Titanium Silicates Precipitated on the Rice Husk Biochar as Adsorbents for the Extraction of Cesium and Strontium Radioisotope Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Titanium Silicates
2.3. Adsorption Experiments
2.4. Analytic Methods
3. Results and Discussion
3.1. Physical-Chemical Characterization
3.2. Ion-Exchange Properties
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Health Consequences of the Chernobyl Accident. Scientific Report, 1st ed.; Souchkevitch, G.N., Tsyb, A.F., Eds.; World Health Organization: Geneva, Switzerland, 1996; pp. 128–431. ISBN 5-88429-010-1. [Google Scholar]
- Clough, R.L. High-energy radiation and polymers: A Review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. 2001, 185, 8–33. [Google Scholar] [CrossRef]
- Marsh, S.F.; Pillay, K.K.S. Effect of Ionized Radiation on Modern Ion Exchangers Material; USDOE: Washington, DC, USA, 1993; pp. 1–23.
- Amphlett, C.B. Inorganic Ion Exchangers; Elsevier Pub. Com: New York, NY, USA, 1964; pp. 1–141. [Google Scholar]
- Dyer, A.; Pillinger, M.; Newton, M.; Harjula, R.; Moller, T.; Amin, S. Sorption Behavior of Radionuclides on Crystalline Synthetic Tunnel Manganese Oxides. Chem. Mater. 2000, 12, 3798–3804. [Google Scholar] [CrossRef]
- Al-Attar, L.; Dyer, A.; Harjula, R. Uptake of radionuclides on microporous and layered ion exchange materials. J. Mater. Chem. 2003, 13, 2963–2968. [Google Scholar] [CrossRef]
- Zhuravlev, I.; Kanibolotsky, V.; Strelko, V.; Gallios, G.; Strelko, V., Jr. Novel High Porous Spherically Granulated Ferrophosphatesilicate Gels. Mater. Res. Bull. 2004, 39, 737–744. [Google Scholar] [CrossRef]
- Zhuravlev, I.; Kanibolotsky, V.; Strelko, V.; Gallios, G. Novel Spherically Granulated Inorganic Ion Exchangers Based on Aluminophosphatesilicate and Ferrophosphatesilicate Gels. Sep. Sci. Technol. 2004, 39, 287–300. [Google Scholar] [CrossRef]
- Khan, S. Sorption of the long-lived radionuclides cesium-134, strontium-85 and cobalt-60 on bentonite. J. Radioanal. Nucl. Chem. 2003, 258, 3–6. [Google Scholar] [CrossRef]
- Lehto, J.; Brodkin, L.; Harjula, R.; Tusa, E. Separation of Radioactive Strontium from Alkaline Nuclear Waste Solutions with the Highly Effective Ion Exchanger SrTreat. Nucl. Technol. 1999, 127, 81–87. [Google Scholar] [CrossRef]
- Singh, B.; Tomar, R.; Tomar, R.; Tomar, S. Sorption of homologues of radionuclides by synthetic ion exchanger. Microporous Mesoporous Mater. 2011, 142, 629–640. [Google Scholar] [CrossRef]
- Nilchi, A.; Hadjmohammadi, M.; Garmarodi, S.; Saberi, R. Studies on the adsorption behavior of trace amounts of 90Sr2+, 140La3+, 60Co2+, Ni2+and Zr4+ cations on synthesized inorganic ion exchangers. J. Hazard. Mater. 2009, 167, 531–535. [Google Scholar] [CrossRef]
- Roy, K.; Pal, D.; Basu, S.; Nayak, D.; Lahiri, S. Synthesis of a new ion exchanger, zirconium vanadate, and its application to the separation of barium and cesium radionuclides at tracer levels. Appl. Radiat. Isot. 2002, 57, 471–474. [Google Scholar] [CrossRef]
- Abdel Rahman, R.; Ibrahim, H.; Hung, Y. Liquid Radioactive Wastes Treatment: A Review. Water 2011, 3, 551–565. [Google Scholar] [CrossRef] [Green Version]
- Bhaumik, A.; Inagaki, S. Mesoporous Titanium Phosphate Molecular Sieves with Ion-Exchange Capacity. J. Am. Chem. Soc. 2001, 123, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Bortun, A.; Bortun, L.; Clearfield, A.; Khainakov, S.; Strelko, V.; Khryaschevskii, V.; Kvashenko, A.; Voitko, I. Synthesis and characterization of ion exchange properties of spherically granulated titanium phosphate. Solvent Extr. Ion Exchang. 1997, 15, 515–532. [Google Scholar] [CrossRef]
- Clearfield, A. Inorganic Ion Exchangers with Layered Structures. Ann. Rev. Mater. Sci. 1984, 14, 205–229. [Google Scholar] [CrossRef]
- Clearfield, A. Role of Ion Exchange in Solid-state Chemistry. Chern. Rev. 1988, 88, 125–148. [Google Scholar] [CrossRef]
- Clearfield, A.; Bortun, A.; Khainakov, S.; Bortun, L.; Strelko, V.; Khryaschevskii, V. Spherically granulated titanium phosphate as exchanger for toxic heavy metals. Waste Manag. 1998, 18, 203–210. [Google Scholar] [CrossRef]
- Clearfield, A. Inorganic Ion Exchangers, Past, Present, and Future. Solvent Extr. Ion Exchang. 2000, 18, 655–678. [Google Scholar] [CrossRef]
- Jia, K.; Pan, B.; Zhang, Q.; Zhang, W.; Jiang, P.; Hong, C.; Pan, B.; Zhang, Q. Adsorption of Pb2+, Zn2+ and Cd2+ from waters by amorphous titanium phosphate. J. Colloid Interface Sci. 2008, 318, 160–166. [Google Scholar] [CrossRef]
- Parida, K.; Sahu, B.; Das, D. A comparative study on textural characterization: Cation-exchange and sorption properties of crystalline α-zirconium(IV), tin(IV), and titanium(IV) phosphates. J. Colloid Interface Sci. 2004, 270, 436–445. [Google Scholar] [CrossRef]
- Zhuravlev, I.; Kanibolotsky, V.; Strelko, V.; Bortun, A.; Bortun, L.; Khainakov, S.; Clearfield, A. Synthesis and Characterization of the Ion Exchange Properties of Spherically Granulated Sodium Aluminophosphatesilicate. Solvent Extr. Ion Exchang. 1999, 17, 635–648. [Google Scholar] [CrossRef]
- Sharygin, L.; Kalyagina, M.; Borovkov, S. Sol-Gel Technique for Production of Spherically Granulated Zirconium(IV) Phosphate. Russ. J. Appl. Chem. 2005, 78, 222–228. [Google Scholar] [CrossRef]
- Zakutevskyy, O.; Psareva, T.; Strelko, V. Sorption of U(VI) Ions on Sol-Gel-Synthesized Amorphous Spherically Granulated Titanium Phosphates. Russ. J. Appl. Chem. 2012, 85, 1366–1370. [Google Scholar] [CrossRef]
- Sharygin, L. Preparation of Globular Zirconium(IV) Hydroxide by Sol-Gel Process. Russ. J. Appl. Chem. 2002, 75, 1394–1398. [Google Scholar] [CrossRef]
- Zhuravlev, I.; Zakutevsky, O.; Psareva, T.; Kanibolotsky, V.; Strelko, V.; Taffet, M.; Gallio, G. Uranium sorption on amorphous titanium and zirconium phosphates modified by Al3+ or Fe3+ ions. J. Radioanal. Nucl. Chem. 2002, 254, 85–89. [Google Scholar] [CrossRef]
- Misaelides, P.; Gallios, G.; Sarri, S.; Zamboulis, D.; Pavlidou, E.; Kantiranis, N.; Anousis, I.; Zhuravlev, I.; Strelko, V. Separation of Uranium from Aqueous Solutions Using Al3+- and Fe3+-modified Titanium- and Zirconium Phosphates. Sep. Sci. Technol. 2006, 41, 97–110. [Google Scholar] [CrossRef]
- Misaelides, P.; Sarri, S.; Zamboulis, D.; Gallios, G.; Zhuravlev, I.; Strelko, V. Separation of europium from aqueous solutions using Al3+- and Fe3+-doped zirconium and titanium phosphates. J. Radioanal. Nucl. Chem. 2006, 268, 53–58. [Google Scholar] [CrossRef]
- Chubar, N.; Kanibolotskyy, V.; Strelko, V.; Gallios, G.; Samanidou, V.; Shaposhnikova, T.; Milgrandt, V.; Zhuravlev, I. Adsorption of phosphate ions on novel inorganic ion exchangers. Colloids Surf. A Physicochem. Eng. Asp. 2005, 255, 55–63. [Google Scholar] [CrossRef]
- Chubar, N.; Shaposhnikova, T.; Kouts, V.; Gallios, G.; Kanibolotskyy, V.; Strelko, V.; Zhuravlev, I. Adsorption of Fluoride, Chloride, Bromide, and Bromate Ions on a Novel Ion Exchanger. J. Colloid Interface Sci. 2005, 291, 67–74. [Google Scholar] [CrossRef]
- Strelko, V.; Milyutin, V.; Gelis, V.; Psareva, T.; Zhuravlev, I.; Shaposhnikova, T.; Milgrandt, V.; Bortun, A. Sorption of cesium radionuclides onto semicrystalline alkali metal silicotitanates. Radiochemistry 2015, 57, 73–78. [Google Scholar] [CrossRef]
- Al-Attar, L.; Dyer, A.; Paajanen, A.; Harjula, R. Purification of nuclear wastes by novel inorganic ion exchangers. J. Mater. Chem. 2003, 13, 2969–2974. [Google Scholar] [CrossRef]
- Akyil, S.; Aslani, A.; Eral, M. Sorption characteristics of uranium onto composite ion exchangers. J. Radioanal. Nucl. Chem. 2003, 256, 45–51. [Google Scholar] [CrossRef]
- Marageh, M.; Husain, S.; Khanchi, A.; Ahmady, S. Sorption Studies of Radionuclides on a New Ion Exchanger: Cerium (III) Silicate. Appl. Radiat. Isot. 1996, 47, 501–505. [Google Scholar] [CrossRef]
- Inorganic Ion Exchangers and Adsorbents for Chemical Processing in the Nuclear Fuel Cycle. In Proceedings of the A Technical Committee Meeting, Vienna, Austria, 12–15 June 1984.
- Clearfield, A. Inorganic Ion Exchange Materials; CRC Press: Boca Raton, FL, USA, 2018; 295p, ISBN 978-1-35-109046-9. [Google Scholar]
- Fisseha, G. Advances in Inorganic Ion Exchangers and Their Applications. A Review Article. Chem. Mater. Res. 2017, 9, 1–5. [Google Scholar]
- Clearfield, A.; Bortun, L.; Bortun, A. Alkali metal ion exchange by the framework titanium silicate M2Ti2O3 SiO4 nH2O (M = H, Na). React. Funct. Polym. 2000, 43, 85–95. [Google Scholar] [CrossRef]
- Puziy, A. Cesium and strontium exchange by the framework potassium titanium silicate K3HTi404(SiO4)3·4H2O. J. Radioanal. Nucl. Chem. 1998, 237, 73–79. [Google Scholar] [CrossRef]
- Clearfield, A. Structure and ion exchange properties of tunnel type titanium silicates. Solid State Sci. 2001, 3, 103–112. [Google Scholar] [CrossRef]
- Bortun, A.; Bortun, L.; Poodjary, D.; Xiang, O.; Clearfield, A. Synthesis, Characterization, and Ion Exchange Behavior of a Framework Potassium Titanium Trisilicate K2TiSi3O9·H2O and Its Protonated Phases. Chem. Mater. 2000, 12, 294–305. [Google Scholar] [CrossRef]
- Solbra, S.; Allison, N.; Waite, S.; Mikhalovsky, S.; Bortun, A.; Bortun, L.; Clearfield, A. Cesium and Strontium Ion Exchange on the Framework Titanium Silicate M2Ti2O3SiO4·H2O (M = H, Na). Environ. Sci. Technol. 2001, 35, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Watari, K.; Izawa, M. Separation of Radiocesium by Copper Ferrocyanide-Anion Exchange Resin. J. Nucl. Sci. Technol. 1965, 2, 321–322. [Google Scholar] [CrossRef]
- Nilchi, A.; Malek, B.; Granadi Maragheh, M.; Khanchi, A. Exchange properties of cyanide complexes Part I. Ion exchange of cesium on ferrocyanides. J. Radioanal. Nucl. Chem. 2003, 258, 457–462. [Google Scholar] [CrossRef]
- Vincent, T.; Vincent, C.; Guibal, E. Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents—A Mini-Review. Molecules 2015, 20, 20582–20613. [Google Scholar] [PubMed] [Green Version]
- Twenty-Five Years after Chornobyl Accident: Safety for the Future National Report of Ukraine; KIM: Kyiv, Ukraine, 2011; 328p, ISBN 978-966-1547-64-2.
- Tananaev, I. Chemistry of the Ferrocyanides; Nauka: Moscow, Russia, 1971; p. 320. (In Russian) [Google Scholar]
- Zhuravlev, I.; Strelko, V. Mode of Preparation of Titanium Silicate Based on Rice Husk Silica and Titanium Compounds. Patent of the Ukraine No. 99221, 22 May 2015. [Google Scholar]
- Babaso, P.; Sharanagouda, H. Rice Husk and Its Applications: Review. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 1144–1156. [Google Scholar] [Green Version]
- Zhu, L.; Sheng, D.; Xu, C.; Dai, X.; Silver, M.; Li, P.; Wang, Y.; Wang, Y.; Chen, L.; Xiao, C.; et al. Identifying the Recognition Sitefor Selective Trapping of 99TcO4 in a Hydrolytically Stable and Radiation Resistant Cationic Metal-Organic Framework. JACS 2017, 139, 14873–14876. [Google Scholar]
- Zhu, L.; Zhang, L.; Li, J.; Zhang, D.; Chen, L.; Sheng, D.; Yang, S.; Xiao, C.; Wang, J.; Chai, Z.; et al. Selenium Sequestration in a Cationic Layered Rare Earth Hydroxide: A Combined Batch Experiments and EXAFS Investigation. Environ. Sci. Technol. 2017, 51, 8606–8615. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Z.; Li, Y.; Bai, Z.; Liu, W.; Wang, Y.; Xu, X.; Xiao, C.; Dheng, D.; Diwu, J.; et al. Umbellate Distortions of the Uranyl Coordination Environment Result in a Stable and Porous Polycatenated Framework That Can Effectively Remove Cesium from Aqueous Solutions. JACS 2015. [Google Scholar] [CrossRef] [PubMed]
- Sheng, D.; Zhu, L.; Xu, C.; Xiao, C.; Wang, Y.; Wang, Y.; Chen, L.; Diwu, J.; Chen, J.; Chai, Z.; et al. Efficient and Selective Uptake of TcO4 by a Cationic Metal-Organic Framework Material with Open Ag+ Sites. Environ. Sci. Technol. 2017, 51, 3471–3479. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Yang, Z.; Gui, D.; Liu, Z.; Wang, X.; Dai, X.; Liu, S.; Zhang, L.; Gao, Y.; Chen, L.; et al. Overcoming the Cristallization and Designability Issuis in the Ultrastable Zirconium Phosphonate Framework System. Nat. Commun. 2017, 8, 15369. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Dai, X.; Wang, Y.; Song, L.; Zhang, L.; Zhang, D.; Xie, J.; Chen, L.; Diwu, J.; Wang, J.; et al. Ratiometric Monitoring of Thorium Contamination in Natural Water using a Dual-Emission Luminescent Europium Organic Framework. Environ. Sci. Technol. 2018, 53, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Dai, X.; Bai, Z.; Wang, Y.; Yang, Z.; Zhang, L.; Xu, L.; Chen, L.; Li, Y.; Gui, D.; et al. Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal-Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principle Simulation Investigation. Environ. Sci. Technol. 2017, 51, 3911–3921. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dai, X.; Zhu, L.; Xu, C.; Zhang, D.; Silver, M.; Li, P.; Chen, L.; Li, Y.; Zuo, D.; et al. 99TcO4—Remediation by a cationic polymeric network. Nat. Commun. 2018, 9, 3007. [Google Scholar] [CrossRef] [PubMed]
- Lujaniene, G.; Meleshevich, S.; Kanibolotskyy, V.; Sapolaite, J.; Strelko, V.; Remeikis, V.; Oleksienko, O.; Ribikaite, K.; Seiglo, T. Application of inorganic sorbents for removal of Cs, Sr, Pu and Am from contaminated solutions. J. Radioanal. Nucl. Chem. 2009, 282, 787–791. [Google Scholar] [CrossRef]
Fraction | pH | Sr2+, mg/L | A | Kd | ||||
---|---|---|---|---|---|---|---|---|
Initial | Equil. | Cin. | Ceq. | ΔC | mg/g | mg-eqv./g | ||
CarbonTiSi | 6.62 | 6.94 | 9.64 | 0.01 | 9.63 | 4.82 | 0.11 | 4.8 × 105 |
6.64 | 7.27 | 30.2 | 0.97 | 29.23 | 14.62 | 0.33 | 1.5 × 104 | |
6.37 | 7.0 | 50.5 | 6.2 | 44.3 | 22.15 | 0.51 | 3.6 × 103 | |
5.99 | 6.87 | 76.75 | 19.65 | 57.1 | 28.6 | 0.65 | 1.5 × 103 | |
6.06 | 6.74 | 107.88 | 39.1 | 68.78 | 34.4 | 0.79 | 0.9 × 103 | |
Ti-Si powder | 6.62 | 6.88 | 9.64 | 0.04 | 9.6 | 4.8 | 0.11 | 1.2 × 105 |
6.64 | 6.85 | 30.2 | 1.44 | 28.76 | 14.38 | 0.33 | 1.0 × 104 | |
6.37 | 6.74 | 50.5 | 3.44 | 47.06 | 23.5 | 0.54 | 6.8 × 103 | |
5.99 | 6.67 | 76.75 | 9.26 | 67.49 | 33.7 | 0.77 | 3.6 × 103 | |
6.06 | 6.54 | 107.88 | 35.9 | 71.98 | 36.0 | 0.82 | 1.0 × 103 | |
6.38 | 6.65 | 185 | 108.6 | 76.5 | 38.3 | 0.87 | 352 | |
6.14 | 6.48 | 373 | 293 | 80 | 40 | 0.91 | 137 |
Fraction | pH | Cs+, mg/L | A | Kd | ||||
---|---|---|---|---|---|---|---|---|
Initial | Equil. | Cin. | Ceq. | ΔC | mg/g | mg-eqv/g | ||
Carbontisi | 6.68 | 6.87 | 10.8 | 0.74 | 10.06 | 5.03 | 0.038 | 6.8 × 103 |
6.79 | 7.18 | 32.3 | 3.4 | 28.9 | 14.45 | 0.109 | 4.3 × 103 | |
6.76 | 7.16 | 51.0 | 7.15 | 43.95 | 21.98 | 0.165 | 3.1 × 103 | |
6.41 | 7.13 | 85.88 | 20.3 | 65.58 | 32.8 | 0.247 | 1.6 × 103 | |
6.33 | 7.15 | 107.75 | 33.2 | 75.55 | 37.78 | 0.284 | 1.1 × 103 | |
6.68 | 6.75 | 10.8 | 0.2 | 10.6 | 5.3 | 0.04 | 2.7 × 104 | |
Ti-Si powder | 6.79 | 6.88 | 32.3 | 1.1 | 31.2 | 15.6 | 0.117 | 1.4 × 104 |
6.76 | 6.90 | 51.0 | 2.24 | 48.76 | 24.4 | 0.18 | 1.1 × 104 | |
6.41 | 9.80 | 85.88 | 5.28 | 80.6 | 40.3 | 0.30 | 7.6 × 103 | |
6.33 | 6.89 | 107.75 | 7.76 | 100.99 | 50.5 | 0.38 | 6.5 × 103 | |
6.68 | 7.24 | 237.5 | 42.3 | 195.2 | 97.6 | 0.73 | 2.3 × 103 | |
6.70 | 7.01 | 463 | 202.5 | 260.5 | 130.3 | 0.98 | 6.4 × 102 | |
6.62 | 6.38 | 686 | 371.5 | 314.5 | 157.3 | 1.18 | 423 | |
6.45 | 6.32 | 968 | 623 | 345 | 172.5 | 1.30 | 277 |
No. | Sample | Cesium: Concentration, mg/L; Kd, mL/g, and Adsorption, mg/g | Strontium: Concentration, mg/L; Kd, mL/g; and Adsorption, mg/g | ||||||
---|---|---|---|---|---|---|---|---|---|
Cin. | Ceq. | A | Kd | Cin. | Ceq. | A | Kd | ||
1 | 200 °C TiSi powder autoclave 10 h | 10.8 | 0.2 | 5.3 | 27,000 | 9.64 | 0.04 | 4.8 | 120,000 |
2 | Blowing steam TiSi powder 150 °C, 2 h | 10.18 | 3.01 | 3.59 | 1200 | 7.2 | 0.04 | 3.58 | 90,000 |
3 | Blowing steam TiSi powder 400 °C, 2 h | 10.66 | 2.77 | 3.95 | 1424 | 8.38 | 0.002 | 4.19 | 2,095,000 |
4 | Blowing steam TiSi powder 600 °C, 2 h | 10.66 | 3.56 | 3.55 | 1000 | 8.38 | 0.003 | 4.19 | 1,396,000 |
5 | Blowing steam TiSi powder 800 °C, 2 h | 10.66 | 4.79 | 2.94 | 613 | 8.38 | 0.05 | 4.17 | 83,300 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuravlev, I. Titanium Silicates Precipitated on the Rice Husk Biochar as Adsorbents for the Extraction of Cesium and Strontium Radioisotope Ions. Colloids Interfaces 2019, 3, 36. https://doi.org/10.3390/colloids3010036
Zhuravlev I. Titanium Silicates Precipitated on the Rice Husk Biochar as Adsorbents for the Extraction of Cesium and Strontium Radioisotope Ions. Colloids and Interfaces. 2019; 3(1):36. https://doi.org/10.3390/colloids3010036
Chicago/Turabian StyleZhuravlev, Igor. 2019. "Titanium Silicates Precipitated on the Rice Husk Biochar as Adsorbents for the Extraction of Cesium and Strontium Radioisotope Ions" Colloids and Interfaces 3, no. 1: 36. https://doi.org/10.3390/colloids3010036
APA StyleZhuravlev, I. (2019). Titanium Silicates Precipitated on the Rice Husk Biochar as Adsorbents for the Extraction of Cesium and Strontium Radioisotope Ions. Colloids and Interfaces, 3(1), 36. https://doi.org/10.3390/colloids3010036