Technology-Based Neurorehabilitation in Parkinson’s Disease—A Narrative Review
Abstract
:1. Introduction
2. Brain–Computer Interface
3. Exergaming/Virtual-Reality-Based Exercises
4. Robot-Assisted Therapies
5. Wearables
6. Limitations of this Review
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mahalakshmi, B.; Maurya, N.; Lee, S.-D.; Kumar, V.B. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int. J. Mol. Sci. 2020, 21, 5895. [Google Scholar] [CrossRef]
- Daly, J.J.; Wolpaw, J. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008, 7, 1032–1043. [Google Scholar] [CrossRef]
- McFarland, D.J.; Daly, J.; Boulay, C.; Parvaz, M.A. Therapeutic applications of BCI technologies. Brain-Comput. Interfaces 2017, 4, 37–52. [Google Scholar] [CrossRef]
- Miladinovic, A.; Ajcevic, M.; Busan, P.; Jarmolowska, J.; Silveri, G.; Deodato, M.; Mezzarobba, S.; Battaglini, P.P.; Accardo, A. Evaluation of Motor Imagery-Based BCI methods in neurorehabilitation of Parkinson’s Disease patients. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montréal, QC, Canada, 20–24 July 2020; Volume 2020, pp. 3058–3061. [Google Scholar]
- He, S.; Syed, E.; Torrecillos, F.; Tinkhauser, G.; Fischer, P.; Pogosyan, A.; Pereira, E.; Ashkan, K.; Hasegawa, H.; Brown, P.; et al. Beta Oscillation-Targeted Neurofeedback Training Based on Subthalamic LFPs in Parkinsonian Patients. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 81–84. [Google Scholar]
- Bichsel, O.; Stieglitz, L.H.; Oertel, M.F.; Baumann, C.R.; Gassert, R.; Imbach, L.L. Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements. Sci. Rep. 2021, 11, 7973. [Google Scholar]
- Mirelman, A.; Maidan, I.; Herman, T.; Deutsch, J.E.; Giladi, N.; Hausdorff, J.M. Virtual reality for gait training: Can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? J. Gerontol. Ser. A 2011, 66, 234–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Kolk, N.M.; Overeem, S.; de Vries, N.M.; Kessels, R.P.; Donders, R.; Brouwer, M.; Berg, D.; Post, B.; Bloem, B.R. Design of the Park-in-Shape sudy: A phase II double blind randomized controlled trial evaluating the effects of exercise on motor and non-motor symptoms in Parkinson’s disease. BMC Neurol. 2015, 15, 56. [Google Scholar] [CrossRef] [Green Version]
- van der Kolk, N.M.; de Vries, N.M.; Kessels, R.P.; Joosten, H.; Zwinderman, A.H.; Post, B.; Bloem, B.R. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: A double-blind, randomised controlled trial. Lancet Neurol. 2019, 18, 998–1008. [Google Scholar] [CrossRef] [Green Version]
- van den Heuvel, M.R.; Kwakkel, G.; Beek, P.J.; Berendse, H.W.; Daffertshofer, A.; van Wegen, E.E. Effects of augmented visual feedback during balance training in Parkinson’s disease: A pilot randomized clinical trial. Parkinsonism Relat. Disord. 2014, 20, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Shih, M.-C.; Wang, R.-Y.; Cheng, S.-J.; Yang, Y.-R. Effects of a balance-based exergaming intervention using the Kinect sensor on posture stability in individuals with Parkinson’s disease: A single-blinded randomized controlled trial. J. Neuroeng. Rehabilitation 2016, 13, 78. [Google Scholar] [CrossRef] [Green Version]
- Mirelman, A.; Rochester, L.; Maidan, I.; Del Din, S.; Alcock, L.; Nieuwhof, F.; Rikkert, M.O.; Bloem, B.R.; Pelosin, E.; Avanzino, L.; et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): A randomised controlled trial. Lancet 2016, 388, 1170–1182. [Google Scholar] [CrossRef] [Green Version]
- Oña, E.D.; Jardón, A.; Cuesta-Gómez, A.; Sánchez-Herrera-Baeza, P.; Cano-De-La-Cuerda, R.; Balaguer, C. Validity of a Fully-Immersive VR-Based Version of the Box and Blocks Test for Upper Limb Function Assessment in Parkinson’s Disease. Sensors 2020, 20, 2773. [Google Scholar] [CrossRef] [PubMed]
- Esculier, J.F.; Vaudrin, J.; Beriault, P.; Gagnon, K.; Tremblay, L.E. Home-based balance training programme using Wii Fit with balance board for Parkinsons’s disease: A pilot study. J. Rehabil. Med. 2012, 44, 144–150. [Google Scholar]
- Mhatre, P.V.; Vilares, I.; Stibb, S.M.; Albert, M.V.; Pickering, L.; Marciniak, C.M.; Kording, K.; Toledo, S. Wii Fit balance board playing improves balance and gait in Parkinson disease. PM R 2013, 5, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Zalecki, T.; Surówka, A.D.; Gorecka-Mazur, A.; Pietraszko, W.; Novak, P.; Moskala, M.; Krygowska-Wajs, A. Visual feedback training using WII Fit improves balance in Parkinson’s disease. Folia Med. Crac. 2013, 53, 65–78. [Google Scholar]
- Pompeu, J.E.; Arduini, L.A.; Botelho, A.R.; Fonseca, M.B.F.; Pompeu, S.A.A.; Torriani-Pasin, C.; Deutsch, J.E. Feasibility, safety and outcomes of playing Kinect Adventures! for people with Parkinson’s disease: A pilot study. Physiotherapy 2014, 100, 162–168. [Google Scholar] [CrossRef]
- Marotta, N.; Demeco, A.; Indino, A.; De Scorpio, G.; Moggio, L.; Ammendolia, A. Nintendo WiiTM versus Xbox KinectTM for functional locomotion in people with Parkinson’s disease: A systematic review and network meta-analysis. Disabil. Rehabil. 2020, 1–6. [Google Scholar] [CrossRef]
- Dockx, K.; Bekkers, E.M.; Van den Bergh, V.; Ginis, P.; Rochester, L.; Hausdorff, J.M.; Mirelman, A.; Nieuwboer, A. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst. Rev. 2016, 12, CD010760. [Google Scholar] [CrossRef]
- Lei, C.; Sunzi, K.; Dai, F.; Liu, X.; Wang, Y.; Zhang, B.; He, L.; Ju, M. Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson’s disease: A systematic review. PLoS ONE 2019, 14, e0224819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Agundez, A.; Folkerts, A.-K.; Konrad, R.; Caserman, P.; Tregel, T.; Goosses, M.; Göbel, S.; Kalbe, E. Recent advances in rehabilitation for Parkinson’s Disease with Exergames: A Systematic Review. J. Neuroeng. Rehabil. 2019, 16, 17. [Google Scholar] [CrossRef]
- Canning, C.G.; Allen, N.E.; Nackaerts, E.; Paul, S.S.; Nieuwboer, A.; Gilat, M. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat. Rev. Neurol. 2020, 16, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.C.; Chang, V.C.; Gianfrancesco, M.A.; Friedman, J.H.; Patterson, T.S.; Benedicto, D.F. Reduction of freezing of gait in Parkinson’s disease by repetitive robot-assisted treadmill training: A pilot study. J. Neuroeng. Rehabil. 2010, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Barbe, M.T.; Cepuran, F.; Amarell, M.; Schoenau, E.; Timmermann, L. Long-term effect of robot-assisted treadmill walking reduces freezing of gait in Parkinson’s disease patients: A pilot study. J. Neurol. 2013, 260, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Carda, S.; Invernizzi, M.; Baricich, A.; Comi, C.; Croquelois, A.; Cisari, C. Robotic gait training is not superior to conventional treadmill training in Parkinson disease: A single-blind randomized controlled trial. Neurorehabilit. Neural Repair 2012, 26, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Picelli, A.; Melotti, C.; Origano, F.; Waldner, A.; Fiaschi, A.; Santilli, V.; Smania, N. Robot-assisted gait training in patients with Parkinson disease: A randomized controlled trial. Neurorehabilit. Neural Repair 2012, 26, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Picelli, A.; Melotti, C.; Origano, F.; Waldner, A.; Gimigliano, R.; Smania, N. Does robotic gait training improve balance in Parkinson’s disease? A randomized controlled trial. Parkinsonism Relat. Disord. 2012, 18, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Picelli, A.; Melotti, C.; Origano, F.; Neri, R.; Waldner, A.; Smania, N. Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson’s disease: A randomized controlled trial. Parkinsonism Relat. Disord. 2013, 19, 605–610. [Google Scholar] [CrossRef]
- Picelli, A.; Melotti, C.; Origano, F.; Neri, R.; Verzè, E.; Gandolfi, M.; Waldner, A.; Smania, N. Robot-assisted gait training is not superior to balance training for improving postural instability in patients with mild to moderate Parkinson’s disease: A single-blind randomized controlled trial. Clin. Rehabil. 2015, 29, 339–347. [Google Scholar] [CrossRef]
- Pilleri, M.; Weis, L.; Zabeo, L.; Koutsikos, K.; Biundo, R.; Facchini, S.; Rossi, S.; Masiero, S.; Antonini, A. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease. J. Neurol. Sci. 2015, 355, 75–78. [Google Scholar] [CrossRef]
- Sale, P.; De Pandis, M.F.; Le Pera, D.; Sova, I.; Cimolin, V.; Ancillao, A.; Albertini, G.; Galli, M.; Stocchi, F.; Franceschini, M. Robot-assisted walking training for individuals with Parkinson’s disease: A pilot randomized controlled trial. BMC Neurol. 2013, 13, 50. [Google Scholar] [CrossRef] [Green Version]
- Capecci, M.; Pournajaf, S.; Galafate, D.; Sale, P.; Le Pera, D.; Goffredo, M.; De Pandis, M.F.; Andrenelli, E.; Pennacchioni, M.; Ceravolo, M.G.; et al. Clinical effects of robot-assisted gait training and treadmill training for Parkinson’s disease. A randomized controlled trial. Ann. Phys. Rehabil. Med. 2019, 62, 303–312. [Google Scholar] [CrossRef]
- Kang, M.-G.; Yun, S.J.; Shin, H.I.; Kim, E.; Lee, H.H.; Oh, B.-M.; Gil Seo, H. Effects of robot-assisted gait training in patients with Parkinson’s disease: Study protocol for a randomized controlled trial. Trials 2019, 20, 15. [Google Scholar] [CrossRef]
- Picelli, A.; Tamburin, S.; Passuello, M.; Waldner, A.; Smania, N. Robot-assisted arm training in patients with Parkinson’s disease: A pilot study. J. Neuroeng. Rehabil. 2014, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Kubota, K.J.; Chen, J.A.; Little, M.A. Machine learning for large-scale wearable sensor data in Parkinson’s disease: Concepts, promises, pitfalls, and futures. Mov. Disord. 2016, 31, 1314–1326. [Google Scholar] [CrossRef]
- Espay, A.J.; Bonato, P.; Nahab, F.B.; Maetzler, W.; Dean, J.M.; Klucken, J.; Eskofier, B.M.; Merola, A.; Horak, F.; Lang, A.E.; et al. Technology in Parkinson’s disease: Challenges and opportunities. Mov. Disord. 2016, 31, 1272–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godinho, C.; Domingos, J.; Cunha, G.; Santos, A.T.; Fernandes, R.M.; Abreu, D.; Gonçalves, N.; Matthews, H.; Isaacs, T.; Duffen, J.; et al. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J. Neuroeng. Rehabil. 2016, 13, 24. [Google Scholar] [CrossRef] [Green Version]
- Odin, P.; Chaudhuri, K.R.; Volkmann, J.; Antonini, A.; Storch, A.; Dietrichs, E.; Pirtošek, Z.; Henriksen, T.; Horne, M.; Devos, D.; et al. Viewpoint and practical recommendations from a movement disorder specialist panel on objective measurement in the clinical management of Parkinson’s disease. Npj Parkinson’s Dis. 2018, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; Hausdorff, J.M.; Sánchez-Ferro, Á.; Klucken, J.; Merola, A.; Bonato, P.; Paul, S.S.; Horak, F.B.; Vizcarra, J.A.; Mestre, T.A.; et al. A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease obtained using mobile health technologies. Mov. Disord. 2019, 34, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Pahwa, R.; Bergquist, F.; Horne, M.; Minshall, M.E. Objective measurement in Parkinson’s disease: A descriptive analysis of Parkinson’s symptom scores from a large population of patients across the world using the Personal KinetiGraph®. J. Clin. Mov. Disord. 2020, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.; Rolinski, M.; McNaney, R.; Jones, B.; Rochester, L.; Maetzler, W.; Craddock, I.; Whone, A.L. Systematic Review Looking at the Use of Technology to Measure Free-Living Symptom and Activity Outcomes in Parkinson’s Disease in the Home or a Home-like Environment. J. Parkinson’s Dis. 2020, 10, 429–454. [Google Scholar] [CrossRef] [Green Version]
Study | Population | Sample Size | Intervention | Outcome(s) |
---|---|---|---|---|
He et al., 2019 | STN-stimulated PD patients | n = 3 | Neurofeedback | Downregulation of beta oscillations |
Bichsel et al., 2021 | STN-stimulated PD patients | n = 10 | Neurofeedback | Regulation of beta oscillations |
Mirelman et al., 2011 | PD patients with gait disorder | n = 20 | Treadmill training + VR | Gait and cognitive function |
Mirelman et., 2016(V-TIME) | PD patients with falls | n = 130 | Treadmill training + VR | Number of falls |
Shih et al., 2016 | PD patients (H&Y stage 1–3) | n = 20 | Balance-based exergaming | Postural stability and functional balance |
van der Kolk, 2019 (Park-in-Shape) | PD patients (H&Y stage 1–2) | n = 130 | Home trainer + exergaming | MDS-UPDRS during Off |
Esculier et al., 2012 | Patients with moderate PD | n = 10 | Balance training with WiiTM Fit | Balance and mobility |
Mhatre et al., 2013 | PD patients (H&Y stage 2.5–3) | n = 10 | Balance training with WiiTM Fit | Balance and gait |
Pompeu et al., 2014 | PD patients (H&Y stage 2–3) | n = 7 | Kinect Adventures!TM | Game scores |
Lo et al., 2010 | PD patients with FOG | n = 4 | RAGT (Lokomat®) | FOG |
Pilleri et al., 2015 | PD patients with FOG | n = 18 | RAGT (Gait Trainer GT) | FOG |
Capecci et al., 2017 | PD patients (H&Y stage ≥2) | n = 96 | RAGT (G-EO robot) | FOG |
Pahwa et al., 2020 | PD patients | n = 27.834 | Observational | Personal Kinetigraph® scores |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Möller, J.C.; Zutter, D.; Riener, R. Technology-Based Neurorehabilitation in Parkinson’s Disease—A Narrative Review. Clin. Transl. Neurosci. 2021, 5, 23. https://doi.org/10.3390/ctn5030023
Möller JC, Zutter D, Riener R. Technology-Based Neurorehabilitation in Parkinson’s Disease—A Narrative Review. Clinical and Translational Neuroscience. 2021; 5(3):23. https://doi.org/10.3390/ctn5030023
Chicago/Turabian StyleMöller, Jens Carsten, Daniel Zutter, and Robert Riener. 2021. "Technology-Based Neurorehabilitation in Parkinson’s Disease—A Narrative Review" Clinical and Translational Neuroscience 5, no. 3: 23. https://doi.org/10.3390/ctn5030023
APA StyleMöller, J. C., Zutter, D., & Riener, R. (2021). Technology-Based Neurorehabilitation in Parkinson’s Disease—A Narrative Review. Clinical and Translational Neuroscience, 5(3), 23. https://doi.org/10.3390/ctn5030023