertpen (accessed on 23 August 2021).
- Pregnancy Outcomes Ofatumumab (Novartis). Available online: https://www.ofatumumabinfo.com/en/pregnancy (accessed on 28 August 2021).
- Witt, L.; Thiel, S.; Gold, R.; Hellwig, K. Ofatumumab in Breast Milk of Multiple Sclerosis Patients. Mult. Scler. Relat. Disord. 2023, 80, 105161. [Google Scholar] [CrossRef]
- Hellwig, K.; Ziemssen, T.; Rosenkranz, T.; Thiel, S.; Limmroth, V.; Faiss, J.; van Loh, I.; Loos, R.; Lassek, C.; Klemm, C.; et al. Disease activity during pregnancy and pregnancy outcomes in patients with multiple sclerosis treated with Alemtuzumab–A case series from the German MS and Pregnancy Registry (P1.367). Neurology 2017, 88, P1–367. [Google Scholar] [CrossRef]
- Rog, D.; Oh, J.; Chambers, C.; Hellwig, K.; McCombe, P.; Otero, S.; Margolin, D.H.; Daizadeh, N.; Compston, D.A.S. Pregnancy outcomes in patients with RRMS treated with alemtuzumab from the clinical development program. Mult. Scler. J. 2017, 23, 375–376. [Google Scholar]
- Oh, J.; Achiron, A.; Celius, E.G.; Chambers, C.; Derwenskus, J.; Devonshire, V.; Hellwig, K.; Hutton, G.J.; McCombe, P.; Moore, M.; et al. Pregnancy outcomes and postpartum relapse rates in women with RRMS treated with alemtuzumab in the phase 2 and 3 clinical development program over 16 years. Mult. Scler. Relat. Disord. 2020, 43, 102146. [Google Scholar] [CrossRef]
- Prévinaire, J.; Lecourt, G.; Soler, J.; Denys, P. Sexual disorders in men with multiple sclerosis: Evaluation and management. Ann. Phys. Rehab. Med. 2014, 57, 329–336. [Google Scholar] [CrossRef]
- Vukusic, S.; Hutchinson, M.; Hours, M.; Moreau, T.; Cortinovis-Tourniaire, P.; Adeleine, P.; Confavreux, C. Pregnancy and multiple sclerosis (the PRIMS study): Clinical predictors of post-partum relapse. Brain 2004, 127, 1353–1360. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Smith, J.B.; Albers, K.B.; Xiang, A.H.; Wu, J.; Kerezsi, E.H.; McClearnen, K.; Gonzales, E.G.; Leimpeter, A.D.; Eeden, S.K.V.D. Pregnancy-related relapses and breastfeeding in a contemporary multiple sclerosis cohort. Neurology 2020, 94, e1939–e1949. [Google Scholar] [CrossRef]
- Alroughani, R.; Akhtar, S.; Zeineddine, M.; EL Kouzi, Y.; El Ayoubi, N.K.; Ahmed, S.F.; Behbehani, R.; Khoury, S.J.; Al-Hashel, J.Y.; Yamout, B.I. Risk of relapses during pregnancy among multiple sclerosis patients. Mult. Scler. Relat. Disord. 2019, 34, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Schubert, C.; Steinberg, L.; Peper, J.; Ramien, C.; Hellwig, K.; Köpke, S.; Solari, A.; Giordano, A.; Gold, S.M.; Friede, T.; et al. Postpartum relapse risk in multiple sclerosis: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2023, 94, 718–725. [Google Scholar] [CrossRef]
- Haben, S.; Ciplea, A.I.; Tokic, M.; Timmesfeld, N.; Thiel, S.; Gold, R.; Langer-Gould, A.M.; Hellwig, K. Early postpartum treatment strategies and early postpartum relapses in women with active multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2023, 95, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Ciampo, L.A.D.; Ciampo, I.R.L.D. Breastfeeding and the Benefits of Lactation for Women’s Health. Rev. Bras. Ginecol. Obs. 2018, 40, 354–359. [Google Scholar] [CrossRef]
- Krol, K.M.; Grossmann, T. Psychological effects of breastfeeding on children and mothers. Bundesgesundheitsblatt Gesundh. Gesundh. 2018, 61, 977–985. [Google Scholar] [CrossRef]
- World Health Organization. Infant and Young Child Nutrition. Global Strategy on Infant and Young Child Feeding. Available online: http://apps.who.int/gb/archive/pdf_files/WHA55/ea5515.pdf?ua=1 (accessed on 12 June 2023).
- Krysko, K.M.; Rutatangwa, A.; Graves, J.; Lazar, A.; Waubant, E. Association Between Breastfeeding and Postpartum Multiple Sclerosis Relapses A Systematic Review and Meta-analysis. JAMA Neurol. 2020, 77, 327–338. [Google Scholar] [CrossRef] [PubMed]
- IRM–Grossesse et Allaitement—Centre de Reference sur les Agents Teratogenes. Available online: https://www.lecrat.fr/9776 (accessed on 24 April 2023).
- Ray, J.G.; Vermeulen, M.J.; Bharatha, A.; Montanera, W.J.; Park, A.L. Association Between MRI Exposure During Pregnancy and Fetal and Childhood Outcomes. JAMA 2016, 316, 952–961. [Google Scholar] [CrossRef]
- Wattjes, M.P.; Ciccarelli, O.; Reich, D.S.; Banwell, B.; de Stefano, N.; Enzinger, C.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Gasperini, C.; et al. 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021, 20, 653–670. [Google Scholar] [CrossRef]
- Drugs and Lactation Database: Gadopentetate. Available online: www.ncbi.nlm.nih.gov/books/NBK501398/ (accessed on 24 April 2023).
- MacDonald, S.C.; McElrath, T.F.; Hernández-Díaz, S. Pregnancy Outcomes in Women With Multiple Sclerosis. Am. J. Epidemiology 2019, 188, 57–66. [Google Scholar] [CrossRef]
- Andersen, J.B.; Kopp, T.I.; Sellebjerg, F.; Magyari, M. Pregnancy-Related and Perinatal Outcomes in Women With Multiple Sclerosis. Neurol. Clin. Pract. 2021, 11, 280. [Google Scholar] [CrossRef] [PubMed]
- Ito, S. Pharmacokinetics 101. Paediatr. Child Health 2011, 16, 535–536. [Google Scholar] [CrossRef]
- Huybrechts, K.F.; Bateman, B.T.; Hernández-Díaz, S. Use of real-world evidence from healthcare utilization data to evaluate drug safety during pregnancy. Pharmacoepidemiol. Drug Saf. 2019, 28, 906–922. [Google Scholar] [CrossRef] [PubMed]
- Guideline on Risk Assessment of Medicinal Products on Human Reproduction and Lactation: From Data to Labelling. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-risk-assessment-medicinal-products-human-reproduction-lactation-data-labelling_en.pdf (accessed on 7 January 2020).
- Cardoso, E.; Monfort, A.; Ferreira, E.; Nordeng, H.; Winterfeld, U.; Allegaert, K.; Gandia, P.; Guidi, M.; Panchaud, A. Maternal drugs and breastfeeding: Risk assessment from pharmacokinetics to safety evidence—A contribution from the ConcePTION project. Therapies 2023, 78, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Declaration on Good Off-Label Use Practice. Available online: www.braincouncil.eu/wp-content/uploads/2018/07/GOLUP_Declaration.pdf (accessed on 24 April 2023).
- Empfehlungen zum Off Label Use von Arzneimitteln der Kantonsapothekervereinigung und Swissmedic, Version 1.6.2016. Conditions for Reimbursement by Health Insurance Are Set Forth in Article 71a Federal Ordinnance on Health Insurance (Krankenversicherungsverordnung, KVV, SR 832.102). Available online: www.kantonsapotheker.ch/fileadmin/docs/public/kav/2_Leitlinien___Positionspapiere/0007_anforderungen_an_den_off-label-use.pdf (accessed on 9 June 2023).
- Drugs and Lactation Database: Teriflunomid. Available online: www.ncbi.nlm.nih.gov/books/NBK500734/ (accessed on 24 April 2023).
- European Medicines Agency (EMA). Aubagio: Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/aubagio-epar-product-information_en.pdf (accessed on 2 January 2021).
- U.S. Food and Drug Administration. Aubagio Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/202992s003lbl.pdf (accessed on 12 July 2020).
- Hellwig, K.; Tokic, M.; Thiel, S.; Hemat, S.; Timmesfeld, N.; Ciplea, A.I.; Gold, R.; Langer-Gould, A.M. Multiple Sclerosis Disease Activity and Disability Following Cessation of Fingolimod for Pregnancy. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200110. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, K.; Thiel, S.; Haben, S.; Ciplea, A.I.; Kurzeja, A. Glatiramer Acetate Or IFN-β Bridging Therapy in Women With Relapsing Multiple Sclerosis Planning a Pregnancy. Neurodegener. Dis. Manag. 2023, 13, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Simister, N.E. Placental transport of immunoglobulin G. Vaccine 2003, 21, 3365–3369. [Google Scholar] [CrossRef] [PubMed]
- Palmeira, P.; Quinello, C.; Silveira-Lessa, A.L.; Zago, C.A.; Carneiro-Sampaio, M. IgG Placental Transfer in Healthy and Pathological Pregnancies. J. Immunol. Res. 2011, 2012, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ellinger, I.; Fuchs, R. HFcRn-mediated transplacental immunoglobulin G transport: Protection of and threat to the human fetus and newborn. Wien. Med. Wochenschr. 2012, 162, 207–213. [Google Scholar] [CrossRef]
- Langer, P. Differences in the Composition of Colostrum and Milk in Eutherians Reflect Differences in Immunoglobulin Transfer. J. Mammal. 2009, 90, 332–339. [Google Scholar] [CrossRef]
- Hurley, W.L.; Theil, P.K. Perspectives on Immunoglobulins in Colostrum and Milk. Nutrients 2011, 3, 442–474. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.; Sauberan, J. Modeling drug passage into human milk. Clin. Pharmacol. Ther. 2016, 100, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Rog, D.; Ovadia, C.; Murray, K.; Hughes, S.; Ford, H.L.; Pearson, O.R.; White, S.; Bonham, N.; Mathews, J.; et al. Anti-CD20 therapies in pregnancy and breast feeding: A review and ABN guidelines. Pr. Neurol. 2023, 23, 6–14. [Google Scholar] [CrossRef]
- LaHue, S.C.; Anderson, A.; Krysko, K.M.; Rutatangwa, A.; Dorsey, M.J.; Hale, T.; Mahadevan, U.; Rogers, E.E.; Rosenstein, M.G.; Bove, R. Transfer of monoclonal antibodies into breastmilk in neurologic and non-neurologic diseases. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e769. [Google Scholar] [CrossRef] [PubMed]
- Bsteh, G.; Algrang, L.; Hegen, H.; Auer, M.; Wurth, S.; Di Pauli, F.; Deisenhammer, F.; Berger, T. Pregnancy and multiple sclerosis in the DMT era: A cohort study in Western Austria. Mult. Scler. J. 2020, 26, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Krysko, K.M.; Dobson, R.; Alroughani, R.; Amato, M.P.; Bove, R.; Ciplea, A.I.; Fragoso, Y.; Houtchens, M.; Jokubaitis, V.G.; Magyari, M.; et al. Family planning considerations in people with multiple sclerosis. Lancet Neurol. 2023, 22, 350–366. [Google Scholar] [CrossRef]
- Foley, J.F.; Defer, G.; Ryerson, L.Z.; A Cohen, J.; Arnold, D.L.; Butzkueven, H.; Cutter, G.; Giovannoni, G.; Killestein, J.; Wiendl, H.; et al. Comparison of switching to 6-week dosing of natalizumab versus continuing with 4-week dosing in patients with relapsing-remitting multiple sclerosis (NOVA): A randomised, controlled, open-label, phase 3b trial. Lancet Neurol. 2022, 21, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Kompetenznetz Multiple Sklerose: Qualitätshandbuch MS/NMOSD. 2018. Available online: https://www.kompetenznetz-multiplesklerose.de/wp-content/uploads/2018/11/KKNMS_Qualit%C3%A4tshandbuch-MS-NMOSD_2018_webfrei.pdf (accessed on 2 January 2021).
- Ragavan, S.; Elhelw, O.; Majeed, W.; Kyriacou, A.; Syed, A. Alemtuzumab-Induced Autoimmune Thyroid Dysfunction. Cureus 2022, 14, e22751. [Google Scholar] [CrossRef]
- Canibaño, B.; Deleu, D.; Mesraoua, B.; Melikyan, G.; Ibrahim, F.; Hanssens, Y. Pregnancy-related issues in women with multiple sclerosis: An evidence-based review with practical recommendations. J. Drug Assess. 2020, 9, 20–36. [Google Scholar] [CrossRef]
- Swissmedic Authorisierte Fachinformation: Glatiramyl. Available online: https://compendium.ch/product/1328673-glatiramyl-inj-los-20-mg-ml (accessed on 23 May 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graber, M.; Panchaud, A.; Legardeur, H.; Derfuss, T.; Friedli, C.; Gobbi, C.; Zecca, C.; Granziera, C.; Jelcic, I.; Hammer, H.N.; et al. Recommendations for the Treatment of Multiple Sclerosis in Family Planning, Pregnancy and Lactation in Switzerland: Immunotherapy. Clin. Transl. Neurosci. 2024, 8, 26. https://doi.org/10.3390/ctn8030026
Graber M, Panchaud A, Legardeur H, Derfuss T, Friedli C, Gobbi C, Zecca C, Granziera C, Jelcic I, Hammer HN, et al. Recommendations for the Treatment of Multiple Sclerosis in Family Planning, Pregnancy and Lactation in Switzerland: Immunotherapy. Clinical and Translational Neuroscience. 2024; 8(3):26. https://doi.org/10.3390/ctn8030026
Chicago/Turabian StyleGraber, Michael, Alice Panchaud, Helene Legardeur, Tobias Derfuss, Christoph Friedli, Claudio Gobbi, Chiara Zecca, Cristina Granziera, Ilijas Jelcic, Helly Noemi Hammer, and et al. 2024. "Recommendations for the Treatment of Multiple Sclerosis in Family Planning, Pregnancy and Lactation in Switzerland: Immunotherapy" Clinical and Translational Neuroscience 8, no. 3: 26. https://doi.org/10.3390/ctn8030026
APA StyleGraber, M., Panchaud, A., Legardeur, H., Derfuss, T., Friedli, C., Gobbi, C., Zecca, C., Granziera, C., Jelcic, I., Hammer, H. N., Bigi, S., Diem, L., Kamber, N., Kana, V., Kuhle, J., Müller, S., Salmen, A., Hoepner, R., Do Canto, P., ... Chan, A., on behalf of the Medico-Scientific Advisory Board of the Swiss Multiple Sclerosis Society, the Swiss Neurological Society and the Swiss Society of Gynecology and Obstetrics. (2024). Recommendations for the Treatment of Multiple Sclerosis in Family Planning, Pregnancy and Lactation in Switzerland: Immunotherapy. Clinical and Translational Neuroscience, 8(3), 26. https://doi.org/10.3390/ctn8030026