Remediation of Caffeine from Aqueous Solutions Using Waste-Derived Adsorbents: A Polyaniline/Cuttlefish Bone Nanocomposite for Pollutant Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cuttlebone (CB) Preparation
2.3. Preparation of Polyaniline (PANI)
2.4. Polyaniline (PANI)/Cuttlebone (CB) Nanocomposite Preparation
2.5. Characterization of the Prepared Materials
2.6. The Adsorption Studies
2.7. Regeneration of Adsorbent
3. Results and Discussion
3.1. Characterization of Prepared Materials
3.1.1. Scanning Electron Microscopy (SEM)
3.1.2. Fourier-Transform Infrared (FTIR)
3.1.3. X-Ray Diffraction (XRD)
3.1.4. The N2 Adsorption−Desorption Isotherms
Sample | BET Surface Area (m2/g) | Total Volume in Pores (cm3/g) | Total Area in Pores (m2/g) |
---|---|---|---|
CB | 92.64 | 0.16 | 56.98 |
PANI | 13.14 | 0.02 | 7.26 |
PANI−CB | 31.58 | 0.06 | 20.47 |
3.1.5. Surface Texture and 3D Characterization
3.2. Significant Parameters Affect the Adsorption of Caffeine on PANI, CB, and PANI/CB
3.2.1. Effect of pH
3.2.2. Effect of Dose of Adsorbent
3.2.3. Adsorption Isotherm
3.2.4. Adsorption Kinetics
3.2.5. Effect of Regeneration and Reusability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A Review of the Effects of Emerging Contaminants in Wastewater and Options for Their Removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Buerge, I.J.; Poiger, T.; Müller, M.D.; Buser, H.-R. Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters. Environ. Sci. Technol. 2003, 37, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Montagner, C.C.; Umbuzeiro, G.A.; Pasquini, C.; Jardim, W.F. Caffeine as an Indicator of Estrogenic Activity in Source Water. Environ. Sci. Process. Impacts 2014, 16, 1866–1869. [Google Scholar] [CrossRef] [PubMed]
- Heberer, T. Tracking Persistent Pharmaceutical Residues from Municipal Sewage to Drinking Water. J. Hydrol. 2002, 266, 175–189. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I.; Orfanos, A.G.; Manariotis, I.D.; Tatarchuk, T.; Sellaoui, L.; Bonilla-Petriciolet, A.; Mittal, A.; Núñez-Delgado, A. Removal of Caffeine, Nicotine and Amoxicillin from (Waste) Waters by Various Adsorbents. A Review. J. Environ. Manag. 2020, 261, 110236. [Google Scholar] [CrossRef] [PubMed]
- Rigueto, C.V.T.; Nazari, M.T.; De Souza, C.F.; Cadore, J.S.; Brião, V.B.; Piccin, J.S. Alternative Techniques for Caffeine Removal from Wastewater: An Overview of Opportunities and Challenges. J. Water Process Eng. 2020, 35, 101231. [Google Scholar] [CrossRef]
- Lopera, A.E.-C.; Ruiz, S.G.; Alonso, J.M.Q. Removal of Emerging Contaminants from Wastewater Using Reverse Osmosis for Its Subsequent Reuse: Pilot Plant. J. Water Process Eng. 2019, 29, 100800. [Google Scholar] [CrossRef]
- Nivala, J.; Kahl, S.; Boog, J.; van Afferden, M.; Reemtsma, T.; Müller, R.A. Dynamics of Emerging Organic Contaminant Removal in Conventional and Intensified Subsurface Flow Treatment Wetlands. Sci. Total Environ. 2019, 649, 1144–1156. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, P.; Ma, R.; Luo, C.; Wen, T.; Zhao, G.; Cheng, W.; Wang, X. Recent Developments in Fabrication and Structure Regulation of Visible-Light-Driven g-C3N4-Based Photocatalysts towards Water Purification: A Critical Review. Catal. Today 2019, 335, 65–77. [Google Scholar] [CrossRef]
- Melliti, A.; Touihri, M.; Kofroňová, J.; Hannachi, C.; Sellaoui, L.; Bonilla-Petriciolet, A.; Vurm, R. Sustainable Removal of Caffeine and Acetaminophen from Water Using Biomass Waste-Derived Activated Carbon: Synthesis, Characterization, and Modelling. Chemosphere 2024, 355, 141787. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.S.; Ali, S.; Zaman, W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024, 29, 4317. [Google Scholar] [CrossRef]
- Lin, T.; Yu, H.; Wang, L.; Fahad, S.; Khan, A.; Naveed, K.-R.; Haq, F.; Nazir, A.; Amin, B.U. A Review of Recent Advances in the Preparation of Polyaniline-Based Composites and Their Electromagnetic Absorption Properties. J. Mater. Sci. 2021, 56, 5449–5478. [Google Scholar] [CrossRef]
- Samadi, A.; Xie, M.; Li, J.; Shon, H.; Zheng, C.; Zhao, S. Polyaniline-Based Adsorbents for Aqueous Pollutants Removal: A Review. Chem. Eng. J. 2021, 418, 129425. [Google Scholar] [CrossRef]
- Eskandari, E.; Kosari, M.; Farahani, M.H.D.A.; Khiavi, N.D.; Saeedikhani, M.; Katal, R.; Zarinejad, M. A Review on Polyaniline-Based Materials Applications in Heavy Metals Removal and Catalytic Processes. Sep. Purif. Technol. 2020, 231, 115901. [Google Scholar] [CrossRef]
- Das, H.T.; Dutta, S.; Beura, R.; Das, N. Role of Polyaniline in Accomplishing a Sustainable Environment: Recent Trends in Polyaniline for Eradicating Hazardous Pollutants. Environ. Sci. Pollut. Res. 2022, 29, 49598–49631. [Google Scholar] [CrossRef]
- Algoritma, I.; Untuk, A.; Penjualan, M.T.; Store, P.; Aeon, A.; Dermawan, D. Implementasi Algoritma Apriori Untuk Menentukan Tingkat Penjualan Pada Store Adidas Aeon Sentul; Universitas Nusa Mandiri: Tangerang, Indonesia, 2023. [Google Scholar]
- Diggikar, R.S.; Deshmukh, S.P.; Thopate, T.S.; Kshirsagar, S.R. Performance of Polyaniline Nanofibers (PANI NFs) as PANI NFs-Silver (Ag) Nanocomposites (NCs) for Energy Storage and Antibacterial Applications. ACS Omega 2019, 4, 5741–5749. [Google Scholar] [CrossRef]
- Gizdavic-Nikolaidis, M.R.; Bennett, J.R.; Swift, S.; Easteal, A.J.; Ambrose, M. Broad Spectrum Antimicrobial Activity of Functionalized Polyanilines. Acta Biomater. 2011, 7, 4204–4209. [Google Scholar] [CrossRef] [PubMed]
- Hermelin, J.; Diaz, J.; Thilaga, R.D.; Sivakumar, V. In-Vitro Cytotoxic Activity of Squid and Cuttlefish Bone Extract on Hep G2 Cell Line. Int. J. Pharm. Sci. Res. 2015, 6, 778–782. [Google Scholar] [CrossRef]
- Hongsathavij, R.; Yosvimol Kuphasuk, K.R. Effectiveness of Platelet-Rich Fibrin in the Management of Pain and Delayed Wound Healing. Eur. J. Dent. 2017, 11, 192–195. [Google Scholar] [CrossRef]
- Azarian, M.H.; Sutapun, W. Biogenic Calcium Carbonate Derived from Waste Shells for Advanced Material Applications: A Review. Front. Mater. 2022, 9, 1024977. [Google Scholar] [CrossRef]
- Suwannasingha, N.; Kantavong, A.; Tunkijjanukij, S.; Aenglong, C.; Liu, H.B.; Klaypradit, W. Effect of Calcination Temperature on Structure and Characteristics of Calcium Oxide Powder Derived from Marine Shell Waste. J. Saudi Chem. Soc. 2022, 26, 101441. [Google Scholar] [CrossRef]
- Montes-Atenas, G.; Valenzuela, F. Wastewater Treatment through Low Cost Adsorption Technologies. Phys. Chem. Wastewater Treat. Resour. Recover. 2017, 10, 214–238. [Google Scholar] [CrossRef]
- Ernst, M.E.; Klepser, M.E.; Wolfe, E.J.; Pfaller, M.A. Antifungal Dynamics of LY 303366, an Investigational Echinocandin B Analog, against Candida Ssp. Diagn. Microbiol. Infect. Dis. 1996, 26, 125–131. [Google Scholar] [CrossRef]
- Xiong, Y.; Qin, P.; Sun, X.; Yin, M.; He, Z. Adsorption of Pb(II) by Cuttlebone-Derived Materials and Its Stability. E3S Web Conf. 2024, 490, 01011. [Google Scholar] [CrossRef]
- Taghi Ghaneian, M.; Momtaz, M.; Dehvari, M. An Investigation of the Efficacy of Cuttlefish Bone Powder in the Removal of Reactive Blue 19 Dye from Aqueous Solutions: Equilibrium and Isotherm Studies Original Article. J. Community Health Res. 2012, 1, 68–78. [Google Scholar]
- Tagar, U. Thermochemically Modified Bio-Based Material for Water Remediation. Doctoral Dissertation, Queen Mary University of London, London, UK, 2023. [Google Scholar]
- Hart, A.; Ebiundu, K.; Peretomode, E.; Onyeaka, H.; Nwabor, O.F.; Obileke, K. Value-Added Materials Recovered from Waste Bone Biomass: Technologies and Applications. RSC Adv. 2022, 12, 22302–22330. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Wang, D.; Ren, B.; Song, P.; Zhang, G.; Cai, B.; Liu, Z. Effect of Ball Milling Process on the Mechanical and Thermal Properties of the Nanodiamond/2024Al Composites. Micron 2021, 148, 103104. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Cho, S.; Kim, M.; Kim, J.; Ryu, J.; Shin, K.Y.; Jang, J. Highly Porous Nanostructured Polyaniline/Carbon Nanodots as Efficient Counter Electrodes for Pt-Free Dye-Sensitized Solar Cells. J. Mater. Chem. A 2015, 3, 19018–19026. [Google Scholar] [CrossRef]
- Periasamy, K.; Mohankumar, G.C. Sea Coral-Derived Cuttlebone Reinforced Epoxy Composites: Characterization and Tensile Properties Evaluation with Mathematical Models. J. Compos. Mater. 2016, 50, 807–823. [Google Scholar] [CrossRef]
- Tyson, B.M.; Abu Al-Rub, R.K.; Yazdanbakhsh, A.; Grasley, Z. A Quantitative Method for Analyzing the Dispersion and Agglomeration of Nano-Particles in Composite Materials. Compos. Part B Eng. 2011, 42, 1395–1403. [Google Scholar] [CrossRef]
- Balu, S.; Sundaradoss, M.V.; Andra, S.; Jeevanandam, J. Facile Biogenic Fabrication of Hydroxyapatite Nanorods Using Cuttlefish Bone and Their Bactericidal and Biocompatibility Study. Beilstein J. Nanotechnol. 2020, 11, 285–295. [Google Scholar] [CrossRef]
- Nouj, N.; Hafid, N.; El Alem, N.; Buciscanu, I.I.; Maier, S.S.; Samoila, P.; Soreanu, G.; Cretescu, I.; Stan, C.D. Valorization of β-Chitin Extraction Byproduct from Cuttlefish Bone and Its Application in Food Wastewater Treatment. Materials 2022, 15, 2803. [Google Scholar] [CrossRef] [PubMed]
- Sankar, K.; Achary, A. Bio-Ceramic, Mesoporous Cuttlebone of Sepia Officinalis Is an Ideal Support for the Immobilization of Bacillus Subtilis AKL13 Lipase: Optimization, Adsorption, Thermodynamic and Reaction Kinetic Studies. Chem. Pap. 2020, 74, 459–470. [Google Scholar] [CrossRef]
- Maruthapandi, M.; Kumar, V.B.; Luong, J.H.T.; Gedanken, A. Kinetics, Isotherm, and Thermodynamic Studies of Methylene Blue Adsorption on Polyaniline and Polypyrrole Macro–Nanoparticles Synthesized by C-Dot-Initiated Polymerization. ACS Omega 2018, 3, 7196–7203. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, A. Synthesis, Characterization and Electrical Properties of Nano Metal and Metal-Oxide Doped with Conducting Polymer Composites by in-Situ Chemical Polymerization. MOJ Polym. Sci. 2017, 1, 31. [Google Scholar] [CrossRef]
- Dutta, A.; Fermani, S.; Arjun Tekalur, S.; Vanderberg, A.; Falini, G. Calcium Phosphate Scaffold from Biogenic Calcium Carbonate by Fast Ambient Condition Reactions. J. Cryst. Growth 2011, 336, 50–55. [Google Scholar] [CrossRef]
- Suhail, M.H.; Abdullah, O.G.; Kadhim, G.A. Hydrogen Sulfide Sensors Based on PANI/f-SWCNT Polymer Nanocomposite Thin Films Prepared by Electrochemical Polymerization. J. Sci. Adv. Mater. Devices 2019, 4, 143–149. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.; Kumar, E.; Ganeshbabu, M.; Venkatesh, P.S.; Rathnakumar, K. Structural, Electrical, and Photocatalytic Investigations of PANI/ZnO Nanocomposites. Ionics 2021, 27, 2967–2977. [Google Scholar] [CrossRef]
- Sirotkin, N.; Khlyustova, A. Plasma Synthesis and Characterization of PANI+ WO3 Nanocomposites and Their Supercapacitor Applications. J. Compos. Sci. 2023, 7, 174. [Google Scholar] [CrossRef]
- Khasim, S. Polyaniline-Graphene Nanoplatelet Composite Films with Improved Conductivity for High Performance X-Band Microwave Shielding Applications. Results Phys. 2019, 12, 1073–1081. [Google Scholar] [CrossRef]
- An, H.; Wang, Y.; Wang, X.; Li, N.; Zheng, L. The Preparation of PANI/CA Composite Electrode Material for Supercapacitors and Its Electrochemical Performance. J. Solid State Electrochem. 2010, 14, 651–657. [Google Scholar] [CrossRef]
- Shimizu, S.; Matubayasi, N. Surface Area Estimation: Replacing the Brunauer–Emmett–Teller Model with the Statistical Thermodynamic Fluctuation Theory. Langmuir 2022, 38, 7989–8002. [Google Scholar] [CrossRef] [PubMed]
- Zaitseva, E.S.; Tovbin, Y.K. Nonuniform Surfaces and the Inflection Point in Polylayer Adsorption Isotherms. Prot. Met. Phys. Chem. Surfaces 2018, 54, 557–564. [Google Scholar] [CrossRef]
- Nguyen, T.-H.; Fei, H.; Sapurina, I.; Ngwabebhoh, F.A.; Bubulinca, C.; Munster, L.; Bergerová, E.D.; Lengalova, A.; Jiang, H.; Dao, T.T. Electrochemical Performance of Composites Made of RGO with Zn-MOF and PANI as Electrodes for Supercapacitors. Electrochim. Acta 2021, 367, 137563. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y.; Hui, D. Influences of Nanoparticles Aggregation/Agglomeration on the Interfacial/Interphase and Tensile Properties of Nanocomposites. Compos. Part B Eng. 2017, 122, 41–46. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Shcherbinin, D.P.; Konshina, E.A.; Gladskikh, I.A. Stereometric and Fractal Analysis of Granulated Silver Films Used in Thin-Film Hybrid Structures. J. Microsc. 2021, 281, 46–56. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Janus, K.; Stach, S.; Preparation, A.S. Nanoscale Patterns in Carbon–Nickel Nanocomposite Thin Films Investigated by AFM and Stereometric Analysis. Int. J. Mater. 2017, 4, 54–62. [Google Scholar]
- Quintero-Jaramillo, J.A.; Carrero-Mantilla, J.I.; Sanabria-González, N.R. A Review of Caffeine Adsorption Studies onto Various Types of Adsorbents. Sci. World J. 2021, 2021, 9998924. [Google Scholar] [CrossRef] [PubMed]
- Medina, F.M.O.; Aguiar, M.B.; Parolo, M.E.; Avena, M.J. Insights of Competitive Adsorption on Activated Carbon of Binary Caffeine and Diclofenac Solutions. J. Environ. Manag. 2021, 278, 111523. [Google Scholar] [CrossRef]
- Bobde, P.V.; Sharma, A.K.; Kumar, R.; Pandey, J.K.; Wadhwa, S. Recent Advances on Sustainable Removal of Emerging Contaminants from Water by Bio-Based Adsorbents. New J. Chem. 2023, 47, 17626–17644. [Google Scholar] [CrossRef]
- Mahgoub, S.M.; Shehata, M.R.; Zaher, A.; El-Ela, F.I.A.; Farghali, A.; Amin, R.M.; Mahmoud, R. Cellulose-Based Activated Carbon/Layered Double Hydroxide for Efficient Removal of Clarithromycin Residues and Efficient Role in the Treatment of Stomach Ulcers and Acidity Problems. Int. J. Biol. Macromol. 2022, 215, 705–728. [Google Scholar] [CrossRef] [PubMed]
- Mahgoub, S.M.; Essam, D.; Eldin, Z.E.; Moaty, S.A.A.; Shehata, M.R.; Farghali, A.; Abdalla, S.E.B.; Othman, S.I.; Allam, A.A.; El-Ela, F.I.A. Carbon Supported Ternary Layered Double Hydroxide Nanocomposite for Fluoxetine Removal and Subsequent Utilization of Spent Adsorbent as Antidepressant. Sci. Rep. 2024, 14, 3990. [Google Scholar] [CrossRef] [PubMed]
- Palma, D.; Bianco Prevot, A.; Brigante, M.; Fabbri, D.; Magnacca, G.; Richard, C.; Mailhot, G.; Nisticò, R. New Insights on the Photodegradation of Caffeine in the Presence of Bio-Based Substances-Magnetic Iron Oxide Hybrid Nanomaterials. Materials 2018, 11, 1084. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, M.M.S.; Madeira, C.A.C.; dos Santos Nunes, N.C.L.; Dias, D.A.C.M.; Godinho, D.M.B.; de Jesus Pinto, M.F.; do Nascimento Matos, I.A.M.; Carvalho, A.P.B.; de Figueiredo Ligeiro Fonseca, I.M. Study of the Removal Mechanism of Aquatic Emergent Pollutants by New Bio-Based Chars. Environ. Sci. Pollut. Res. 2017, 24, 22698–22708. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, E.N.; Meneses, A.T.; de Melo, S.F.; Dias, F.M.R.; Perazzini, M.T.B.; Perazzini, H.; Meili, L.; Soletti, J.I.; Carvalho, S.H.V.; Bispo, M.D. Highly Effective Adsorption of Caffeine by a Novel Activated Carbon Prepared from Coconut Leaf. Environ. Sci. Pollut. Res. 2022, 29, 50661–50674. [Google Scholar] [CrossRef] [PubMed]
- Fakioğlu, M.; Kalpaklı, Y. Mechanism and Behavior of Caffeine Sorption: Affecting Factors. RSC Adv. 2022, 12, 26504–26513. [Google Scholar] [CrossRef]
- Almeida-Naranjo, C.E.; Aldás, M.B.; Cabrera, G.; Guerrero, V.H. Caffeine Removal from Synthetic Wastewater Using Magnetic Fruit Peel Composites: Material Characterization, Isotherm and Kinetic Studies. Environ. Chall. 2021, 5, 100343. [Google Scholar] [CrossRef]
- Essam, A.; Eldek, S.I.; Shehata, N. Management of Caffeine in Wastewater Using MOF and Perovskite Materials: Optimization, Kinetics, and Adsorption Isotherm Modelling. J. Environ. Heal. Sci. Eng. 2024, 22, 345–360. [Google Scholar] [CrossRef]
- Elrafey, A.; Farghali, A.A.; Kamal, W.; Allam, A.A.; Eldin, Z.E.; Rudayni, H.A.; Alfassam, H.E.; Anwar, A.A.A.; Saeed, S.; Mahmoud, R. Cost-Effective Eggshell-Modified LDH Composite for Caffeine Adsorption, Cytotoxicity and Antimicrobial Activity: Exploring the Synergy and Economic Viability in Search Processes. RSC Adv. 2024, 14, 33281–33300. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, J.L.; Ovejero, G.; Rodríguez, A.; Álvarez, S.; Galán, J.; García, J. Competitive Adsorption Studies of Caffeine and Diclofenac Aqueous Solutions by Activated Carbon. Chem. Eng. J. 2014, 240, 443–453. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, W.; Zhang, W.; Lin, D.; Yang, K. Influence of Functional Groups on Desorption of Organic Compounds from Carbon Nanotubes into Water: Insight into Desorption Hysteresis. Environ. Sci. Technol. 2013, 47, 8373–8382. [Google Scholar] [CrossRef] [PubMed]
- Baskar, A.V.; Bolan, N.; Hoang, S.A.; Sooriyakumar, P.; Kumar, M.; Singh, L.; Jasemizad, T.; Padhye, L.P.; Singh, G.; Vinu, A. Recovery, Regeneration and Sustainable Management of Spent Adsorbents from Wastewater Treatment Streams: A Review. Sci. Total Environ. 2022, 822, 153555. [Google Scholar] [CrossRef] [PubMed]
- Zanella, O.; Tessaro, I.C.; Féris, L.A. Desorption-and Decomposition-based Techniques for the Regeneration of Activated Carbon. Chem. Eng. Technol. 2014, 37, 1447–1459. [Google Scholar] [CrossRef]
- Li, L.; Sun, Z.; Li, H.; Keener, T.C. Effects of Activated Carbon Surface Properties on the Adsorption of Volatile Organic Compounds. J. Air Waste Manag. Assoc. 2012, 62, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, R.; Mahgoub, S.M.; Ashraf, A.M.; Allam, A.A.; Alawam, A.S.; Rudayni, H.A.; Moaty, S.A. Activated Carbon Alginate as Adsorbent for Simultaneous Removal of Almotriptan and Paracetamol from Binary Solutions. Sustain. Chem. Pharm. 2024, 41, 101708. [Google Scholar] [CrossRef]
- Gkika, D.A.; Mitropoulos, A.C.; Kyzas, G.Z. Why Reuse Spent Adsorbents? The Latest Challenges and Limitations. Sci. Total Environ. 2022, 822, 153612. [Google Scholar] [CrossRef] [PubMed]
- El Messaoudi, N.; El Khomri, M.; El Mouden, A.; Bouich, A.; Jada, A.; Lacherai, A.; Iqbal, H.M.N.; Mulla, S.I.; Kumar, V.; Américo-Pinheiro, J.H.P. Regeneration and Reusability of Non-Conventional Low-Cost Adsorbents to Remove Dyes from Wastewaters in Multiple Consecutive Adsorption–Desorption Cycles: A Review. Biomass Convers. Biorefinery 2024, 14, 11739–11756. Available online: https://hal.science/hal-04298171v1 (accessed on 3 December 2022). [CrossRef]
Parameters | Values of Parameters | ||
---|---|---|---|
PANI | CB | PANI/CB | |
Total roughness (Rt) (nm) | 52.12 | 0.63 | 170.00 |
Fractal dimension (Df) | 1.170 | 1.418 | 1.109 |
Slope | 0.996 | 0.998 | 0.998 |
Roughness skewness (Rsk) | 0.218 | −0.587 | 0.303 |
Roughness kurtosis (Rku) | 1.881 | 2.916 | 2.608 |
Isotherm Models | Expression | Adjustable Model Parameters | Cuttle Fish Bone (CB) | R2 | Poly Aniline (PANI) | R2 | Nanocomposite (PANI/CB) | R2 |
---|---|---|---|---|---|---|---|---|
Two-parameter isotherm | ||||||||
Langmuir | qmax | 55.05 | 0.99 | 57.71 | 0.99 | 96.99 | 0.99 | |
KL | 0.0067 | 0.006 | 0.003 | |||||
Freundlich | Kf | 2.02 | 0.98 | 0.508 | 0.98 | 0.61 | 0.99 | |
1/nf | 0.48 | 2.01 | 1.35 | |||||
Dubinin–Radushkevich (D−R) | qm | 45.43 | 0.97 | 46.34 | 0.97 | 68.78 | 0.96 | |
Kad | 0.012 | 0.01 | 0.019 | |||||
Three-parameter isotherm | ||||||||
Langmuir−Freundlich | qmax | 50.01 | 0.99 | 62.74 | 0.99 | 108.33 | 0.99 | |
KLF | 0.008 | 0.005 | 0.015 | |||||
βLF | 1.14 | 0.91 | 0.82 | |||||
Sips | qmax | 50.01 | 0.99 | 62.70 | 0.99 | 103.15 | 0.99 | |
KS | 0.004 | 0.008 | 0.015 | |||||
ns | 1.14 | 0.92 | 0.65 | |||||
Redlich−Peterson | KRP | 0.30 | 0.99 | 0.41 | 0.99 | 0.35 | 0.99 | |
aRP | 0.0008 | 0.011 | 0.008 | |||||
β | 1.29 | 0.93 | 0.87 | |||||
Toth | Ke | 0.39 | 0.99 | 0.39 | 0.99 | 0.31 | 0.99 | |
KT | 0.0008 | 0.011 | 0.004 | |||||
nT | 1.29 | 0.93 | 0.94 | |||||
Four-parameters isotherm | ||||||||
Baudu | qmax | 50.01 | 0.99 | 57.70 | 0.99 | 93.61 | 0.99 | |
bo | 0.004 | 0.006 | 0.0029 | |||||
X | 0.00001 | 0.00001 | 0.0001 | |||||
Y | 0.14 | 0.00001 | 0.037 |
Parameter | Langmuir | Freundlich | Dubinin−Radushkevich | Langmuir−Freundlich | Redlich | Sips | Toth | Baudu |
---|---|---|---|---|---|---|---|---|
SSE/ERRSQ | 12.49 | 51.15 | 38.30 | 10.92 | 8.02 | 10.92 | 8.02 | 10.92 |
χ2 | 1.65 | 2.95 | 6.64 | 2.06 | 1.71 | 2.06 | 1.71 | 2.06 |
Adjusted R2 | 0.98 | 0.91 | 0.93 | 0.98 | 0.99 | 0.98 | 0.99 | 0.98 |
MAE | 1.20 | 2.41 | 1.92 | 0.96 | 0.68 | 0.96 | 0.68 | 0.96 |
MAPE/ARE | 13.16 | 16.79 | 26.80 | 13.36 | 11.54 | 13.36 | 11.54 | 13.36 |
RMSE | 1.34 | 2.70 | 2.34 | 1.25 | 1.07 | 1.25 | 1.07 | 1.25 |
RMSE_2 | 1.58 | 3.20 | 2.77 | 1.48 | 1.27 | 1.48 | 1.27 | 1.48 |
NRMSE | 0.13 | 0.27 | 0.23 | 0.13 | 0.11 | 0.13 | 0.11 | 0.13 |
HYBRID | 18.42 | 23.50 | 37.52 | 18.70 | 16.15 | 18.70 | 16.15 | 18.70 |
HYBRID_2 | 32.97 | 58.99 | 132.78 | 41.17 | 34.13 | 41.17 | 34.14 | 41.17 |
HYBRID_3 | 1.65 | 2.95 | 6.64 | 2.06 | 1.71 | 2.06 | 1.71 | 2.06 |
MPSD | 25.59 | 23.14 | 51.80 | 30.49 | 28.19 | 30.49 | 28.19 | 30.49 |
MPSD_2 | 0.33 | 0.27 | 1.34 | 0.46 | 0.40 | 0.46 | 0.40 | 0.46 |
SAE/EABS | 8.39 | 16.88 | 13.45 | 6.73 | 4.75 | 6.73 | 4.75 | 6.73 |
RMS | 21.63 | 19.56 | 43.78 | 25.77 | 23.83 | 25.77 | 23.83 | 25.77 |
NSD | 0.22 | 0.20 | 0.44 | 0.26 | 0.24 | 0.26 | 0.24 | 0.26 |
ARE_2 | 4.68 | 3.83 | 19.17 | 6.64 | 5.68 | 6.64 | 5.68 | 6.64 |
ARE_3 | 8.18 | 7.39 | 16.55 | 9.74 | 9.01 | 9.74 | 9.01 | 9.74 |
Parameter | Langmuir | Freundlich | Dubinin−Radushkevich | Langmuir−Freundlich | Redlich | Sips | Toth | Baudu |
---|---|---|---|---|---|---|---|---|
SSE/ERRSQ | 6.98 | 30.64 | 64.23 | 6.17 | 6.62 | 6.17 | 6.62 | 6.98 |
χ2 | 1.34 | 2.33 | 8.89 | 1.06 | 1.25 | 1.06 | 1.25 | 1.34 |
Adjusted R2 | 0.99 | 0.95 | 0.90 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
MAE | 0.78 | 1.87 | 2.77 | 0.71 | 0.71 | 0.71 | 0.71 | 0.78 |
MAPE/ARE | 11.04 | 15.34 | 33.25 | 9.95 | 10.45 | 9.95 | 10.44 | 11.04 |
RMSE | 1.00 | 2.09 | 3.03 | 0.94 | 0.97 | 0.94 | 0.97 | 1.00 |
RMSE_2 | 1.18 | 2.48 | 3.58 | 1.11 | 1.15 | 1.11 | 1.15 | 1.18 |
NRMSE | 0.10 | 0.21 | 0.30 | 0.09 | 0.10 | 0.09 | 0.10 | 0.10 |
HYBRID | 15.45 | 21.47 | 46.55 | 13.93 | 14.63 | 13.93 | 14.62 | 15.45 |
HYBRID_2 | 26.85 | 46.51 | 177.83 | 21.14 | 24.97 | 21.14 | 24.95 | 26.85 |
HYBRID_3 | 1.34 | 2.33 | 8.89 | 1.06 | 1.25 | 1.06 | 1.25 | 1.34 |
MPSD | 24.80 | 23.13 | 57.98 | 21.28 | 23.65 | 21.28 | 23.63 | 24.80 |
MPSD_2 | 0.31 | 0.27 | 1.68 | 0.23 | 0.28 | 0.23 | 0.28 | 0.31 |
SAE/EABS | 5.44 | 13.12 | 19.36 | 4.98 | 4.99 | 4.98 | 4.99 | 5.44 |
RMS | 20.96 | 19.55 | 49.00 | 17.98 | 19.98 | 17.98 | 19.97 | 20.96 |
NSD | 0.21 | 0.20 | 0.49 | 0.18 | 0.20 | 0.18 | 0.20 | 0.21 |
ARE_2 | 4.39 | 3.82 | 24.01 | 3.23 | 3.99 | 3.23 | 3.99 | 4.39 |
ARE_3 | 7.92 | 7.39 | 18.52 | 6.80 | 7.55 | 6.80 | 7.55 | 7.92 |
Parameter | Langmuir | Freundlich | Dubinin−Radushkevich | Langmuir−Freundlich | Redlich | Sips | Toth | Baudu |
---|---|---|---|---|---|---|---|---|
SSE/ERRSQ | 23.07 | 9.48 | 197.01 | 10.87 | 19.29 | 8.38 | 21.40 | 26.71 |
χ2 | 3.23 | 0.53 | 19.74 | 1.42 | 2.84 | 0.57 | 3.13 | 3.75 |
Adjusted R2 | 0.98 | 0.99 | 0.82 | 0.99 | 0.98 | 0.99 | 0.98 | 0.97 |
MAE | 1.60 | 0.87 | 4.90 | 1.14 | 1.37 | 0.86 | 1.46 | 1.66 |
MAPE/ARE | 19.13 | 5.93 | 46.88 | 12.98 | 17.85 | 6.84 | 18.61 | 20.27 |
RMSE | 1.82 | 1.16 | 5.31 | 1.25 | 1.66 | 1.09 | 1.75 | 1.95 |
RMSE_2 | 2.15 | 1.38 | 6.28 | 1.47 | 1.96 | 1.29 | 2.07 | 2.31 |
NRMSE | 0.15 | 0.10 | 0.45 | 0.11 | 0.14 | 0.09 | 0.15 | 0.17 |
HYBRID | 26.78 | 8.30 | 65.63 | 18.17 | 24.99 | 9.58 | 26.05 | 28.38 |
HYBRID_2 | 64.56 | 10.63 | 394.79 | 28.30 | 56.81 | 11.40 | 62.56 | 75.05 |
HYBRID_3 | 3.23 | 0.53 | 19.74 | 1.42 | 2.84 | 0.57 | 3.13 | 3.75 |
MPSD | 33.53 | 9.33 | 72.45 | 22.03 | 31.75 | 10.99 | 33.18 | 36.01 |
MPSD_2 | 0.56 | 0.04 | 2.62 | 0.24 | 0.50 | 0.06 | 0.55 | 0.65 |
SAE/EABS | 11.19 | 6.06 | 34.28 | 8.00 | 9.60 | 6.01 | 10.23 | 11.60 |
RMS | 28.34 | 7.88 | 61.23 | 18.62 | 26.84 | 9.29 | 28.04 | 30.43 |
NSD | 0.28 | 0.08 | 0.61 | 0.19 | 0.27 | 0.09 | 0.28 | 0.30 |
ARE_2 | 8.03 | 0.62 | 37.50 | 3.47 | 7.20 | 0.86 | 7.86 | 9.26 |
ARE_3 | 10.71 | 2.98 | 23.14 | 7.04 | 10.14 | 3.51 | 10.60 | 11.50 |
Kinetic Models | Equation | Parameters | Cuttlefish Bone | Polyaniline | Nanocomposite |
---|---|---|---|---|---|
Pseudo-first-order | qt = qe (1 − e−k1t) | K1 | 0.015 | 0.044 | 0.043 |
Qe | 38.93 | 40.24 | 49.31 | ||
R2 | 0.97 | 0.98 | 0.99 | ||
Pseudo-second-order | K2 | 0.0006 | 0.001 | 0.001 | |
Qe | 41.70 | 42.15 | 51.49 | ||
R2 | 0.97 | 0.98 | 0.98 | ||
Mixed 1,2 order | K | 0.0006 | 0.02 | 0.035 | |
Qe | 39.58 | 40.63 | 49.44 | ||
f2 | 0.73 | 0.68 | 0.26 | ||
R2 | 0.97 | 0.98 | 0.99 | ||
Avrami | qt = qe [1 − exp(−kavt)nav] | Qe | 38.93 | 40.25 | 49.31 |
Kav | 0.25 | 0.43 | 0.42 | ||
nav | 0.06 | 0.10 | 0.10 | ||
R2 | 0.97 | 0.98 | 0.99 | ||
Intraparticle diffusion | qt = Kip√t + Cip | Kip | 0.95 | 0.86 | 1.08 |
Cip | 14.02 | 19.05 | 22.56 | ||
R2 | 0.70 | 0.54 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salama, E.; Mahgoub, S.M.; Allam, A.A.; Alfassam, H.E.; Mahmoud, R. Remediation of Caffeine from Aqueous Solutions Using Waste-Derived Adsorbents: A Polyaniline/Cuttlefish Bone Nanocomposite for Pollutant Removal. Colloids Interfaces 2025, 9, 1. https://doi.org/10.3390/colloids9010001
Salama E, Mahgoub SM, Allam AA, Alfassam HE, Mahmoud R. Remediation of Caffeine from Aqueous Solutions Using Waste-Derived Adsorbents: A Polyaniline/Cuttlefish Bone Nanocomposite for Pollutant Removal. Colloids and Interfaces. 2025; 9(1):1. https://doi.org/10.3390/colloids9010001
Chicago/Turabian StyleSalama, Esraa, Samar M. Mahgoub, Ahmed A. Allam, Haifa E. Alfassam, and Rehab Mahmoud. 2025. "Remediation of Caffeine from Aqueous Solutions Using Waste-Derived Adsorbents: A Polyaniline/Cuttlefish Bone Nanocomposite for Pollutant Removal" Colloids and Interfaces 9, no. 1: 1. https://doi.org/10.3390/colloids9010001
APA StyleSalama, E., Mahgoub, S. M., Allam, A. A., Alfassam, H. E., & Mahmoud, R. (2025). Remediation of Caffeine from Aqueous Solutions Using Waste-Derived Adsorbents: A Polyaniline/Cuttlefish Bone Nanocomposite for Pollutant Removal. Colloids and Interfaces, 9(1), 1. https://doi.org/10.3390/colloids9010001