Bionanocomposite Active Packaging Material Based on Soy Protein Isolate/Persian Gum/Silver Nanoparticles; Fabrication and Characteristics
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Preparation of Films
2.3. Characterization of Films
2.3.1. Material Characterization
2.3.2. Thickness and Mechanical Properties
2.3.3. Water Vapor Permeability (WVP)
2.3.4. Transparency
2.3.5. Moisture Content and Water Solubility
2.3.6. Antibacterial Activity
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physical Characteristics of Films
3.1.1. Thickness and Density Degree
3.1.2. Solubility in Water and Moisture Content
3.1.3. Water Vapor Permeability
3.1.4. Transparency
3.2. Mechanical Characteristics
3.3. Instrumental and Spectroscopy Characteristics of Films
3.3.1. FE-SEM
3.3.2. ATR-FTIR
3.3.3. XRD
3.4. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. An overview of plastic waste generation and management in food packaging industries. Recycling 2021, 6, 12. [Google Scholar] [CrossRef]
- Alizadeh Sani, M.; Tavassoli, M.; Salim, S.A.; Azizi-lalabadi, M.; McClements, D.J. Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocoll. 2022, 124, 107324. [Google Scholar] [CrossRef]
- Sani, M.A.; Azizi-Lalabadi, M.; Tavassoli, M.; Mohammadi, K.; McClements, D.J. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. Nanomaterials 2021, 11, 1331. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Fetisova, O.Y.; Antonov, A.V.; Bondarenko, G.N.; Sychev, V.V. Production and description the characterization of guar gum galactomannan butyl ether. Iraqi J. Agric. Sci. 2022, 53, 198–206. [Google Scholar] [CrossRef]
- Golachowski, A.; Drożdż, W.; Golachowska, M.; Kapelko-Żeberska, M.; Raszewski, B. Production and properties of starch citrates—Current research. Foods 2020, 9, 1311. [Google Scholar] [CrossRef]
- Kapelko-Żeberska, M.; Buksa, K.; Szumny, A.; Zięba, T.; Gryszkin, A. Analysis of molecular structure of starch citrate obtained by a well-stablished method. LWT-Food Sci. Technol. 2016, 69, 334–341. [Google Scholar] [CrossRef]
- Tavassoli, M.; Alizadeh Sani, M.; Khezerlou, A.; Ehsani, A.; Jahed-Khaniki, G.; McClements, D.J. Smart Biopolymer-Based Nanocomposite Materials Containing pH-Sensing Colorimetric Indicators for Food Freshness Monitoring. Molecules 2022, 27, 3168. [Google Scholar] [CrossRef]
- Alizadeh Sani, M.; Maleki, M.; Eghbaljoo-Gharehgheshlaghi, H.; Khezerlou, A.; Mohammadian, E.; Liu, Q.; Jafari, S.M. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Adv. Colloid Interface Sci. 2022, 300, 102593. [Google Scholar] [CrossRef]
- Zhao, N.; Chai, Y.; Wang, T.; Wang, K.; Jiang, J.; Yang, H.-y. Preparation and physical/chemical modification of galactomannan film for food packaging. Int. J. Biol. Macromol. 2019, 137, 1060–1067. [Google Scholar] [CrossRef]
- Ganie, S.A.; Ali, A.; Mir, T.A.; Li, Q. Physical and chemical modification of biopolymers and biocomposites. In Advanced Green Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 359–377. [Google Scholar]
- Wang, H.; Gong, X.; Miao, Y.; Guo, X.; Liu, C.; Fan, Y.-Y.; Zhang, J.; Niu, B.; Li, W. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chem. 2019, 283, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-Y.; Chen, M.; Wang, Z.-W. Release of Thymol, Cinnamaldehyde and Vanillin from Soy Protein Isolate Films into Olive Oil. Packag. Technol. Sci. 2012, 25, 97–106. [Google Scholar] [CrossRef]
- Ye, Q.; Han, Y.; Zhang, J.; Zhang, W.; Xia, C.; Li, J. Bio-based films with improved water resistance derived from soy protein isolate and stearic acid via bioconjugation. J. Clean. Prod. 2019, 214, 125–131. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Q.; Huang, H.; Duan, Y.; Xiao, G.; Le, T. Enhanced physico-mechanical, barrier and antifungal properties of soy protein isolate film by incorporating both plant-sourced cinnamaldehyde and facile synthesized zinc oxide nanosheets. Colloids Surf. B Biointerfaces 2019, 180, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Martelli-Tosi, M.; Masson, M.M.; Silva, N.C.; Esposto, B.S.; Barros, T.T.; Assis, O.B.G.; Tapia-Blácido, D.R. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydr. Polym. 2018, 198, 61–68. [Google Scholar] [CrossRef]
- Thakur, M.K.; Thakur, V.K.; Gupta, R.K.; Pappu, A. Synthesis and applications of biodegradable soy based graft copolymers: A review. ACS Sustain. Chem. Eng. 2016, 4, 1–17. [Google Scholar] [CrossRef]
- Zienkiewicz-Strzałka, M.; Deryło-Marczewska, A.; Skorik, Y.A.; Petrova, V.A.; Choma, A.; Komaniecka, I. Silver nanoparticles on chitosan/silica nanofibers: Characterization and antibacterial activity. Int. J. Mol. Sci. 2019, 21, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rani, S.; Kumar, R. A Review on Material and Antimicrobial Properties of Soy Protein Isolate Film. J. Polym. Environ. 2019, 27, 1613–1628. [Google Scholar] [CrossRef]
- Razmjoo, F.; Sadeghi, E.; Rouhi, M.; Mohammadi, R.; Noroozi, R.; Safajoo, S. Polyvinyl alcohol–Zedo gum edible film: Physical, mechanical and thermal properties. J. Appl. Polym. Sci. 2021, 138, 49875. [Google Scholar] [CrossRef]
- Braga, L.R.; Pérez, L.M.; Soazo, M.d.V.; Machado, F. Evaluation of the antimicrobial, antioxidant and physicochemical properties of Poly(Vinyl chloride) films containing quercetin and silver nanoparticles. LWT 2019, 101, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Abad, A.; Lagaron, J.M.; Ocio, M.J. Development and characterization of silver-based antimicrobial ethylene–vinyl alcohol copolymer (EVOH) films for food-packaging applications. J. Agric. Food Chem. 2012, 60, 5350–5359. [Google Scholar] [CrossRef]
- Deshmukh, S.P.; Patil, S.M.; Mullani, S.B.; Delekar, S.D. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci. Eng. C 2019, 97, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Dhital, R.; Wang, W.; Sun, L.; Zeng, W.; Mustapha, A.; Lin, M. Development of multifunctional nanocomposites containing cellulose nanofibrils and soy proteins as food packaging materials. Food Packag. Shelf Life 2019, 21, 100366. [Google Scholar] [CrossRef]
- Yoksan, R.; Chirachanchai, S. Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater. Sci. Eng. C 2010, 30, 891–897. [Google Scholar] [CrossRef]
- Moghaddas Kia, E.; Ghasempour, Z.; Alizadeh, M. Fabrication of an eco-friendly antioxidant biocomposite: Zedo gum/sodium caseinate film by incorporating microalgae (Spirulina platensis). J. Appl. Polym. Sci. 2018, 135, 46024. [Google Scholar] [CrossRef]
- Ortega, F.; Giannuzzi, L.; Arce, V.B.; García, M.A. Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocoll. 2017, 70, 152–162. [Google Scholar] [CrossRef]
- González, A.; Igarzabal, C.I.A. Soy protein–Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocoll. 2013, 33, 289–296. [Google Scholar] [CrossRef]
- Liu, X.; Song, R.; Zhang, W.; Qi, C.; Zhang, S.; Li, J. Development of eco-friendly soy protein isolate films with high mechanical properties through HNTs, PVA, and PTGE synergism effect. Sci. Rep. 2017, 7, 44289. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Liu, Y.; Kang, S.; Wang, K.; Xu, H. Development and evaluation of soy protein isolate-based antibacterial nanocomposite films containing cellulose nanocrystals and zinc oxide nanoparticles. Food Hydrocoll. 2020, 106, 105898. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.-W. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem. 2014, 148, 162–169. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Z.; Li, W.; Li, M.; Deng, Q.; Wang, Y.; Li, C.; Chu, P.K. Ecofriendly and biodegradable soybean protein isolate films incorporated with zno nanoparticles for food packaging. ACS Appl. Bio Mater. 2019, 2, 2202–2207. [Google Scholar] [CrossRef]
- Han, Y.; Wang, L. Improved water barrier and mechanical properties of soy protein isolate films by incorporation of SiO 2 nanoparticles. RSC Adv. 2016, 6, 112317–112324. [Google Scholar] [CrossRef]
- Rhim, J.; Wang, L.; Hong, S. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll. 2013, 33, 327–335. [Google Scholar] [CrossRef]
- Pandey, S.; Goswami, G.K.; Nanda, K.K. Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int. J. Biol. Macromol. 2012, 51, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Beak, S.; Kim, H.; Song, K.B. Characterization of an olive flounder bone gelatin-Zinc oxide nanocomposite film and evaluation of its potential application in spinach packaging. J. Food Sci. 2017, 82, 2643–2649. [Google Scholar] [CrossRef]
- Uranga, J.; Llamas, M.G.; Agirrezabala, Z.; Dueñas, M.T.; Etxebeste, O.; Guerrero, P.; de la Caba, K. Compression Molded Soy Protein Films with Exopolysaccharides Produced by Cider Lactic Acid Bacteria. Polymers 2020, 12, 2106. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Z.; Li, P.; Li, W.; Li, C.; Wang, Y.; Chu, P.K. Degradable and photocatalytic antibacterial Au-TiO2/sodium alginate nanocomposite films for active food packaging. Nanomaterials 2018, 8, 930. [Google Scholar] [CrossRef] [Green Version]
- Assis, R.Q.; Pagno, C.H.; Stoll, L.; Rios, P.D.A.; de Oliveira Rios, A.; Olivera, F.C. Active food packaging of cellulose acetate: Storage stability, protective effect on oxidation of riboflavin and release in food simulants. Food Chem. 2021, 349, 129140. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Alizadeh-Sani, M.; Khezerlou, A.; Mirzanajafi-Zanjani, M.; Zolfaghari, H.; Bagheri, V.; Divband, B.; Ehsani, A. Nanoparticles and zeolites: Antibacterial effects and their mechanism against pathogens. Curr. Pharm. Biotechnol. 2019, 20, 1074–1086. [Google Scholar] [CrossRef]
- Sui, Z.; Chen, X.; Wang, L.; Xu, L.; Zhuang, W.; Chai, Y.; Yang, C. Capping effect of CTAB on positively charged Ag nanoparticles. Phys. E Low-Dimens. Syst. Nanostructures 2006, 33, 308–314. [Google Scholar] [CrossRef]
- Mofidfar, M.; Kim, E.S.; Larkin, E.L.; Long, L.; Jennings, W.D.; Ahadian, S.; Ghannoum, M.A.; Wnek, G.E. Antimicrobial Activity of Silver Containing Crosslinked Poly(Acrylic Acid) Fibers. Micromachines 2019, 10, 829. [Google Scholar] [CrossRef]
Sample Code | SPI (%w/v) | PG (%w/v) | SNPs (%wt) |
---|---|---|---|
SPI | 5 | 0 | 0 |
SPI/PG-1 | 5 | 0.25 | 0 |
SPI/PG-2 | 5 | 0.5 | 0 |
SPI/PG-3 | 5 | 1 | 0 |
SPI/PG/SNPs-1 | 5 | 0.25 | 1 |
SPI/PG/SNPs-2 | 5 | 0.25 | 2 |
Sample Code | WVP (×10−10 g Pa−1 s−1 m−1) | WS (%) | MC (%) | T600 (%) | Thickness (mm) | TS (MPa) | EB (%) |
---|---|---|---|---|---|---|---|
SPI | 3.25 ± 0.20 a | 37.15 ± 1.38 a | 13.04 ± 1.22 a | 68.6 ± 2.33 a | 0.152 ± 0.05 a | 3.15 ± 0.66 a | 140.5 ± 2.55 a |
SPI/PG-1 | 3.10 ± 0.33 a | 34.50 ± 2.33 b | 12.98 ± 1.75 a | 65.4 ± 2.66 a | 0.153 ± 0.06 a | 3.28 ± 0.33 a | 128.2 ± 1.50 b |
SPI/PG-2 | 2.95 ± 0.15 a | 35.66 ± 1.25 b | 12.50 ± 2.33 a | 50.2 ± 1.40 b | 0.162 ± 0.02 b | 3.50 ± 0.75 a | 100.6 ± 2.66 c |
SPI/PG-3 | 3.15 ± 0.40 a | 35.00 ± 2.66 b | 12.68 ± 0.90 a | 28.7 ± 1.88 c | 0.165 ± 0.03 b | 2.78 ± 0.25 b | 58.1 ± 2.33 d |
SPI/PG/ SNPs-1 | 2.80 ± 0.33 b | 32.15 ± 1.80 c | 11.66 ± 2.66 b | 18.6 ± 2.25 d | 0.170 ± 0.07 b | 3.40 ± 0.46 a | 90.4 ± 1.88 e |
SPI/PG/ SNPs-2 | 2.60 ± 0.66 b | 30.75 ± 1.50 c | 11.23 ± 1.50 b | 10.3 ± 0.88 e | 0.182 ± 0.06 d | 3.65 ± 0.50 a | 78.3 ± 1.75 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alizadeh Sani, M.; Khezerlou, A.; Tavassoli, M.; Mohammadi, K.; Hassani, S.; Ehsani, A.; McClements, D.J. Bionanocomposite Active Packaging Material Based on Soy Protein Isolate/Persian Gum/Silver Nanoparticles; Fabrication and Characteristics. Colloids Interfaces 2022, 6, 57. https://doi.org/10.3390/colloids6040057
Alizadeh Sani M, Khezerlou A, Tavassoli M, Mohammadi K, Hassani S, Ehsani A, McClements DJ. Bionanocomposite Active Packaging Material Based on Soy Protein Isolate/Persian Gum/Silver Nanoparticles; Fabrication and Characteristics. Colloids and Interfaces. 2022; 6(4):57. https://doi.org/10.3390/colloids6040057
Chicago/Turabian StyleAlizadeh Sani, Mahmood, Arezou Khezerlou, Milad Tavassoli, Keyhan Mohammadi, Shokoufeh Hassani, Ali Ehsani, and David Julian McClements. 2022. "Bionanocomposite Active Packaging Material Based on Soy Protein Isolate/Persian Gum/Silver Nanoparticles; Fabrication and Characteristics" Colloids and Interfaces 6, no. 4: 57. https://doi.org/10.3390/colloids6040057
APA StyleAlizadeh Sani, M., Khezerlou, A., Tavassoli, M., Mohammadi, K., Hassani, S., Ehsani, A., & McClements, D. J. (2022). Bionanocomposite Active Packaging Material Based on Soy Protein Isolate/Persian Gum/Silver Nanoparticles; Fabrication and Characteristics. Colloids and Interfaces, 6(4), 57. https://doi.org/10.3390/colloids6040057