Encapsulation of Inorganic Nanoparticles by Anionic Emulsion Polymerization of Diethyl Methylene Malonate for Developing Hybrid Microparticles with Tailorable Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthetic Scheme
2.3. Experimental Design
2.4. Particle Characterization
3. Results and Discussion
3.1. Hybrid DEMM/TiO2 Microparticles
3.2. Importance of Surface Functionalization for Colloidal Stability
3.3. Extension to Other Inorganic Constituents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glotzer, S.C.; Solomon, M.J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 2007, 6, 557–562. [Google Scholar] [CrossRef]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed self-assembly of nanoparticles. ACS Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef]
- Rahman, M.A.; Beltramo, P.J. Rough colloids at fluid interfaces: From fundamental science to applications. Front. Phys. 2023, 11, 1248706. [Google Scholar] [CrossRef]
- Sierra-Martin, B.; Fernandez-Barbero, A. Inorganic/polymer hybrid nanoparticles for sensing applications. Adv. Colloid Interface Sci. 2016, 233, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Cao, Z.; Ziener, U. Recent advances in the preparation of hybrid nanoparticles in miniemulsions. Adv. Colloid Interface Sci. 2014, 211, 47–62. [Google Scholar] [CrossRef]
- Al Zoubi, W.; Kamil, M.P.; Fatimah, S.; Nisa, N.; Ko, G. Recent advances in hybrid organic-inorganic materials with spatial architecture for state-of-the-art applications. Prog. Mater. Sci. 2020, 112, 100663. [Google Scholar] [CrossRef]
- Kanehira, K.; Banzai, T.; Ogino, C.; Shimizu, N.; Kubota, Y.; Sonezaki, S. Properties of TiO2-Polyacrylic Acid Dispersions with Potential for Molecular Recognition. Colloids Surf. B Biointerfaces 2008, 64, 10–15. [Google Scholar] [CrossRef]
- Ninomiya, K.; Ogino, C.; Oshima, S.; Sonoke, S.; Kuroda, S.; Sonochemistry, N. Targeted sonodynamic therapy using protein-modified TiO2 nanoparticles. Ultrason. Sonochem. 2012, 19, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Fredj, D.; Alkarsifi, R.; Pourcin, F.; Liu, X.; Boudjada, N.C.; Pierron, P.; Nourdine, A.; Boujelbene, M.; Fahlman, M.; Videlot-Ackermann, C.; et al. New Antimony-Based Organic-Inorganic Hybrid Material as Electron Extraction Layer for Efficient and Stable Polymer Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 44820–44828. [Google Scholar] [CrossRef] [PubMed]
- Al Zoubi, W.; Min, J.H.; Ko, Y.G. Hybrid organic-inorganic coatings via electron transfer behaviour. Sci. Rep. 2017, 7, 7063. [Google Scholar] [CrossRef]
- Ramizy, A.; Al-Douri, Y.; Omar, K.; Hass, Z. Optical Insights into Enhancement of Solar Cell Performance Based on Porous Silicon Surfaces. In Solar Cells-Silicon Wafer-Based Technologies; InTech: London, UK, 2011. [Google Scholar] [CrossRef]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804. [Google Scholar] [CrossRef]
- Schirone, L.; Sotgiu, G.; Califano, F.P. Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells. Thin Solid Film. 1997, 297, 296–298. [Google Scholar] [CrossRef]
- Moghal, J.; Reid, S.; Hagerty, L.; Gardener, M.; Wakefield, G. Development of single layer nanoparticle anti-reflection coating for polymer substrates. Thin Solid Film. 2013, 534, 541–545. [Google Scholar] [CrossRef]
- Haga, Y.; Watanabe, T.; Yosomiya, R. Encapsulating polymerization of titanium dioxide. Die Angew. Makromol. Chem. 1991, 189, 23–34. [Google Scholar] [CrossRef]
- Xi, J.Q.; Schubert, M.F.; Kim, J.K.; Schubert, E.F.; Chen, M.; Lin, S.Y.; Liu, W.; Smart, J.A. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 2007, 1, 176–179. [Google Scholar] [CrossRef]
- Tan, G.; Lee, J.-H.; Lan, Y.-H.; Wei, M.-K.; Peng, L.-H.; Cheng, I.-C.; Wu, S.-T. Broadband antireflection film with moth-eye-like structure for flexible display applications. Optica 2017, 4, 678. [Google Scholar] [CrossRef]
- Sheth, T.; Seshadri, S.; Prileszky, T.; Helgeson, M.E. Multiple nanoemulsions. Nat. Rev. Mater. 2020, 5, 214–228. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Wu, J.; Jiang, C.; Shen, J.; Cooper, M.A.; Zheng, X.; Liu, Y.; Yang, Z.; Wu, D. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic. Sci. Rep. 2018, 8, 5438. [Google Scholar] [CrossRef]
- Jin, L.; Wu, H.; Morbidelli, M. Synthesis of water-based dispersions of polymer/TiO2 hybrid nanospheres. Nanomaterials 2015, 5, 1454–1468. [Google Scholar] [CrossRef]
- Li, X.; Yu, X.; Han, Y. Polymer thin films for antireflection coatings. J. Mater. Chem. C Mater. 2013, 1, 2266–2285. [Google Scholar] [CrossRef]
- Phillips, B.M.; Jiang, P. Biomimetic Antireflection Surfaces. Eng. Biomimicry 2013, 305–331. [Google Scholar] [CrossRef]
- Janssen, R.Q.F. Polymer Encapsulation of Titanium Dioxide: Efficiency, Stability and Compatibility. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 1994. [Google Scholar] [CrossRef]
- Roebuck, H.S.; Bon, S.A.F. Cross-Linked Primer Strategy for Pigment Encapsulation. 1. Encapsulation of Calcium Carbonate by Emulsion Polymerization. Ind. Eng. Chem. Res. 2019, 58, 21130–21141. [Google Scholar] [CrossRef]
- Huang, M.; Liu, Y.; Yang, G.; Klier, J.; Schiffman, J.D. Anionic Polymerization of Methylene Malonate for High-Performance Coatings. ACS Appl. Polym. Mater. 2019, 1, 657–663. [Google Scholar] [CrossRef] [PubMed]
Synthetic Variable | Low Value | High Value |
---|---|---|
g monomer/g TiO2 | 1.5 | 4.255 |
pH | 4.5 | 7.2 |
SDS | 6 mM | 9 mM |
pH | g Monomer/g TiO2 | SDS (mM) | Size (nm) |
---|---|---|---|
4.5 | 1.5 | 6 | 594 ± 64 |
4.5 | 1.5 | 9 | 375 ± 27 |
4.5 | 4.255 | 6 | 458 ± 42 |
4.5 | 4.255 | 9 | 340 ± 44 |
7.2 | 1.5 | 6 | 1035 ± 31 |
7.2 | 1.5 | 9 | 933 ± 92 |
7.2 | 4.255 | 6 | 1008 ± 75 |
7.2 | 4.255 | 9 | 615 ± 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, S.; Klier, J.; Beltramo, P.J. Encapsulation of Inorganic Nanoparticles by Anionic Emulsion Polymerization of Diethyl Methylene Malonate for Developing Hybrid Microparticles with Tailorable Composition. Colloids Interfaces 2024, 8, 10. https://doi.org/10.3390/colloids8010010
Joshi S, Klier J, Beltramo PJ. Encapsulation of Inorganic Nanoparticles by Anionic Emulsion Polymerization of Diethyl Methylene Malonate for Developing Hybrid Microparticles with Tailorable Composition. Colloids and Interfaces. 2024; 8(1):10. https://doi.org/10.3390/colloids8010010
Chicago/Turabian StyleJoshi, Shreyas, John Klier, and Peter J. Beltramo. 2024. "Encapsulation of Inorganic Nanoparticles by Anionic Emulsion Polymerization of Diethyl Methylene Malonate for Developing Hybrid Microparticles with Tailorable Composition" Colloids and Interfaces 8, no. 1: 10. https://doi.org/10.3390/colloids8010010
APA StyleJoshi, S., Klier, J., & Beltramo, P. J. (2024). Encapsulation of Inorganic Nanoparticles by Anionic Emulsion Polymerization of Diethyl Methylene Malonate for Developing Hybrid Microparticles with Tailorable Composition. Colloids and Interfaces, 8(1), 10. https://doi.org/10.3390/colloids8010010