Elemental Mercury Adsorption by Cupric Chloride-Modified Mesoporous Carbon Aerogel
Abstract
:1. Introduction
2. Results and Discussions
2.1. Characterization Analysis
2.2. Effect of CuCl2 Concentration
2.3. Effect of Reaction Temperature
3. Experimental
3.1. Catalyst Synthesis and Characterization
3.2. Mercury Adsorption
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krabbenhoft, D.P.; Sunderland, E.M. Global change and mercury. Science 2013, 341, 1457–1458. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.M.; Durgasri, N.; Kumar, T.V.; Bhargava, S.K. Abatement of gas-phase mercury-recent developments. Catal. Rev. Sci. Eng. 2012, 54, 344–398. [Google Scholar] [CrossRef]
- Galbreath, K.C.; Zygarlicke, C.J. Mercury speciation in coal combustion and gasification flue gases. Environ. Sci. Technol. 1996, 30, 2421–2427. [Google Scholar] [CrossRef]
- Yang, S.; Guo, Y.; Yan, N.; Qu, Z.; Xie, J.; Yang, C.; Jia, J. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures. J. Hazard. Mater. 2011, 186, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Vidic, R.D.; Siler, D.P. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon 2001, 39, 3–14. [Google Scholar] [CrossRef]
- Yang, W.; Xu, W.; Liu, Z.; Liu, Y. Removal of elemental mercury from simulated flue gas using sargassum chars modified by NH4Br reagent. Fuel 2018, 214, 196–206. [Google Scholar] [CrossRef]
- Padak, B.; Wilcox, J. Understanding mercury binding on activated carbon. Carbon 2009, 47, 2855–2864. [Google Scholar] [CrossRef]
- Xun, G.; Yao, H.; Zhang, D.; Qiao, Y.; Li, L.; Xu, M. Leaching characteristics of heavy metals in fly ash from a Chinese coal-fired power plant. Asia-Pacific J. Chem. Eng. 2010, 5, 330–336. [Google Scholar]
- Ding, F.; Zhao, Y.; Mi, L.; Li, H.; Li, Y.; Zhang, J. Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents. Ind. Eng. Chem. Res. 2012, 51, 3039–3047. [Google Scholar] [CrossRef]
- Jampaiah, D.; Ippolito, S.J.; Sabri, Y.M.; Tardio, J.; Selvakannan, P.R.; Nafady, A.; Reddy, B.M.; Bhargava, S.K. Ceria–zirconia modified mnox catalysts for gaseous elemental mercury oxidation and adsorption. Catal. Sci. Technol. 2016, 6, 1792–1803. [Google Scholar] [CrossRef]
- Reuß, M.; Ratke, L. Subcritically dried RF-aerogels catalysed by hydrochloric acid. J. Sol–Gel Sci. Technol. 2008, 47, 74–80. [Google Scholar] [CrossRef]
- Zu, G.; Shen, J.; Zou, L.; Wang, F.; Wang, X.; Zhang, Y.; Yao, X. Nanocellulose-derived highly porous carbon aerogels for super capacitors. Carbon 2016, 99, 203–211. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Lee, J.Y.; Bolin, T.B. Oxidation of elemental mercury vapor over γ-Al2O3 supported CuCl2 catalyst for mercury emissions control. Chem. Eng. J. 2015, 275, 1–7. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Zhang, J.; Zheng, C. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation. Fuel 2016, 164, 419–428. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Hu, Y.; Liao, Z.; Cheng, S.; Xu, M. An efficient sorbent based on CuCl2 loaded CeO2-ZrO2 for elemental mercury removal from chlorine-free flue gas. Fuel 2018, 216, 356–363. [Google Scholar] [CrossRef]
- Sevilla, M.; Sanchís, C.; Valdés-Solís, T.; Morallón, E.; Fuertes, A.B. Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports. Carbon 2008, 46, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Fu, R.; Yu, Z. Organic and carbon aerogels from the NaOH-catalyzed polycondensation of resorcinol-furfural and supercritical drying in ethanol. J. Appl. Polym. Sci. 2005, 96, 1429–1435. [Google Scholar] [CrossRef]
- Rasines, G.; Lavela, P.; Macı´as, C.; Zafra, M.C.; Tirado, J.L.; Parra, J.B.; Ania, C.O. N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions. Carbon 2015, 83, 262–274. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Han, H.; Li, T.; Du, C. Synthesis of nitrogen-doped porous graphitic carbons using nano-CaCO3 as template, graphitization catalyst and activating agent. Carbon 2012, 50, 3752–3765. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Kim, J.; Lee, J.-Y. Heterogeneous catalytic reaction of elemental mercury vapor over cupric chloride for mercury emissions control. Appl. Catal. B Environ. 2013, 132–133, 401–407. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Zhang, J.; Zheng, C. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash: Part 2. Identification of involved reaction mechanism. Fuel 2016, 167, 366–374. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Z.; Zong, C.; Zong, C.; Huang, W.; Quan, F.; Yan, N. MnOx/Graphene for the catalytic oxidation and adsorption of elemental mercury. Environ. Sci. Technol. 2015, 49, 6823–6830. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Li, C.; Fan, X.; Zeng, G.; Lu, P.; Zhang, X.; Wen, Q.; Zhao, W.; Luo, D.; Fan, C. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chem. Eng. J. 2012, 210, 547–556. [Google Scholar] [CrossRef]
- Tan, Z.; Sun, L.; Xiang, J.; Zeng, H.; Liu, Z.; Hu, S.; Qiu, J. Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon 2012, 50, 362–371. [Google Scholar] [CrossRef]
- Yang, W.; Shan, Y.; Ding, S.; Han, X.; Liu, Y.; Pan, J. Gas-phase elemental mercury removal using ammonium chloride impregnated sargassum chars. Environ. Technol. 2018, 1, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Y.; Pan, J. Removal of elemental mercury from flue gas using wheat straw chars modified by K2FeO4 Reagent. Environ. Technol. 2017, 38, 3047–3054. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Seo, Y.C.; Jurng, J.; Tai, G.L. Removal of gas-phase elemental mercury by iodine- and chlorine-impregnated activated carbons. Atmos. Environ. 2004, 38, 4887–4893. [Google Scholar] [CrossRef]
- Wu, J.; Yang, S.; Liu, Q.; He, P.; Tian, H.; Ren, J.; Guan, Z.; Hu, T.; Ni, B.; Zhang, C. Cu Nanoparticles inlaid mesoporous carbon aerogels as a high performance desulfurizer. Environ. Sci. Technol. 2016, 50, 5370–5378. [Google Scholar] [CrossRef]
- Liu, D.J.; Zhou, W.G.; Wu, J. Effect of Ce and La on the activity of CuO/ZSM-5 and MnOx/ZSM-5 composites for elemental mercury removal at low temperature. Fuel 2017, 194, 115–122. [Google Scholar] [CrossRef]
- Liu, D.J.; Lu, C.; Wu, J. Gaseous mercury capture by copper-activated nanoporous carbon nitride. Energy Fuels 2018, 32, 8287–8295. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Samples | Surface Area (m2/g) | Total Pore Volume (cm3/g) | Micropore Volume (cm3/g) | Mesopore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|---|---|
MCA | 523 | 1.21 | 0.15 | 1.06 | 9.2 |
Cu06MCA | 641 | 1.38 | 0.06 | 1.32 | 8.6 |
Cu18MCA | 474 | 1.12 | 0.12 | 1.00 | 9.5 |
Cu30MCA | 413 | 1.09 | 0.11 | 0.98 | 10.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Lu, C.; Wu, J. Elemental Mercury Adsorption by Cupric Chloride-Modified Mesoporous Carbon Aerogel. Colloids Interfaces 2018, 2, 66. https://doi.org/10.3390/colloids2040066
Liu D, Lu C, Wu J. Elemental Mercury Adsorption by Cupric Chloride-Modified Mesoporous Carbon Aerogel. Colloids and Interfaces. 2018; 2(4):66. https://doi.org/10.3390/colloids2040066
Chicago/Turabian StyleLiu, Dongjing, Cheng Lu, and Jiang Wu. 2018. "Elemental Mercury Adsorption by Cupric Chloride-Modified Mesoporous Carbon Aerogel" Colloids and Interfaces 2, no. 4: 66. https://doi.org/10.3390/colloids2040066
APA StyleLiu, D., Lu, C., & Wu, J. (2018). Elemental Mercury Adsorption by Cupric Chloride-Modified Mesoporous Carbon Aerogel. Colloids and Interfaces, 2(4), 66. https://doi.org/10.3390/colloids2040066