Synthesis of Chitosan Nanocomposite Materials Grafted with MWCNTs for the Removal of Tetracycline Pharmaceutical from Water Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functionalisation of MWCNTs
2.3. Preparation of Chitosan Beads
2.4. Preparation of 1% Functionalised MWCNT–Chitosan Composite
2.5. Characterisation
2.6. Batch Adsorption Studies of Tetracycline
- Co (mg/L) is the initial concentration of the tetracycline concentration.
- W (g/L) is the concentration of the adsorbent.
- C (e) (mg/L) is the equilibrium concentration of tetracycline.
- V (L) is the volume of tetracycline solution.
Adsorption Mechanism
2.7. Reusability
2.8. Ionic Strength
2.9. Binary System
2.10. Kinetic Modeling of Adsorption
- qt is the adsorbed adsorbate at time (t) (mg/g);
- qe represents the equilibrium adsorption amount (mg/g);
- K1 is the rate constant of adsorption (min−1), which is found by plotting ln (qe − qt) versus time (t).
- K2 is the rate constant for pseudo-second-order sorption (g/mg⋅min);
- qt represents the amount of adsorbed adsorbate at time t (mg/g);
- qe represents the equilibrium amount of adsorption (mg/g).
2.11. Adsorption Isotherm Modeling
- qe (mg/g) represents the amount of adsorption at equilibrium;
- Ce (mg/L) denotes the equilibrium concentration of tetracycline remaining in the solution;
- qmax (mg/g) refers to the theoretical maximum adsorption capacity or monolayer saturation capacity;
- b (L/mg) is the Langmuir constant associated with adsorption equilibrium.
- qe (mg/g) indicates the amount of adsorption at equilibrium;
- Ce mg/L) represents the equilibrium concentration of tetracycline remaining in the solution. (mg/L);
- Kf (mg·g−1) is the Freundlich constant that represents the adsorption capacity;
- n is a dimensionless Freundlich constant that describes the desorption intensity.
2.12. Evaluation of Thermodynamic Parameters
- Ce (mg/L) represents the equilibrium concentration of the tetracycline remaining in the solution;
- Cad is the concentration of the metal in the adsorbent at equilibrium (mg/L);
- ΔG° is the Gibbs free energy (kJ/mol);
- ΔH° represents the standard enthalpy (kJ/mol);
- ΔS° is the standard entropy (J/mol/K).
3. Results
3.1. Characterisation of Composite Membrane
3.1.1. UV–Visible Spectroscopy
3.1.2. Fourier Transform Infrared (FTIR) Spectroscopy
3.1.3. Scanning Electron Microscopy and Energy-Dispersive Spectroscopy
3.1.4. X-Ray Diffraction (XRD)
3.1.5. Thermogravimetric Analysis (TGA)
3.1.6. BET Studies
3.2. Adsorption Studies
3.2.1. Effect of pH
3.2.2. Effect of Dosage
3.2.3. Effect of Concentration
3.2.4. Effect of Contact Time
3.3. Reusability Studies
3.4. Effect of Ionic Strength
3.5. Effect of a Binary System
3.6. Adsorption Kinetics
3.7. Adsorption Isotherm
3.8. Thermodynamic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edokpayi, J.N.; Rogawski, E.T.; Kahler, D.M.; Hill, C.L.; Reynolds, C.; Nyathi, E.; Smith, J.A.; Odiyo, J.O.; Samie, A.; Bessong, P.; et al. Challenges to Sustainable Safe Drinking Water: A Case Study Ofwater Quality and Use across Seasons in Rural Communities in Limpopo Province, South Africa. Water 2018, 10, 159. [Google Scholar] [CrossRef]
- Kümmerer, K. The Presence of Pharmaceuticals in the Environment Due to Human Use—Present Knowledge and Future Challenges. J. Environ. Manage. 2009, 90, 2354–2366. [Google Scholar] [CrossRef] [PubMed]
- Kaczorowska, M.A.; Bożejewicz, D. The Application of Chitosan-Based Adsorbents for the Removal of Hazardous Pollutants from Aqueous Solutions—A Review. Sustain 2024, 16, 2615. [Google Scholar] [CrossRef]
- Munwana, A.; Macevele, L.E. Diclofenac Sodium Removal from Water Samples Using Chitosan Nanocomposites Modified with Multi-Walled Carbon Nanotubes. Dig. J. Nanomater. Biostructures 2025, 20, 227–238. [Google Scholar] [CrossRef]
- de Aquino, S.F.; Brandt, E.M.F.; Bottrel, S.E.C.; Gomes, F.B.R.; Silva, S.d.Q. Occurrence of Pharmaceuticals and Endocrine Disrupting Compounds in Brazilian Water and the Risks They May Represent to Human Health. Int. J. Environ. Res. Public Health 2021, 18, 11765. [Google Scholar] [CrossRef]
- Arumugam, A.; Lee, K.E.; Ng, P.Y.; Shamsuddin, A.S.; Zulkifli, A.; Goh, T.L. Pharmaceuticals as Emerging Pollutants: Implications for Water Resource Management in Malaysia. Emerg. Contam. 2025, 11, 100470. [Google Scholar] [CrossRef]
- Scott, T.M.; Phillips, P.J.; Kolpin, D.W.; Colella, K.M.; Furlong, E.T.; Foreman, W.T.; Gray, J.L. Pharmaceutical Manufacturing Facility Discharges Can Substantially Increase the Pharmaceutical Load to U.S. Wastewaters. Sci. Total Environ. 2018, 636, 69–79. [Google Scholar] [CrossRef]
- Mathers, J.J.; Flick, S.C.; Cox, L.A. Longer-Duration Uses of Tetracyclines and Penicillins in U.S. Food-Producing Animals: Indications and Microbiologic Effects. Environ. Int. 2011, 37, 991–1004. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Ayati, A.; Davoodi, R.; Tanhaei, B.; Karimi, F.; Malekmohammadi, S.; Orooji, Y.; Fu, L.; Sillanpää, M. Recent Advances in Using of Chitosan-Based Adsorbents for Removal of Pharmaceutical Contaminants: A Review. J. Clean. Prod. 2021, 291, 125880. [Google Scholar] [CrossRef]
- Erdem, S.; Öztekin, M.; Sağ Açıkel, Y. Investigation of Tetracycline Removal from Aqueous Solutions Using Halloysite/Chitosan Nanocomposites and Halloysite Nanotubes/Alginate Hydrogel Beads. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100576. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Z.; Wang, Z.; Lin, F.; Li, P.; Liu, J. Preparation of Chitosan-Modified Bentonite and Its Adsorption Performance on Tetracycline. ACS Omega 2023, 8, 19455–19463. [Google Scholar] [CrossRef]
- Bhatt, P.; Joshi, S.; Urper Bayram, G.M.; Khati, P.; Simsek, H. Developments and Application of Chitosan-Based Adsorbents for Wastewater Treatments. Environ. Res. 2023, 226, 115530. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Zhang, H.; Zhao, J.; Liu, H.; Wang, J.; Li, G.; Liang, H. Membrane-Based Technology in Water and Resources Recovery from the Perspective of Water Social Circulation: A Review. Sci. Total Environ. 2024, 908, 168277. [Google Scholar] [CrossRef]
- Awual, M.R.; Khraisheh, M.; Alharthi, N.H.; Luqman, M.; Islam, A.; Rezaul Karim, M.; Rahman, M.M.; Khaleque, M.A. Efficient Detection and Adsorption of Cadmium(II) Ions Using Innovative Nano-Composite Materials. Chem. Eng. J. 2018, 343, 118–127. [Google Scholar] [CrossRef]
- Gkika, D.A.; Mitropoulos, A.C.; Kokkinos, P.; Lambropoulou, D.A.; Kalavrouziotis, I.K.; Bikiaris, D.N.; Kyzas, G.Z. Modified Chitosan Adsorbents in Pharmaceutical Simulated Wastewaters: A Review of the Last Updates. Carbohydr. Polym. Technol. Appl. 2023, 5, 100313. [Google Scholar] [CrossRef]
- Anupam, K.; Dutta, S.; Bhattacharjee, C.; Datta, S. Adsorptive Removal of Chromium (VI) from Aqueous Solution over Powdered Activated Carbon: Optimisation through Response Surface Methodology. Chem. Eng. J. 2011, 173, 135–143. [Google Scholar] [CrossRef]
- Khumalo, S.M.; Bakare, B.F.; Rathilal, S.; Khodakarami, M.; Honaker, R. Single and Multicomponent Adsorption of Amoxicillin, Ciprofloxacin, and Sulfamethoxazole on Chitosan-Carbon Nanotubes Hydrogel Beads from Aqueous Solutions: Kinetics, Isotherms, and Thermodynamic Parameters. J. Hazard. Mater. Adv. 2024, 912, 169519. [Google Scholar] [CrossRef]
- Petrović, M.; Gonzalez, S.; Barceló, D. Analysis and Removal of Emerging Contaminants in Wastewater and Drinking Water. TrAC —Trends Anal. Chem. 2003, 22, 685–696. [Google Scholar] [CrossRef]
- Omran, K.A.; El-Aassar, M.R.; Ibrahim, O.M.; Sharaewy, S.A.; Khalifa, R.E.; Mohamed, F.M. Chitosan/Alginate Nanocomposites Containing Magnetic Nanoparticles and Multi-Wall Carbon Nanotubes for Efficient Iron Sorption. Desalin. Water Treat. 2024, 317, 100294. [Google Scholar] [CrossRef]
- Chandra Dey, S.; Al-Amin, M.; Ur Rashid, T.; Zakir Sultan, M.; Ashaduzzaman, M.; Sarker, M.; Md Shamsuddin, S. Preparation, Characterization and Performance Evaluation of Chitosan As an Adsorbent for Remazol Red. Int. J. Latest Res. Eng. Technol. 2016, 2, 52–62. [Google Scholar]
- Larrude, D.G.; Maia Da Costa, M.E.H.; Freire, F.L. Synthesis and Characterization of Silver Nanoparticle-Multiwalled Carbon Nanotube Composites. J. Nanomater. 2014, 2014, 654068. [Google Scholar] [CrossRef]
- Rananga, L.E.; Magadzu, T. Comparative Studies of Silver Doped Carbon Nanotubes and β-Cyclodextrin for Water Disinfection. Dig. J. Nanomater. Biostructures 2015, 10, 831–836. [Google Scholar]
- Gonçalves, L.P.L.; Meledina, M.; Meledin, A.; Petrovykh, D.Y.; Sousa, J.P.S.; Soares, O.S.G.P.; Kolen’ko, Y.V.; Pereira, M.F.R. Understanding the Importance of N−doping for CNT-Supported Ni Catalysts for CO2 Methanation. Carbon 2022, 195, 35–43. [Google Scholar] [CrossRef]
- Babel, S.; Kurniawan, T.A. Low-Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review. J. Hazard. Mater. 2003, 97, 219–243. [Google Scholar] [CrossRef]
- Słomkiewicz, P.M.; Dołęgowska, S.; Wideł, D.; Piekacz, K. Adsorption Isotherms for Tetracycline Removal from Water Using Carbon-Mineral Composites Determined by Inverse Liquid Chromatography. Desalin. Water Treat. 2025, 322, 7–12. [Google Scholar] [CrossRef]
- Yu, H.; Gao, L.; Zhang, X.; Zhang, S.; Chi, W.; Zhang, L.; Li, J.; Tian, Y.; Cai, H.; Zhang, Y. Enhanced Removal of Tetracycline from Water Using MgO-Modified g-C3N4 Composite: Synthesis Optimization and Mechanism Investigation. J. Water Process Eng. 2025, 71, 107176. [Google Scholar] [CrossRef]
- Sağlam, S.; Türk, F.N.; Arslanoğlu, H. Tetracycline (TC) Removal from Wastewater with Activated Carbon (AC) Obtained from Waste Grape Marc: Activated Carbon Characterization and Adsorption Mechanism. Environ. Sci. Pollut. Res. 2024, 31, 33904–33923. [Google Scholar] [CrossRef] [PubMed]
- Khazaie, A.; Kia, H.; Moniri, E.; Hassani, A.H.; Miralinaghi, M. Adsorption Modeling of Tetracycline Removal by Multi-Walled Carbon Nanotube Functionalized with Aspartic Acid and Poly-Pyrrole Using Bayesian Optimized Artificial Neural Network. J. Taiwan Inst. Chem. Eng. 2023, 144, 104743. [Google Scholar] [CrossRef]
- Chang, J.; Shen, Z.; Hu, X.; Schulman, E.; Cui, C.; Guo, Q.; Tian, H. Adsorption of Tetracycline by Shrimp Shell Waste from Aqueous Solutions: Adsorption Isotherm, Kinetics Modeling, and Mechanism. ACS Omega 2020, 5, 3467–3477. [Google Scholar] [CrossRef]
- Hamoudi, S.A.; Hamdi, B.; Brendlé, J. Tetracycline Removal from Water by Adsorption on Geomaterial, Activated Carbon and Clay Adsorbents. Ecol. Chem. Eng. S 2021, 28, 303–328. [Google Scholar] [CrossRef]
- Adsorbent, C.M.; Bruckmann, S.; Schnorr, C.E.; Salles, R.; Nunes, F.B.; Baumann, L.; Müller, E.I.; Silva, L.F.O.; Dotto, G.L.; Rodrigo, C.; et al. Highly Efficient Adsorption of Tetracycline Using. Polymers 2022, 14, 4854. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Zhu, Y.; Yuan, S.; Wang, F.; Tang, H.; Bao, Z.; Zhou, H.; Chen, Y. Adsorption of Tetracycline with Reduced Graphene Oxide Decorated with MnFe2O4 Nanoparticles. Nanoscale Res. Lett. 2018, 13, 396. [Google Scholar] [CrossRef]
- Dong, Y.; Yi, C.; Yang, S.; Wang, J.; Chen, P.; Liu, X.; Du, W.; Wang, S.; Liu, B.F. A Substrate-Free Graphene Oxide-Based Micromotor for Rapid Adsorption of Antibiotics. Nanoscale 2019, 11, 4562–4570. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Zeng, G.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Liu, Y.; Hu, L.; Wan, J.; Zhou, C.; et al. Adsorption of Tetracycline Antibiotics from Aqueous Solutions on Nanocomposite Multi-Walled Carbon Nanotube Functionalized MIL-53(Fe) as New Adsorbent. Sci. Total Environ. 2018, 627, 235–244. [Google Scholar] [CrossRef]
- Ahamad, T.; Ruksana; Chaudhary, A.A.; Naushad, M.; Alshehri, S.M. Fabrication of MnFe2O4 Nanoparticles Embedded Chitosan-Diphenylureaformaldehyde Resin for the Removal of Tetracycline from Aqueous Solution. Int. J. Biol. Macromol. 2019, 134, 180–188. [Google Scholar] [CrossRef]
- Ren, X.; Yang, L.; Liu, M. Kinetic and Thermodynamic Studies of Acid Scarlet 3r Adsorption onto Low-Cost Adsorbent Developed from Sludge and Straw. Chinese J. Chem. Eng. 2014, 22, 208–213. [Google Scholar] [CrossRef]
- WANG, C.; JIAN, J.-J. Degradation and Detoxicity of Tetracycline by an Enhanced Sonolysis. J. Water Environ. Technol. 2015, 13, 325–334. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Osman, O.; Eid, K.; Alashkar, E.; Okasha, A.; Atta, D.; Eid, M.; Aziz, Z.A.; Fakhry, A. FTIR Spectroscopy of Natural Bio-Polymers Blends. Appl. Sci. 2014, 4, 816–824. [Google Scholar]
- Salam, M.A.; Burk, R. Synthesis and Characterization of Multi-Walled Carbon Nanotubes Modified with Octadecylamine and Polyethylene Glycol. Arab. J. Chem. 2017, 10, S921–S927. [Google Scholar] [CrossRef]
- Osler, K.; Twala, N.; Oluwasina, O.O.; Daramola, M.O. Synthesis and Performance Evaluation of Chitosan/Carbon Nanotube (Chitosan/MWCNT) Composite Adsorbent for Post- Combustion Carbon Dioxide Capture. Energy Procedia 2017, 114, 2330–2335. [Google Scholar] [CrossRef]
- Rahmani, O.; Bouzid, B.; Guibadj, A. Extraction and Characterization of Chitin and Chitosan: Applications of Chitosan Nanoparticles in the Adsorption of Copper in an Aqueous Environment. E-Polymers 2017, 17, 383–397. [Google Scholar] [CrossRef]
- Wei, J.; Yan, L.; Zhang, Z.; Hu, B.; Gui, W.; Cui, Y. Carbon Nanotube/Chitosan Hydrogel for Adsorption of Acid Red 73 in Aqueous and Soil Environments. BMC Chem. 2023, 17, 104. [Google Scholar] [CrossRef]
- Gao, F.; Xu, Z.; Dai, Y. Removal of Tetracycline from Wastewater Using Magnetic Biochar: A Comparative Study of Performance Based on the Preparation Method. Environ. Technol. Innov. 2021, 24, 101916. [Google Scholar] [CrossRef]
- Jayakumar, R.; Prabaharan, M.; Nair, S.V.; Tamura, H. Novel Chitin and Chitosan Nanofibers in Biomedical Applications. Biotechnol. Adv. 2010, 28, 142–150. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, Z. Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. J. Phys. Chem. C 2011, 115, 11170–11176. [Google Scholar] [CrossRef]
- Sobh, R.A.; Nasr, H.E.S.; Mohamed, W.S. Formulation and in Vitro Characterization of Anticancer Drugs Encapsulated Chitosan/Multi-Walled Carbon Nanotube Nanocomposites. J. Appl. Pharm. Sci. 2019, 9, 32–40. [Google Scholar] [CrossRef]
- Lv, W.; Shi, K.; Li, L.; Shao, S. Nitrogen-Doped Multiwalled Carbon Nanotubes and Their Electrocatalysis towards Oxidation of NO. Microchim. Acta 2010, 170, 91–98. [Google Scholar] [CrossRef]
- Mkhondo, N.B.; Magadzu, T. Effects of Different Acid-Treatment on the Nanostructure and Performance of Carbon Nanotubes in Electrochemical Hydrogen Storage. Dig. J. Nanomater. Biostructures 2014, 9, 1331–1338. [Google Scholar]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Jin, J.; Yang, Z.; Xiong, W.; Zhou, Y.; Xu, R.; Zhang, Y.; Cao, J.; Li, X.; Zhou, C. Cu and Co Nanoparticles Co-Doped MIL-101 as a Novel Adsorbent for Efficient Removal of Tetracycline from Aqueous Solutions. Sci. Total Environ. 2019, 650, 408–418. [Google Scholar] [CrossRef]
- Zhao, W.; Hao, C.; Guo, Y.; Shao, W.; Tian, Y.; Zhao, P. Optimization of Adsorption Conditions Using Response Surface Methodology for Tetracycline Removal by MnFe2O4/Multi-Wall Carbon Nanotubes. Water 2023, 15, 2392. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Y.; Deng, H.; Zhang, Z.; Wang, J.J.; Shaheen, S.M.; Xiao, R.; Rinklebe, J.; Xi, B.; He, X.; et al. Removing Tetracycline and Hg(II) with Ball-Milled Magnetic Nanobiochar and its Potential on Polluted Irrigation Water Reclamation. J. Hazard. Mater. 2020, 384, 121095. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Huang, D.; Zeng, G.; Wan, J.; Xue, W.; Wen, X.; Liu, X.; Chen, S.; Li, J.; Liu, C.; et al. Decontamination of Lead and Tetracycline from Aqueous Solution by a Promising Carbonaceous Nanocomposite: Interaction and Mechanisms Insight. Bioresour. Technol. 2019, 283, 277–285. [Google Scholar] [CrossRef]
- Khodaie, M.; Ghasemi, N.; Moradi, B.; Rahimi, M. Removal of Methylene Blue from Wastewater by Adsorption onto Znclactivated Corn Husk Carbon Equilibrium Studies. J. Chem. 2013, 2013, 383985. [Google Scholar] [CrossRef]
- Laysandra, L.; Ondang, I.J.; Ju, Y.H.; Ariandini, B.H.; Mariska, A.; Soetaredjo, F.E.; Putro, J.N.; Santoso, S.P.; Darsono, F.L.; Ismadji, S. Highly Adsorptive Chitosan/Saponin-Bentonite Composite Film for Removal of Methyl Orange and Cr(VI). Environ. Sci. Pollut. Res. 2019, 26, 5020–5037. [Google Scholar] [CrossRef]
- Ranjbari, S.; Tanhaei, B.; Ayati, A.; Khadempir, S.; Sillanpää, M. Efficient Tetracycline Adsorptive Removal Using Tricaprylmethylammonium Chloride Conjugated Chitosan Hydrogel Beads: Mechanism, Kinetic, Isotherms and Thermodynamic Study. Int. J. Biol. Macromol. 2020, 155, 421–429. [Google Scholar] [CrossRef]
- Paula Fagundes, A.; Felipe Viana da Silva, A.; Bueno de Morais, B.; Lusitâneo Pier Macuvele, D.; Nones, J.; Gracher Riella, H.; Padoin, N.; Soares, C. A Novel Application of Bentonite Modified with Copper Ions in the Tetracycline Adsorption: An Experimental Design Study. Mater. Lett. 2021, 291, 129552. [Google Scholar] [CrossRef]
- Le, T.T.N.; Le, V.T.; Dao, M.U.; Nguyen, Q.V.; Vu, T.T.; Nguyen, M.H.; Tran, D.L.; Le, H.S. Preparation of Magnetic Graphene Oxide/Chitosan Composite Beads for Effective Removal of Heavy Metals and Dyes from Aqueous Solutions. Chem. Eng. Commun. 2019, 206, 1337–1352. [Google Scholar] [CrossRef]
- Istiningrum, R.B.; Tiwow, C.D.; Nuryono; Narsito. Au(III) Selective Adsorption of Quaternary Ammonium-Silica Hybrid in Au/Cu System. Procedia Chem. 2015, 17, 132–138. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, X.; Yang, K.; Cao, Z.; Wang, Z.; Zhou, C.; Baig, S.A.; Xu, X. Adsorption Behavior and Mechanism of Arsenic on Mesoporous Silica Modified by Iron-Manganese Binary Oxide (FeMnOx/SBA-15) from Aqueous Systems. J. Hazard. Mater. 2020, 384, 121229. [Google Scholar] [CrossRef]
- Kumar, P.S.; Ramalingam, S.; Sathyaselvabala, V.; Kirupha, S.D.; Murugesan, A.; Sivanesan, S. Removal of Cadmium(II) from Aqueous Solution by Agricultural Waste Cashew Nut Shell. Korean J. Chem. Eng. 2012, 29, 756–768. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, C.; Li, Y.; Ke, H.; Cheng, G. Efficient Removal of Tetracycline Hydrochloride from Aqueous Solution by Mesoporous Cage MOF-818. SN Appl. Sci. 2020, 2, 669. [Google Scholar] [CrossRef]
- Uzun, I.; Güzel, F. Kinetics and Thermodynamics of the Adsorption of Some Dyestuffs and P-Nitrophenol by Chitosan and MCM-Chitosan from Aqueous Solution. J. Colloid Interface Sci. 2004, 274, 398–412. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Du, Q.; Sun, J.; Jiao, Y.; Yang, G.; Wang, Z.; Xia, Y.; Zhang, W.; Wang, K.; et al. Adsorption of Methylene Blue from Aqueous Solution by Graphene. Colloids Surf. B Biointerfaces 2012, 90, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Al-Kindi, G.Y.; Alnasrawy, S.T. Tetracycline Remove from Synthetic Wastewater by Using Several Methods. J. Ecol. Eng. 2022, 23, 137–148. [Google Scholar] [CrossRef]
- Yang, K.; Lou, Z.; Fu, R.; Zhou, J.; Xu, J.; Baig, S.A.; Xu, X. Multiwalled Carbon Nanotubes Incorporated with or without Amino Groups for Aqueous Pb(II) Removal: Comparison and Mechanism Study. J. Mol. Liq. 2018, 260, 149–158. [Google Scholar] [CrossRef]
- Kumar, R.; Ansari, M.O.; Barakat, M.A. DBSA Doped Polyaniline/Multi-Walled Carbon Nanotubes Composite for High Efficiency Removal of Cr(VI) from Aqueous Solution. Chem. Eng. J. 2013, 228, 748–755. [Google Scholar] [CrossRef]
- Gupta, V.K.; Chandra, R.; Tyagi, I.; Verma, M. Removal of Hexavalent Chromium Ions Using CuO Nanoparticles for Water Purification Applications. J. Colloid Interface Sci. 2016, 478, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Piccin, J.S.; Dotto, G.L.; Pinto, L.A.A. Adsorption Isotherms and Thermochemical Data of FDandC RED N° 40 Binding by Chitosan. Brazilian J. Chem. Eng. 2011, 28, 295–304. [Google Scholar] [CrossRef]
Adsorbent | Adsorption Capacity | Contact Time | References |
---|---|---|---|
Activated carbon | 17.88 mg/g | 400 min | [27] |
MWCNTs doped with polypyrrole | 34.50 mg/g | 60 min | [28] |
Raw shrimp shell waste (SSW) | 229.98 mg/g | 36 h | [29] |
Geo-Material | 12.58 mg/g | 30 min | [30] |
CS·Fe3O4 | 211.21 mg/g | 180 min | [31] |
Natural Iraqi bentonite | 23.69 mg/g | 120 min | [32] |
Fe/Cu–GO | 201.9 mg/g | 15 min | [33] |
Fe–HAP | 45.39 mg/g | 45 min | [34] |
Z–HAP–AA | 244.63 mg/g | 600 min | [35] |
Membrane | BET Surface Area (m2/g) | Pore Volume (cm3/g) |
---|---|---|
Chitosan | 1.2823 | 0.00109 |
FMWCNT–chitosan | 2.3882 | 0.004136 |
NMWCNT–chitosan | 1.6836 | 0.00178 |
Membrane | Experimental Qe (mg·g−1) | Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | ||||
---|---|---|---|---|---|---|---|
K1 | Qe (mg·g−1) | R2 | K2 | Qe (mg·g−1) | R2 | ||
Chitosan | 2.46 | 0.0205 | 0.324 | 0.9733 | 1.04 | 1.29 | 0.9992 |
FMWCNT–chitosan | 3.46 | 0.0671 | 2.04 | 0.9285 | 0.132 | 2.48 | 0.9844 |
NMWCNT–chitosan | 3.03 | 0.0185 | 1.92 | 0.7823 | 0.603 | 3.12 | 0.9455 |
Membrane | Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|---|
RL | qm (mg/g) | b (L/mg) | R2 | Kf (mg/g) | n | R2 | |
Chitosan | 0.9812 | 86.96 | 0.001879 | 0.9991 | 0.5731 | 1.066 | 0.9918 |
FMWCNT–chitosan | 0.9683 | 263.16 | 0.003278 | 0.9978 | 0.6701 | 1.514 | 0.9726 |
NMWCNT–chitosan | 0.947 | 149.25 | 0.005581 | 0.9963 | 0.6384 | 1.378 | 0.9779 |
Membrane | Thermodynamic Parameters | |||
---|---|---|---|---|
Temperature (K) | ∆G° (kJ·mol−1) | H (kJ·mol−1) | S (J·mol·K−1) | |
Chitosan | 298 303 308 313 | 0.203 0.564 0.720 0.996 | −0.0149 | −50.83 |
FMWCNT–chitosan | 298 303 308 313 | −1.996 −0.941 −0.882 1.582 | −0.0660 | −214.04 |
NMWCNT–chitosan | 298 303 308 313 | −1.072 0.206 0.646 0.920 | −0.0394 | −129.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kgoete, M.S.; Mokgohloa, C.P.; Macevele, L.E. Synthesis of Chitosan Nanocomposite Materials Grafted with MWCNTs for the Removal of Tetracycline Pharmaceutical from Water Samples. Colloids Interfaces 2025, 9, 69. https://doi.org/10.3390/colloids9050069
Kgoete MS, Mokgohloa CP, Macevele LE. Synthesis of Chitosan Nanocomposite Materials Grafted with MWCNTs for the Removal of Tetracycline Pharmaceutical from Water Samples. Colloids and Interfaces. 2025; 9(5):69. https://doi.org/10.3390/colloids9050069
Chicago/Turabian StyleKgoete, Milton Shabeng, Conny Putsane Mokgohloa, and Lutendo Evelyn Macevele. 2025. "Synthesis of Chitosan Nanocomposite Materials Grafted with MWCNTs for the Removal of Tetracycline Pharmaceutical from Water Samples" Colloids and Interfaces 9, no. 5: 69. https://doi.org/10.3390/colloids9050069
APA StyleKgoete, M. S., Mokgohloa, C. P., & Macevele, L. E. (2025). Synthesis of Chitosan Nanocomposite Materials Grafted with MWCNTs for the Removal of Tetracycline Pharmaceutical from Water Samples. Colloids and Interfaces, 9(5), 69. https://doi.org/10.3390/colloids9050069