A Simple Method to Determine Critical Coagulation Concentration from Electrophoretic Mobility
Abstract
:1. Introduction
2. Calculating Critical Coagulation Concentration
convertmobilitytopotential | # use Equation (9) |
convertconcentrationtoionic strength | # use Equation (8) |
convertpotentialtosurface charge | # use Equation (5) |
calculateCCISfromsurface charge | # use Equation (7) |
find roots for | # find where calculated ccis is equal |
# to experimental ionic strength | |
convert the resulting roots fromCCIStoCCC | # use Equation (8) |
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Particle | Salt | pH | Hamaker Constant (J) | Measured CCC (M) | Calculated CCC (M) | Reference |
---|---|---|---|---|---|---|
Sulfate Latex | NaCl | 4.0 | 0.12 | 0.21 | [56] | |
Sulfate Latex | KCl | 4.0 | 0.11 | 0.21 | [56] | |
Sulfate Latex | CsCl | 4.0 | 0.25 | 0.19 | [56] | |
Sulfate Latex | MgCl | 4.0 | 0.031 | 0.048 | [56] | |
Sulfate Latex | CaCl | 4.0 | 0.032 | 0.026 | [56] | |
Sulfate Latex | BaCl | 4.0 | 0.024 | 0.037 | [56] | |
Sulfate Latex | LaCl | 4.0 | 0.00099 | 0.0016 | [56] | |
Sulfate Latex | Co(NH)Cl | 4.0 | 0.00087 | 0.0011 | [56] | |
Sulfate Latex | Ru(NH)Cl | 4.0 | 0.00072 | 0.00047 | [56] | |
Carboxyl Latex | NaCl | 4.0 | 0.061 | 0.061 | [56] | |
Carboxyl Latex | KCl | 4.0 | 0.051 | 0.039 | [56] | |
Carboxyl Latex | CsCl | 4.0 | 0.050 | 0.051 | [56] | |
Carboxyl Latex | MgCl | 4.0 | 0.020 | 0.027 | [56] | |
Carboxyl Latex | CaCl | 4.0 | 0.014 | 0.014 | [56] | |
Carboxyl Latex | BaCl | 4.0 | 0.018 | 0.010 | [56] | |
Carboxyl Latex | LaCl | 4.0 | 0.00088 | 0.0010 | [56] | |
Carboxyl Latex | Co(NH )Cl | 4.0 | 0.0020 | 0.0030 | [56] | |
Carboxyl Latex | Ru(NH )Cl | 4.0 | 0.0013 | 0.00097 | [56] | |
Amidine Latex | NaCl | 4.0 | 0.20 | 0.23 | [35] | |
Amidine Latex | NaBr | 4.0 | 0.12 | 0.155 | [35] | |
Amidine Latex | NaN(CN) | 4.0 | 0.050 | 0.030 | [35] | |
Amidine Latex | NaSCN | 4.0 | 0.052 | 0.044 | [35] | |
Amidine Latex | BMIMCl | 4.0 | 0.20 | 0.25 | [35] | |
Amidine Latex | BMIMBr | 4.0 | 0.15 | 0.194 | [35] | |
Amidine Latex | BMIMN(CN) | 4.0 | 0.075 | 0.064 | [35] | |
Amidine Latex | BMIMSCN | 4.0 | 0.020 | 0.013 | [35] | |
Amidine Latex | BMPLCl | 4.0 | 0.20 | 0.20 | [35] | |
Amidine Latex | BMPLBr | 4.0 | 0.065 | 0.094 | [35] | |
Amidine Latex | BMPLN(CN) | 4.0 | 0.050 | 0.058 | [35] | |
Amidine Latex | BMPLSCN | 4.0 | 0.040 | 0.033 | [35] | |
Sulfate Latex | NaCl | 4.0 | 0.40 | 0.46 | [35] | |
Sulfate Latex | NaBr | 4.0 | 0.40 | 0.46 | [35] | |
Sulfate Latex | NaN(CN) | 4.0 | 0.40 | 0.46 | [35] | |
Sulfate Latex | NaSCN | 4.0 | 0.40 | 0.46 | [35] | |
Sulfate Latex | BMIMCl | 4.0 | 0.030 | 0.026 | [35] | |
Sulfate Latex | BMIMBr | 4.0 | 0.019 | 0.015 | [35] | |
Sulfate Latex | BMIMN(CN) | 4.0 | 0.036 | 0.038 | [35] | |
Sulfate Latex | BMIMSCN | 4.0 | 0.093 | 0.062 | [35] | |
Sulfate Latex | BMPLCl | 4.0 | 0.044 | 0.028 | [35] | |
Sulfate Latex | BMPLBr | 4.0 | 0.044 | 0.024 | [35] | |
Sulfate Latex | BMPLN(CN) | 4.0 | 0.022 | 0.018 | [35] | |
Sulfate Latex | BMPLSCN | 4.0 | 0.0087 | 0.0039 | [35] | |
Sulfate Latex | MIMCl | 4.0 | 0.24 | 0.23 | [35] | |
Sulfate Latex | EMIMCl | 4.0 | 0.151 | 0.125 | [35] | |
Sulfate Latex | BMIMCl | 4.0 | 0.030 | 0.046 | [35] | |
Sulfate Latex | HMIMCl | 4.0 | 0.0061 | 0.0051 | [35] | |
Sulfate Latex | OMIMCl | 4.0 | 0.00071 | 0.00054 | [35] | |
Amidine Latex | KCl | 4.0 | 0.25 | 0.18 | [50] | |
Amidine Latex | K SO | 4.0 | 0.029 | 0.042 | [50] | |
Amidine Latex | KFe(CN) | 4.0 | 0.00025 | 0.00019 | [50] | |
Amidine Latex | KFe(CN) | 4.0 | 0.000030 | 0.000044 | [50] | |
Allophane | NaF | 5 | 0.00026 | 0.00021 | [57] | |
Allophane | NaCl | 5 | 0.0068 | 0.0086 | [57] | |
Allophane | NaBr | 5 | 0.015 | 0.012 | [57] | |
Allophane | NaI | 5 | 0.017 | 0.0136 | [57] | |
Allophane | NaBrO | 5 | 0.0106 | 0.0117 | [57] | |
Allophane | NaIO | 5 | 0.0036 | 0.0035 | [57] | |
Allophane | NaSCN | 5 | 0.0087 | 0.010 | [57] | |
LDH | KCl | 9 | 0.054 | 0.060 | [45] | |
LDH | KNO | 9 | 0.022 | 0.021 | [45] | |
LDH | KSCN | 9 | 0.013 | 0.0090 | [45] | |
LDH | KHCO | 9 | 0.0019 | 0.0012 | [45] | |
TNP | KCl | 10 | 0.025 | 0.063 | [58] | |
TNP | MIMCl | 10 | 0.00025 | 0.00042 | [58] | |
TNP | EMIMCl | 10 | 0.016 | 0.018 | [58] | |
TNP | BMIMCI | 10 | 0.028 | 0.027 | [58] | |
TNP | KCl | 4.0 | 0.058 | 0.046 | [58] | |
TNP | MIMCl | 4.0 | 0.056 | 0.037 | [58] | |
TNP | EMIMCl | 4.0 | 0.054 | 0.027 | [58] | |
TNP | BMIMCI | 4.0 | 0.040 | 0.042 | [58] | |
TNS | KCl | 10 | 0.048 | 0.042 | [58] | |
TNS | MIMCl | 10 | 0.00051 | 0.00094 | [58] | |
TNS | EMIMCl | 10 | 0.025 | 0.018 | [58] | |
TNS | BMIMCI | 10 | 0.049 | 0.035 | [58] | |
TNS | KCl | 4.0 | 0.035 | 0.047 | [58] | |
TNS | MIMCl | 4.0 | 0.035 | 0.056 | [58] | |
TNS | EMIMCl | 4.0 | 0.037 | 0.061 | [58] | |
TNS | BMIMCI | 4.0 | 0.031 | 0.050 | [58] | |
TNS | NaCl | 4.0 | 0.017 | 0.039 | [49] | |
TNS, PDADMAC coated | NaCl | 4.0 | 0.045 | 0.047 | [49] | |
TNS, PSS coated | NaCl | 4.0 | 0.100 | 0.080 | [49] | |
TNS | NaCl | 10 | 0.10 | 0.084 | [49] | |
TNS, PDADMAC coated | NaCl | 10 | 0.40 | 0.034 | [49] | |
TNS, PSS coated | NaCl | 10 | 0.080 | 0.067 | [49] | |
TNS | KCl | 4.0 | 0.034 | 0.028 | [36] | |
TNS | KNO | 4.0 | 0.0061 | 0.029 | [36] | |
TNS | KSCN | 4.0 | 0.0044 | 0.021 | [36] | |
TNS | KCl | 10 | 0.039 | 0.045 | [36] | |
TNS | KNO | 10 | 0.040 | 0.041 | [36] | |
TNS | KSCN | 10 | 0.052 | 0.064 | [36] |
References
- Bahng, J.H.; Yeom, B.; Wang, Y.; Tung, S.O.; Hoff, J.D.; Kotov, N. Anomalous Dispersions of ‘Hedgehog’ Particles. Nature 2015, 517, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Scholten, J.D.; Leal, B.C.; Dupont, J. Transition Metal Nanoparticle Catalysis in Ionic Liquids. ACS Catal. 2012, 2, 184–200. [Google Scholar] [CrossRef]
- Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Monodispersed Colloidal Spheres: Old Materials with New Applications. Adv. Mater. 2000, 12, 693–713. [Google Scholar] [CrossRef]
- Herves, P.; Perez-Lorenzo, M.; Liz-Marzan, L.M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Catalysis by Metallic Nanoparticles in Aqueous Solution: Model Reactions. Chem. Soc. Rev. 2012, 41, 5577–5587. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-Dimensional, One-Dimensional, Two-Dimensional and Three-Dimensional Nanostructured Materials for Advanced Electrochemical Energy Devices. Prog. Mater. Sci. 2012, 57, 724–803. [Google Scholar] [CrossRef]
- Qin, L.; Wang, X.Y.; Liu, Y.F.; Wei, H. 2D-Metal-Organic-Framework-Nanozyme Sensor Arrays for Probing Phosphates and Their Enzymatic Hydrolysis. Anal. Chem. 2018, 90, 9983–9989. [Google Scholar] [CrossRef]
- Sokolova, V.; Epple, M. Inorganic Nanoparticles as Carriers of Nucleic Acids into Cells. Angew. Chem.-Int. Ed. 2008, 47, 1382–1395. [Google Scholar] [CrossRef]
- Masud, M.K.; Na, J.; Younus, M.; Hossain, M.S.A.; Bando, Y.; Shiddiky, M.J.A.; Yamauchi, Y. Superparamagnetic Nanoarchitectures for Disease-Specific Biomarker Detection. Chem. Soc. Rev. 2019, 48, 5717–5751. [Google Scholar] [CrossRef]
- Gu, Z.; Atherton, J.J.; Xu, Z.P. Hierarchical Layered Double Hydroxide Nanocomposites: Structure, Synthesis and Applications. Chem. Commun. 2015, 51, 3024–3036. [Google Scholar] [CrossRef] [Green Version]
- Ott, L.S.; Finke, R.G. Transition-Metal Nanocluster Stabilization for Catalysis: A Critical Review of Ranking Methods and Putative Stabilizers. Coord. Chem. Rev. 2007, 251, 1075–1100. [Google Scholar] [CrossRef]
- Biondi, I.; Laporte, V.; Dyson, P.J. Application of a Versatile Nanoparticle Stabilizer in Phase Transfer and Catalysis. ChemPlusChem 2012, 77, 721–726. [Google Scholar] [CrossRef]
- Abdalla, A.M.E.; Xiao, L.; Ouyang, C.X.; Yang, G. Engineered Nanoparticles: Thrombotic Events in Cancer. Nanoscale 2014, 6, 14141–14152. [Google Scholar] [CrossRef]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle Colloidal Stability in Cell Culture Media and Impact on Cellular Interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasti, C.; Bedoya, D.A.; Rojas, R.; Giacomelli, C.E. Effect of the Protein Corona on the Colloidal Stability and Reactivity of LDH-Based Nanocarriers. J. Mater. Chem. B 2016, 4, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Kolman, K.; Nechyporchuk, O.; Persson, M.; Holmberg, K.; Bordes, R. Preparation of Silica/Polyelectrolyte Complexes for Textile Strengthening Applied to Painting Canvas Restoration. Colloids Surf.-Physicochem. Eng. Asp. 2017, 532, 420–427. [Google Scholar] [CrossRef]
- Dickinson, E. Food Emulsions and Foams: Stabilization by Particles. Curr. Opin. Colloid Interface Sci. 2010, 15, 40–49. [Google Scholar] [CrossRef]
- Morsella, M.; d’Alessandro, N.; Lanterna, A.E.; Scaiano, J.C. Improving the Sunscreen Properties of TiO2 through an Understanding of Its Catalytic Properties. Acs Omega 2016, 1, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Guimaraes, T.R.; Chaparro, T.D.; D’Agosto, F.; Lansalot, M.; dos Santos, A.M.; Bourgeat-Lami, E. Synthesis of Multi-Hollow Clay-Armored Latexes by Surfactant-Free Emulsion Polymerization of Styrene Mediated by Poly(Ethylene Oxide)-Based macroRAFT/Laponite Complexes. Polym. Chem. 2014, 5, 6611–6622. [Google Scholar] [CrossRef]
- Kun, R.; Balazs, M.; Dekany, I. Photooxidation of Organic Dye Molecules on TiO2 and Zinc-Aluminum Layered Double Hydroxide Ultrathin Multilayers. Colloids Surf.-Physicochem. Eng. Asp. 2005, 265, 155–162. [Google Scholar] [CrossRef]
- Rouster, P.; Dondelinger, M.; Galleni, M.; Nysten, B.; Jonas, A.M.; Glinel, K. Layer-by-Layer Assembly of Enzyme-Loaded Halloysite Nanotubes for the Fabrication of Highly Active Coatings. Colloids Surf. B-Biointerfaces 2019, 178, 508–514. [Google Scholar] [CrossRef]
- Szabo, T.; Szekeres, M.; Dekany, I.; Jackers, C.; De Feyter, S.; Johnston, C.T.; Schoonheydt, R.A. Layer-by-Layer Construction of Ultrathin Hybrid Films with Proteins and Clay Minerals. J. Phys. Chem. C 2007, 111, 12730–12740. [Google Scholar] [CrossRef]
- Ueno, K.; Watanabe, M. From Colloidal Stability in Ionic Liquids to Advanced Soft Materials Using Unique Media. Langmuir 2011, 27, 9105–9115. [Google Scholar] [CrossRef] [PubMed]
- Bolto, B.; Gregory, J. Organic Polyelectrolytes in Water Treatment. Water Res. 2007, 41, 2301–2324. [Google Scholar] [CrossRef] [PubMed]
- Simeonidis, K.; Mourdikoudis, S.; Kaprara, E.; Mitrakas, M.; Polavarapu, L. Inorganic Engineered Nanoparticles in Drinking Water Treatment: A Critical Review. Environ. Sci.-Water Res. Technol. 2016, 2, 43–70. [Google Scholar] [CrossRef] [Green Version]
- Porubska, J.; Alince, B.; van de Ven, T.G.M. Homo- and Heteroflocculation of Papermaking Fines and Fillers. Colloids Surf. -Physicochem. Eng. Asp. 2002, 210, 223–230. [Google Scholar] [CrossRef]
- Elimelech, M.; Gregory, J.; Jia, X.; Williams, R.A. Particle Deposition and Aggregation: Measurement, Modeling, and Simulation; Butterworth-Heinemann Ltd.: Oxford, UK, 1995. [Google Scholar]
- Xu, S.H.; Sun, Z.W. Progress in Coagulation Rate Measurements of Colloidal Dispersions. Soft Matter 2011, 7, 11298–11308. [Google Scholar] [CrossRef] [Green Version]
- Trefalt, G.; Szilagyi, I.; Oncsik, T.; Sadeghpour, A.; Borkovec, M. Probing Colloidal Particle Aggregation by Light Scattering. Chimia 2013, 67, 772–776. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Yuki, S.; Adachi, Y. Effect of Anionic Surfactants on the Stability Ratio and Electrophoretic Mobility of Colloidal Hematite Particles. Colloids Surf. -Physicochem. Eng. Asp. 2016, 510, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Gudarzi, M.M. Colloidal Stability of Graphene Oxide: Aggregation in Two Dimensions. Langmuir 2016, 32, 5058–5068. [Google Scholar] [CrossRef] [Green Version]
- Sinha, P.; Szilagyi, I.; Ruiz-Cabello, F.J.M.; Maroni, P.; Borkovec, M. Attractive Forces between Charged Colloidal Particles Induced by Multivalent Ions Revealed by Confronting Aggregation and Direct Force Measurements. J. Phys. Chem. Lett. 2013, 4, 648–652. [Google Scholar] [CrossRef]
- Hardy, W.B. A Preliminary Investigation of the Conditions Which Determine the Stability of Irreversible Hydrosols. Proc. R. Soc. Lond. 1899, 66, 110–125. [Google Scholar] [CrossRef]
- Schulze, H. Schwefelarsen in Wässriger Lösung. J. Prakt. Chem. 1882, 25, 431–452. [Google Scholar] [CrossRef] [Green Version]
- Oncsik, T.; Trefalt, G.; Borkovec, M.; Szilagyi, I. Specific Ion Effects on Particle Aggregation Induced by Monovalent Salts within the Hofmeister Series. Langmuir 2015, 31, 3799–3807. [Google Scholar] [CrossRef]
- Oncsik, T.; Desert, A.; Trefalt, G.; Borkovec, M.; Szilagyi, I. Charging and Aggregation of Latex Particles in Aqueous Solutions of Ionic Liquids: Towards an Extended Hofmeister Series. Phys. Chem. Chem. Phys. 2016, 18, 7511–7520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouster, P.; Pavlovic, M.; Szilagyi, I. Destabilization of Titania Nanosheet Suspensions by Inorganic Salts: Hofmeister Series and Schulze-Hardy Rule. J. Phys. Chem. B 2017, 121, 6749–6758. [Google Scholar] [CrossRef]
- Franks, G.V. Zeta Potentials and Yield Stresses of Silica Suspensions in Concentrated Monovalent Electrolytes: Isoelectric Point Shift and Additional Attraction. J. Colloid Interface Sci. 2002, 249, 44–51. [Google Scholar] [CrossRef]
- Fernandez-Nieves, A.; Nieves, F.J.D. The Role of Zeta Potential in the Colloidal Stability of Different TiO2/Electrolyte Solution Interfaces. Colloids Surf.-Physicochem. Eng. Asp. 1999, 148, 231–243. [Google Scholar] [CrossRef]
- Trefalt, G.; Szilagyi, I.; Téllez, G.; Borkovec, M. Colloidal Stability in Asymmetric Electrolytes: Modifications of the Schulze–Hardy Rule. Langmuir 2017, 33, 1695–1704. [Google Scholar] [CrossRef]
- Delgado, A.V.; Gonzalez-Caballero, F.; Hunter, R.J.; Koopal, L.K.; Lyklema, J. Measurement and Interpretation of Electrokinetic Phenomena. J. Colloid Interface Sci. 2007, 309, 194–224. [Google Scholar] [CrossRef]
- Derjaguin, B.; Landau, L.D. Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Acta Phys. Chim. 1941, 14, 633–662. [Google Scholar] [CrossRef]
- Verwey, E.J.W.; Overbeek, J.T.G. Theory of Stability of Lyophobic Colloids; Elsevier: Amsterdam, The Netherlands, 1948. [Google Scholar]
- Israelachvili, J. Intermolecular and Surface Forces, 3rd ed.; Academic Press: London, UK, 2011. [Google Scholar]
- Russel, W.B.; Saville, D.A.; Schowalter, W.R. Colloidal Dispersions; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Pavlovic, M.; Huber, R.; Adok-Sipiczki, M.; Nardin, C.; Szilagyi, I. Ion Specific Effects on the Stability of Layered Double Hydroxide Colloids. Soft Matter 2016, 12, 4024–4033. [Google Scholar] [CrossRef] [Green Version]
- Trefalt, G.; Behrens, S.H.; Borkovec, M. Charge Regulation in the Electrical Double Layer: Ion Adsorption and Surface Interactions. Langmuir 2016, 32, 380–400. [Google Scholar] [CrossRef] [PubMed]
- Hartley, P.G.; Larson, I.; Scales, P.J. Electrokinetic and Direct Force Measurements between Silica and Mica Surfaces in Dilute Electrolyte Solutions. Langmuir 1997, 13, 2207–2214. [Google Scholar] [CrossRef]
- Trefalt, G. Ccc-Calculator. Zenodo 2020. [Google Scholar] [CrossRef]
- Sáringer, S.; Rouster, P.; Szilágyi, I. Regulation of the Stability of Titania Nanosheet Dispersions with Oppositely and Like-Charged Polyelectrolytes. Langmuir 2019, 35, 4986–4994. [Google Scholar] [CrossRef]
- Cao, T.; Sugimoto, T.; Szilagyi, I.; Trefalt, G.; Borkovec, M. Heteroaggregation of Oppositely Charged Particles in the Presence of Multivalent Ions. Phys. Chem. Chem. Phys. 2017, 19, 15160–15171. [Google Scholar] [CrossRef]
- Moazzami-Gudarzi, M.; Adam, P.; Smith, A.M.; Trefalt, G.; Szilágyi, I.; Maroni, P.; Borkovec, M. Interactions between Similar and Dissimilar Charged Interfaces in the Presence of Multivalent Anions. Phys. Chem. Chem. Phys. 2018, 20, 9436–9448. [Google Scholar] [CrossRef]
- Smith, A.M.; Maroni, P.; Borkovec, M. Attractive Non-DLVO Forces Induced by Adsorption of Monovalent Organic Ions. Phys. Chem. Chem. Phys. 2018, 20, 158–164. [Google Scholar] [CrossRef]
- Elzbieciak-Wodka, M.; Popescu, M.; Montes Ruiz-Cabello, F.J.; Trefalt, G.; Maroni, P.; Borkovec, M. Measurements of Dispersion Forces between Colloidal Latex Particles with the Atomic Force Microscope and Comparison with Lifshitz Theory. J. Chem. Phys. 2014, 140, 104906. [Google Scholar] [CrossRef] [Green Version]
- Valmacco, V.; Elzbieciak-Wodka, M.; Besnard, C.; Maroni, P.; Trefalt, G.; Borkovec, M. Dispersion Forces Acting between Silica Particles across Water: Influence of Nanoscale Roughness. Nanoscale Horiz. 2016, 1, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Thormann, E. Surface Forces between Rough and Topographically Structured Interfaces. Curr. Opin. Colloid Interface Sci. 2017, 27, 18–24. [Google Scholar] [CrossRef]
- Oncsik, T.; Trefalt, G.; Csendes, Z.; Szilagyi, I.; Borkovec, M. Aggregation of Negatively Charged Colloidal Particles in the Presence of Multivalent Cations. Langmuir 2014, 30, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, C.; Masuda, K.; Kobayashi, M. The Effect of Monovalent Anion Species on the Aggregation and Charging of Allophane Clay Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 103–109. [Google Scholar] [CrossRef]
- Rouster, P.; Pavlovic, M.; Cao, T.; Katana, B.; Szilagyi, I. Stability of Titania Nanomaterials Dispersed in Aqueous Solutions of Ionic Liquids of Different Alkyl Chain Lengths. J. Phys. Chem. C 2019, 123, 12966–12974. [Google Scholar] [CrossRef] [Green Version]
- Bergstrom, L. Hamaker Constants of Inorganic Materials. Adv. Colloid Interface Sci. 1997, 70, 125–169. [Google Scholar] [CrossRef]
- Vallar, S.; Houivet, D.; El Fallah, J.; Kervadec, D.; Haussonne, J.M. Oxide Slurries Stability and Powders Dispersion: Optimization with Zeta Potential and Rheological Measurements. J. Eur. Ceram. Soc. 1999, 19, 1017–1021. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galli, M.; Sáringer, S.; Szilágyi, I.; Trefalt, G. A Simple Method to Determine Critical Coagulation Concentration from Electrophoretic Mobility. Colloids Interfaces 2020, 4, 20. https://doi.org/10.3390/colloids4020020
Galli M, Sáringer S, Szilágyi I, Trefalt G. A Simple Method to Determine Critical Coagulation Concentration from Electrophoretic Mobility. Colloids and Interfaces. 2020; 4(2):20. https://doi.org/10.3390/colloids4020020
Chicago/Turabian StyleGalli, Marco, Szilárd Sáringer, István Szilágyi, and Gregor Trefalt. 2020. "A Simple Method to Determine Critical Coagulation Concentration from Electrophoretic Mobility" Colloids and Interfaces 4, no. 2: 20. https://doi.org/10.3390/colloids4020020
APA StyleGalli, M., Sáringer, S., Szilágyi, I., & Trefalt, G. (2020). A Simple Method to Determine Critical Coagulation Concentration from Electrophoretic Mobility. Colloids and Interfaces, 4(2), 20. https://doi.org/10.3390/colloids4020020