Asphaltene Precipitation and the Influence of Dispersants and Inhibitors on Morphology Probed by AFM
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Model 1: Effect of n-Alcanes on Agglomeration Dynamics
3.2. Effect of Inhibitors and Dispersants on Model Systems
3.3. Performance of Inhibitors/Dispersants on Stabilization
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harbottle, D.; Chen, Q.; Moorthy, K.; Wang, L.; Xu, S.; Liu, Q.; Sjoblom, J.; Xu, Z. Problematic Stabilizing Films in Petroleum Emulsions: Shear Rheological Response of Viscoelastic Asphaltene Films and the Effect on Drop Coalescence. Langmuir 2014, 30, 6730–6738. [Google Scholar] [CrossRef] [PubMed]
- Kuznicki, N.P.; Harbottle, D.; Masliyah, J.H.; Xu, Z. Probing Mechanical Properties of Water–Crude Oil Interfaces and Colloidal Interactions of Petroleum Emulsions Using Atomic Force Microscopy. Energy Fuels 2017, 31, 3445–3453. [Google Scholar] [CrossRef]
- Hjartnes, T.N.; Sørland, G.H.; Simon, S.; Sjöblom, J. Demulsification of Crude Oil Emulsions Tracked by Pulsed Field Gradient (PFG) Nuclear Magnetic Resonance (NMR). Part I: Chemical Demulsification. Ind. Eng. Chem. Res. 2019, 58, 2310–2323. [Google Scholar] [CrossRef]
- Ivanova, N.O.; Xu, Z.; Liu, Q.; Masliyah, J.H. Surface forces in unconventional oil processing. Curr. Opin. Colloid Interface Sci. 2017, 27, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Foudazi, R.; Qavi, S.; Masalova, I.; Malkin, A.Y. Physical chemistry of highly concentrated emulsions. Adv. Colloid Interface Sci. 2015, 220, 78–91. [Google Scholar] [CrossRef]
- Schuler, B.; Meyer, G.; Peña, D.; Mullins, O.C.; Gross, L. Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. J. Am. Chem. Soc. 2015, 137, 9870–9876. [Google Scholar] [CrossRef]
- Bridot, J.-L.; Langevin, D.; Mullins, O.C. Role of Asphaltene Origin in Its Adsorption at Oil–Water Interfaces. Energy Fuels 2022, 36, 8749–8759. [Google Scholar] [CrossRef]
- Zahabi, A.; Gray, M.R.; Dabros, T. Kinetics and Properties of Asphaltene Adsorption on Surfaces. Energy Fuels 2012, 26, 1009–1018. [Google Scholar] [CrossRef]
- Rane, J.P.; Harbottle, D.; Pauchard, V.; Couzis, A.; Banerjee, S. Adsorption kinetics of asphaltenes at the oil-water interface and nanoaggregation in the bulk. Langmuir 2012, 28, 9986–9995. [Google Scholar] [CrossRef]
- Maqbool, T.; Srikiratiwong, P.; Fogler, H.S. Effect of Temperature on the Precipitation Kinetics of Asphaltenes. Energy Fuels 2011, 25, 694–700. [Google Scholar] [CrossRef]
- Martins, R.G.; Martins, L.S.; Santos, R.G. Effects of Short-Chain n-Alcohols on the Properties of Asphaltenes at Toluene/Air and Toluene/Water Interfaces. Colloids Interfaces 2018, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Hart, A. A review of technologies for transporting heavy crude oil and bitumen via pipelines. J. Pet. Explor. Prod. Technol. 2014, 4, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Speight, J.G. Exploration, Recovery, and Transportation. In The Chemistry and Technology of Petroleum; CRC Press, Taylor and Francis Group, LLC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Martínez-Palou, R.; Mosqueira, M.D.L.; Zapata-Rendón, B.; Mar-Juárez, E.; Bernal-Huicochea, C.; Clavel-López, J.d.l.C.; Aburto, J. Transportation of heavy and extra-heavy crude oil by pipeline: A review. J. Pet. Sci. Eng. 2011, 75, 274–282. [Google Scholar] [CrossRef]
- Saniere, A.; Hénaut, I.; Argillier, J.F. Pipeline transportation of heavy oils, a strategic, economic and technological challenge. Oil Gas Sci. Technol. 2004, 59, 455–466. [Google Scholar] [CrossRef]
- Buckley, J.S. Asphaltene Deposition. Energy Fuels 2012, 26, 4086–4090. [Google Scholar] [CrossRef]
- Buenrostro-Gonzalez, E.; Lira-Galeana, C.; Gil-Villegas, A.; Wu, J. Asphaltene precipitation in crude oils: Theory and experiments. AIChE J. 2004, 50, 2552–2570. [Google Scholar] [CrossRef]
- Hoepfner, M.P.; Limsakoune, V.; Chuenmeechao, V.; Maqbool, T.; Fogler, H.S. A Fundamental Study of Asphaltene Deposition. Energy Fuels 2013, 27, 725–735. [Google Scholar] [CrossRef]
- Hoepfner, M.P.; Vilas Bôas Fávero, C.; Haji-Akbari, N.; Fogler, H.S. The Fractal Aggregation of Asphaltenes. Langmuir 2013, 29, 8799–8808. [Google Scholar] [CrossRef]
- Pradilla, D.; Subramanian, S.; Simon, S.; Sjöblom, J.; Beurroies, I.; Denoyel, R. Microcalorimetry Study of the Adsorption of Asphaltenes and Asphaltene Model Compounds at the Liquid-Solid Surface. Langmuir 2016, 32, 7294–7305. [Google Scholar] [CrossRef] [Green Version]
- Vargas, F.M.; Creek, J.L.; Chapman, W.G. On the Development of an Asphaltene Deposition Simulator. Energy Fuels 2010, 24, 2294–2299. [Google Scholar] [CrossRef]
- Tavakkoli, M.; Panuganti, S.R.; Vargas, F.M.; Taghikhani, V.; Pishvaie, M.R.; Chapman, W.G. Asphaltene Deposition in Different Depositing Environments: Part 1. Model Oil. Energy Fuels 2014, 28, 1617–1628. [Google Scholar] [CrossRef]
- Campen, S.; di Mare, L.; Smith, B.; Wong, J.S.S. Determining the Kinetics of Asphaltene Adsorption from Toluene: A New Reaction–Diffusion Model. Energy Fuels 2017, 31, 9101–9116. [Google Scholar] [CrossRef] [Green Version]
- Elkhatib, O.; Chaisoontornyotin, W.; Gesho, M.; Goual, L. Nanoscale Investigation of Asphaltene Deposition under Capillary Flow Conditions. Energy Fuels 2020, 34, 5148–5158. [Google Scholar] [CrossRef]
- Torkaman, M.; Bahrami, M.; Dehghani, M. Influence of Temperature on Aggregation and Stability of Asphaltenes. I. Perikinetic Aggregation. Energy Fuels 2017, 31, 11169–11180. [Google Scholar] [CrossRef]
- Torkaman, M.; Bahrami, M.; Dehghani, M.R. Influence of Temperature on Aggregation and Stability of Asphaltenes. II. Orthokinetic Aggregation. Energy Fuels 2018, 32, 6144–6154. [Google Scholar] [CrossRef]
- Sharma, A.; Groenzin, H.; Tomita, A.; Mullins, O.C. Probing Order in Asphaltenes and Aromatic Ring Systems by HRTEM. Energy Fuels 2002, 16, 490–496. [Google Scholar] [CrossRef]
- Sharma, A.; Mullins, O.C. Insights into Molecular and Aggregate Structures of Asphaltenes Using HRTEM. In Asphaltenes, Heavy Oils, and Petroleomics; Mullins, O.C., Ed.; Springer: New York, NY, USA, 2007; pp. 205–229. [Google Scholar]
- Trejo, F.; Ancheyta, J.; Rana, M.S. Structural Characterization of Asphaltenes Obtained from Hydroprocessed Crude Oils by SEM and TEM. Energy Fuels 2009, 23, 429–439. [Google Scholar] [CrossRef]
- Goual, L.; Zhang, B.; Rahham, Y. Nanoscale Characterization of Thin Films at Oil/Water Interfaces and Implications to Emulsion Stability. Energy Fuels 2021, 35, 444–455. [Google Scholar] [CrossRef]
- Elkhatib, O.; Zhang, B.; Goual, L. New Insights into Asphaltene Structure and Aggregation by High-Resolution Microscopy. Energy Fuels 2022, 36, 8692–8700. [Google Scholar] [CrossRef]
- Morita, T.; Morimoto, M.; Shibuta, S.; Imamura, H.; Yamamoto, H.; Tykwinski, R.R.; Scott, D.E.; Stryker, J.M.; Suzuki, T.; Tanaka, R. Disaggregation of Asphaltene Aggregates in Solutions Depending upon Affinity Indices of the Hansen Solubility Parameter Using Ultrasmall-, Small-, and Wide-Angle X-ray Scattering. Energy Fuels 2022, 36, 10043–10051. [Google Scholar] [CrossRef]
- Cassiède, M.; Mejia, A.; Radji, S.; Carrier, H.; Daridon, J.-L.; Saidoun, M.; Tort, F. Evaluation of the Influence of a Chemical Inhibitor on Asphaltene Destabilization and Deposition Mechanisms under Atmospheric and Oil Production Conditions Using QCM and AFM Techniques. Energy Fuels 2021, 35, 17551–17565. [Google Scholar] [CrossRef]
- Chaisoontornyotin, W.; Haji-Akbari, N.; Fogler, H.S.; Hoepfner, M.P. Combined Asphaltene Aggregation and Deposition Investigation. Energy Fuels 2016, 30, 1979–1986. [Google Scholar] [CrossRef]
- Haji-Akbari, N.; Masirisuk, P.; Hoepfner, M.P.; Fogler, H.S. A Unified Model for Aggregation of Asphaltenes. Energy Fuels 2013, 27, 2497–2505. [Google Scholar] [CrossRef]
- Tavakkoli, M.; Panuganti, S.R.; Taghikhani, V.; Pishvaie, M.R.; Chapman, W.G. Asphaltene Deposition in Different Depositing Environments: Part 2. Real Oil. Energy Fuels 2014, 28, 3594–3603. [Google Scholar] [CrossRef]
- Spiecker, P.M.; Kilpatrick, P.K. Interfacial Rheology of Petroleum Asphaltenes at the Oil−Water Interface. Langmuir 2004, 20, 4022–4032. [Google Scholar] [CrossRef]
- Speight, J.G. Chapter 11: Asphaltene Constituents. In The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2007; pp. 315–344. [Google Scholar]
- Zhang, Y.; Siskin, M.; Gray, M.R.; Walters, C.C.; Rodgers, R.P. Mechanisms of Asphaltene Aggregation: Puzzles and a New Hypothesis. Energy Fuels 2020, 34, 9094–9107. [Google Scholar] [CrossRef]
- Maqbool, T.; Balgoa, A.T.; Fogler, H.S. Revisiting Asphaltene Precipitation from Crude Oils: A Case of Neglected Kinetic Effects. Energy Fuels 2009, 23, 3681–3686. [Google Scholar] [CrossRef]
- Wang, J.; Buckley, J.S. Asphaltene Stability in Crude Oil and Aromatic SolventsThe Influence of Oil Composition. Energy Fuels 2003, 17, 1445–1451. [Google Scholar] [CrossRef]
- Hammami, A.; Ratulowski, J. Chapter 23. Precipitation and Deposition of Asphaltenes in Production Systems: A Flow Assurance Overview. In Asphaltenes, Heavy Oils, and Petroleomics; Mullins, O., Sheu, E., Hammani, A., Marshall, A., Eds.; Springer, LLC: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Haji-Akbari, N.; Teeraphapkul, P.; Fogler, H.S. Effect of Asphaltene Concentration on the Aggregation and Precipitation Tendency of Asphaltenes. Energy Fuels 2014, 28, 909–919. [Google Scholar] [CrossRef]
- Haji-Akbari, N.; Teeraphapkul, P.; Balgoa, A.T.; Fogler, H.S. Effect of n-Alkane Precipitants on Aggregation Kinetics of Asphaltenes. Energy Fuels 2015, 29, 2190–2196. [Google Scholar] [CrossRef]
- Maqbool, T.; Raha, S.; Hoepfner, M.P.; Fogler, H.S. Modeling the Aggregation of Asphaltene Nanoaggregates in Crude Oil−Precipitant Systems. Energy Fuels 2011, 25, 1585–1596. [Google Scholar] [CrossRef]
- Lawal, K.A.; Crawshaw, J.P.; Boek, E.S.; Vesovic, V. Experimental Investigation of Asphaltene Deposition in Capillary Flow. Energy Fuels 2012, 26, 2145–2153. [Google Scholar] [CrossRef]
- Nabzar, L.; Aguiléra, M.E. The Colloidal Approach. A Promising Route for Asphaltene Deposition Modelling. Oil Gas Sci. Technol. -Rev. IFP 2008, 63, 21–35. [Google Scholar] [CrossRef]
- Eskin, D.; Ratulowski, J.; Akbarzadeh, K.; Pan, S. Modelling asphaltene deposition in turbulent pipeline flows. Can. J. Chem. Eng. 2011, 89, 421–441. [Google Scholar] [CrossRef]
- Campen, S.; Moorhouse, S.J.; Wong, J.S.S. Mechanism of an asphaltene inhibitor in different depositing environments: Influence of colloid stability. J. Pet. Sci. Eng. 2020, 184, 106502. [Google Scholar] [CrossRef]
- Khaleel, A.T.; Sisco, C.J.; Tavakkoli, M.; Vargas, F.M. An Investigation of the Effect of Asphaltene Polydispersity on Asphaltene Precipitation and Deposition Tendencies. Energy Fuels 2022, 36, 8799–8808. [Google Scholar] [CrossRef]
- Cheraghian, G.; Wistuba, M.P.; Kiani, S.A. Behnood, M. Afrand, and A.R. Barron, Engineered nanocomposites in asphalt binders. Nanotechnol. Rev. 2022, 11, 1047–1067. [Google Scholar] [CrossRef]
- Hu, C.; Hartman, R.L. High-throughput packed-bed microreactors with in-line analytics for the discovery of asphaltene deposition mechanisms. AIChE J. 2014, 60, 3534–3546. [Google Scholar] [CrossRef]
- Goual, L.; Sedghi, M.; Wang, X.; Zhu, Z. Asphaltene Aggregation and Impact of Alkylphenols. Langmuir 2014, 30, 5394–5403. [Google Scholar] [CrossRef]
- Goual, L.; Sedghi, M. Role of ion-pair interactions on asphaltene stabilization by alkylbenzenesulfonic acids. J. Colloid Interface Sci. 2015, 440, 23–31. [Google Scholar] [CrossRef]
- Institute, E. IP 469: Determination of saturated, aromatic and polar compounds in petroleum products by thin layer chromatography and flame ionization detection. In IP Test Methods; Energy Institute: London, UK, 2006. [Google Scholar]
- ASTM D7042-19; Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer and the Calculation of Kinematic Viscosity. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D664-18e2; Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D6560-17; Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products. ASTM International: West Conshohocken, PA, USA, 2017.
- Wiehe, I.A. Asphaltene Solubility and Fluid Compatibility. Energy Fuels 2012, 26, 4004–4016. [Google Scholar] [CrossRef]
- Alboudwarej, H.; Akbarzadeh, K.; Beck, J.; Svrcek, W.Y.; Yarranton, H.W. Regular Solution Model for Asphaltene Precipitation from Bitumens and Solvents. AIChE J. 2003, 49, 2948–2956. [Google Scholar] [CrossRef]
- Wiehe, I.A.; Yarranton, H.W.; Akbarzadeh, K.; Rahimi, P.M.; Teclemariam, A. The Paradox of Asphaltene Precipitation with Normal Paraffins. Energy Fuels 2005, 19, 1261–1267. [Google Scholar] [CrossRef]
- Manek, M.B. Asphaltene Dispersants as Demulsification Aids. In SPE International Symposium on Oilfield Chemistry; Society of Petroleum Engineers, USA: San Antonio, TX, USA, 1995; p. SPE-28972-MS. [Google Scholar]
- González, G.; Acevedo, S.; Castillo, J.; Villegas, O.; Ranaudo, M.A.; Guzmán, K.; Orea, M.; Bouyssiere, B. Study of Very High Molecular Weight Cluster Presence in THF Solution of Asphaltenes and Subfractions A1 and A2, by Gel Permeation Chromatography with Inductively Coupled Plasma Mass Spectrometry. Energy Fuels 2020, 34, 12535–12544. [Google Scholar] [CrossRef]
- Mitchell, D.L.; Speight, J.G. The solubility of asphaltenes in hydrocarbon solvents. Fuel 1973, 52, 149–152. [Google Scholar] [CrossRef]
- Lee, M.H.; Furst, E.M. Formation and evolution of sediment layers in an aggregating colloidal suspension. Phys. Rev. E 2006, 74, 031401. [Google Scholar] [CrossRef]
- Whitmer, J.K.; Luijten, E. Sedimentation of aggregating colloids. J. Chem. Phys. 2011, 134, 034510. [Google Scholar] [CrossRef] [Green Version]
- Dong, K.J.; Yang, R.Y.; Zou, R.P.; Yu, A.B. Role of Interparticle Forces in the Formation of Random Loose Packing. Phys. Rev. Lett. 2006, 96, 145505. [Google Scholar] [CrossRef]
- Dymond, J.H.; O/ye, H.A. Viscosity of Selected Liquid n-Alkanes. J. Phys. Chem. Ref. Data 1994, 23, 41–53. [Google Scholar] [CrossRef]
- Poozesh, A.; Sharifi, M.; Fahimpour, J. Modeling of Asphaltene Deposition Kinetics. Energy Fuels 2020, 34, 9304–9319. [Google Scholar] [CrossRef]
- Vilas Bôas Fávero, C.; Hanpan, A.; Phichphimok, P.; Binabdullah, K.; Fogler, H.S. Mechanistic Investigation of Asphaltene Deposition. Energy Fuels 2016, 30, 8915–8921. [Google Scholar] [CrossRef]
- Wang, X.; Gu, Y. Characterization of Precipitated Asphaltenes and Deasphalted Oils of the Medium Crude Oil-CO2 and Medium Crude Oil-n-Pentane Systems. Energy Fuels 2011, 25, 5232–5241. [Google Scholar] [CrossRef]
- Qiao, P.; Harbottle, D.; Li, Z.; Tang, Y.; Xu, Z. Interactions of Asphaltene Subfractions in Organic Media of Varying Aromaticity. Energy Fuels 2018, 32, 10478–10485. [Google Scholar] [CrossRef]
- Syunyaev, R.Z.; Balabin, R.M.; Akhatov, I.S.; Safieva, J.O. Adsorption of Petroleum Asphaltenes onto Reservoir Rock Sands Studied by Near-Infrared (NIR) Spectroscopy. Energy Fuels 2009, 23, 1230–1236. [Google Scholar] [CrossRef]
- Balabin, R.M.; Syunyaev, R.Z.; Schmid, T.; Stadler, J.; Lomakina, E.I.; Zenobi, R. Asphaltene Adsorption onto an Iron Surface: Combined Near-Infrared (NIR), Raman, and AFM Study of the Kinetics, Thermodynamics, and Layer Structure. Energy Fuels 2011, 25, 189–196. [Google Scholar] [CrossRef]
- León, O.; Rogel, E.; Urbina, A.; Andújar, A.; Lucas, A. Study of the adsorption of alkyl benzene-derived amphiphiles on asphaltene particles. Langmuir 1999, 15, 7653–7657. [Google Scholar] [CrossRef]
- Simon, S.; Wei, D.; Barriet, M.; Sjöblom, J. An ITC and NMR study of interaction and complexation of asphaltene model compounds in apolar solvent I: Self-association pattern. Colloids Surf. A Physicochem. Eng. Asp. 2016, 494, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Simon, S.; Barriet, M.; Sjöblom, J. An ITC study of interaction and complexation of asphaltene model compounds in apolar solvent II: Interactions with asphaltene inhibitors. Colloids Surf. A Physicochem. Eng. Asp. 2016, 495, 87–99. [Google Scholar] [CrossRef]
Parameter | Method | Value |
---|---|---|
Saturates (%wt) | IP 469 [55] | 7.4 |
Aromatics (%wt) | 37.8 | |
Resins (%wt) | 15.3 | |
Asphaltenes (%wt) | 39.5 | |
Density (kg/m3) at 15.5 °C | ASTM D7042-19 [56] | 954 |
Density (°API) at 15.5 °C | ASTM D7042-19 [56] | 13.6 |
TAN (mg KOH/g) | ASTM D664-18e2 [57] | 0.134 |
Commercial Family (Name Used in this Work) | Molar Mass (Kg/mol) | Density (Kg/m3) |
---|---|---|
Ethoxylated nonylphenol (ENP) | 396 | 1027 |
Dodecylbenzene sulfonic acid (DBSA) | 326 | 1060 |
Alkyl phenolic resin (APR) | >1200 | 900 |
Polyisobutylene succinic anhydride derivative (PIBSA) | >800 | 936 |
n-Alkane | Aggregation Time () | Sedimentation Time () | Final Height () | Viscosity () * |
---|---|---|---|---|
Dodecane | 1150 | 3875 | 3.7 | 1.56 |
Decane | 275 | 870 | 3.2 | 0.93 |
Heptane | 100 | 400 | 2.2 | 0.41 |
Hexane | 25 | 225 | 1.8 | 0.32 |
Additive | Model 1 [g/L] | Model 2 [g/L] |
---|---|---|
ENP | 256 | 100 |
DBSA | 6 | 3 |
APR | 0.1 | 0.1 |
PIBSA | 0.1 | 0.1 |
Parameter | Model 1 | Model 2 |
---|---|---|
Average height [nm] | 0%: 311 APR: 440 PIBSA: 208 | 0%: 48 APR: 75 PIBSA: 51 |
Mean square roughness [nm] | 0% 42 APR: 65 PIBSA: 30 | 0%: 11 APR: 13 PIBSA: 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mojica, D.; Angeles, M.; Alvarez, O.; Pradilla, D. Asphaltene Precipitation and the Influence of Dispersants and Inhibitors on Morphology Probed by AFM. Colloids Interfaces 2023, 7, 3. https://doi.org/10.3390/colloids7010003
Mojica D, Angeles M, Alvarez O, Pradilla D. Asphaltene Precipitation and the Influence of Dispersants and Inhibitors on Morphology Probed by AFM. Colloids and Interfaces. 2023; 7(1):3. https://doi.org/10.3390/colloids7010003
Chicago/Turabian StyleMojica, Daniela, Mauricio Angeles, Oscar Alvarez, and Diego Pradilla. 2023. "Asphaltene Precipitation and the Influence of Dispersants and Inhibitors on Morphology Probed by AFM" Colloids and Interfaces 7, no. 1: 3. https://doi.org/10.3390/colloids7010003
APA StyleMojica, D., Angeles, M., Alvarez, O., & Pradilla, D. (2023). Asphaltene Precipitation and the Influence of Dispersants and Inhibitors on Morphology Probed by AFM. Colloids and Interfaces, 7(1), 3. https://doi.org/10.3390/colloids7010003