Comparative Analysis of Machine Learning Techniques for Predicting Bulk Specific Gravity in Modified Asphalt Mixtures Incorporating Polyethylene Terephthalate (PET), High-Density Polyethylene (HDPE), and Polyvinyl Chloride (PVC)
Abstract
:1. Introduction
- To create a practical and straightforward model for estimating the Gmb of asphalt mixes;
- To employ key input parameters such as Vb, Vv, VMA, BC, and VFB to predict the Gmb of asphalt mixes and
- To develop a direct empirical equation for predicting Gmb. This equation aims to streamline the process, reduce experimental efforts, and offer applicability for asphalt mix design and quality control purposes.
2. Machine Learning
2.1. Gaussian Processes
2.2. Support Vector Machine
2.3. Artificial Neural Network
2.4. Reduced Error Pruning Tree
3. Materials and Methodology
3.1. Aggregate
3.2. Bitumen
3.3. Marble Powder
3.4. Waste Plastic
3.5. Asphalt Sample Preparation
4. Data Collection
Performance Evaluation Parameters
- = observed value;
- = predicted value;
- = average observed value;
- n = number of observations.
5. Results
5.1. GP Model Predictions
5.2. SVM Model Predictions
5.3. ANN Model Predictions
5.4. REP Tree Model Predictions
5.5. Comparison of All the Applied Models
5.6. Correlation Analysis of Input Parameters and Bulk-Specific Gravity
5.7. Sensitivity Analysis
6. Conclusions and Future Scope
- Advanced predictive modeling offers a data-driven alternative to traditional experimental approaches, significantly reducing time and resource consumption.
- The comparative analysis confirms the reliability of ML models in replicating laboratory test results with high precision.
- ANN demonstrated the highest accuracy among all tested models, with a CC of 0.9999 and the lowest error metrics (MAE = 0.0004, RMSE = 0.0006). This highlights the ANN’s potential as the most reliable predictive tool for estimating Gmb in modified asphalt mixes.
- The ANN model exhibited minimal deviation between predicted and actual Gmb values, proving its robustness in accurately capturing the nonlinear relationships among input parameters.
- Sensitivity analysis revealed that bitumen content (BC) and volume of bitumen (Vb) are the most influential parameters affecting the prediction of Gmb.
- Machine learning models offer a scalable solution for optimizing asphalt mix design, reducing dependence on extensive laboratory testing.
- The study validates the use of waste plastic-modified asphalt as a viable approach to enhancing pavement performance and supporting sustainability efforts.
- While the findings of this study highlight the potential of ML models in asphalt mix design, some limitations remain:
- The reliance on VMA and VFA as input parameters may pose practical challenges, as they depend on preliminary Gmb measurements.
- The study is based on a specific dataset; the generalizability of the models needs validation with a larger dataset from diverse sources.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, S.; Bhasin, A.; Smit, A. Exploring the use of machine learning to predict metrics related to asphalt mixture performance. Constr. Build. Mater. 2021, 295, 123585. [Google Scholar] [CrossRef]
- Roberts, F.L.; Kandhal, P.S.; Brown, E.R.; Lee, D.Y.; Kim, Y.R.; Kennedy, T.W. Hot Mix Asphalt Materials, Mixture Design and Construction, 3rd ed.; National Asphalt Pavement Association Education Foundation: Lanham, MD, USA, 2009; ISBN 978-0-692-78646-8. [Google Scholar]
- Kumar, B.; Kumar, N. Enhancing asphalt mixture performance through waste plastic modification: A comprehensive analysis of optimal compositions and volumetric properties. J. Struct. Integr. Maint. 2024, 9, 2376804. [Google Scholar] [CrossRef]
- Garcia, J.; Hansen, K. HMA Pavement Mix Type Selection Guide; National Asphalt Pavement Association (NAPA): Greenbelt, MD, USA, 2001. [Google Scholar]
- ASTM D 2041; Standard Test Method for Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures. ASTM International: West Conshohocken, PA, USA, 2003.
- Roberts, F.L.; Kandhal, P.S.; Lee, D.-Y.; Kennedy, T.W. Hot Mix Asphalt Materials, Mixture Design and Construction, 2nd ed.; National Asphalt Pavement Association Education Foundation: Lanham, MD, USA, 1996; ISBN 978-0914313014. [Google Scholar]
- Khan, D.; Khan, R.; Khan, M.T.; Alam, M.; Hassan, T. Performance of hot-mix asphalt using polymer-modified bitumen and marble dust as a filler. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 385–398. [Google Scholar] [CrossRef]
- Liang, Y.; Bai, T.; Zhou, X.; Wu, F.; Chenxin, C.; Peng, C.; Fuentes, L.; Walubita, L.F.; Li, W.; Wang, X. Assessing the Effects of Different Fillers and Moisture on Asphalt Mixtures’ Mechanical Properties and Performance. Coatings 2023, 13, 288. [Google Scholar] [CrossRef]
- Khasawneh, M.A.; Sawalha, A.A.; Aljarrah, M.T.; Alsheyab, M.A. Effect of aggregate gradation and asphalt mix volumetrics on the thermal properties of asphalt concrete. Case Stud. Constr. Mater. 2023, 18, e01725. [Google Scholar] [CrossRef]
- Dalhat, M.A.; Osman, S.A. Artificial Neural Network Modeling of Theoretical Maximum Specific Gravity for Asphalt Concrete Mix. Int. J. Pavement Res. Technol. 2024, 17, 406–422. [Google Scholar] [CrossRef]
- Reich, Y. Machine Learning Techniques for Civil Engineering Problems. Comput.-Aided Civ. Infrastruct. Eng. 1997, 12, 295–310. [Google Scholar] [CrossRef]
- Murad, Y.Z. Predictive model for bidirectional shear strength of reinforced concrete columns subjected to biaxial cyclic loading. Eng. Struct. 2021, 244, 112781. [Google Scholar] [CrossRef]
- Kumar, B.; Kumar, N.; Kashyap, V. Soft computing-based optimization of plastic waste utilization in flexible pavement construction. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 3087–3098. [Google Scholar] [CrossRef]
- Jweihan, Y.S.; Alawadi, R.J.; Momani, Y.S.; Tarawneh, A.N. Prediction of Marshall Test Results for Dense Glasphalt Mixtures Using Artificial Neural Networks. Front. Built Environ. 2022, 8, 949167. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y.R. Prediction of layer moduli from falling weight deflectometer and surface wave measurements using artificial neural network. Transp. Res. Rec. 1998, 1639, 53–61. [Google Scholar] [CrossRef]
- Tarefder, R.A.; White, L.; Zaman, M. Neural Network Model for Asphalt Concrete Permeability. J. Mater. Civ. Eng. 2005, 17, 19–27. [Google Scholar] [CrossRef]
- Gong, H.; Sun, Y.; Hu, W.; Polaczyk, P.A.; Huang, B. Investigating impacts of asphalt mixture properties on pavement performance using LTPP data through random forests. Constr. Build. Mater. 2019, 204, 203–212. [Google Scholar] [CrossRef]
- Zhou, F.; Lytton, R.L.; Hu, S.; Luo, R.; Tsai, F.-L.; Lee, S.I. Models for Predicting Reflection Cracking of Hot-Mix Asphalt Overlays; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Kim, H.; Rauch, A.F.; Haas, C.T. Automated Quality Assessment of Stone Aggregates Based on Laser Imaging and a Neural Network. J. Comput. Civ. Eng. 2004, 18, 58–64. [Google Scholar] [CrossRef]
- Saif, M.A.; El-Bisy, M.S.; Alawi, M.H. Application of Soft Computing Techniques to Predict the Stability of Asphaltic Concrete Mixes. In Proceedings of the Twelfth International Conference on Civil, Structural and Environmental Engineering Computing, Dubrovnik, Croatia, 4–7 September 2012; Topping, B.H.V., Costa Neves, L.F., Barros, R.C., Eds.; Civil-Comp Press: Stirlingshire, UK, 2013. [Google Scholar]
- Cook, R.; Lapeyre, J.; Ma, H.; Kumar, A. Prediction of Compressive Strength of Concrete: Critical Comparison of Performance of a Hybrid Machine Learning Model with Standalone Models. J. Mater. Civ. Eng. 2019, 31, 04019255. [Google Scholar] [CrossRef]
- Tarawneh, A.; Saleh, E.; Almasabha, G.; Alghossoon, A. Hybrid Data-Driven Machine Learning Framework for Determining Prestressed Concrete Losses. Arab. J. Sci. Eng. 2023, 48, 13179–13193. [Google Scholar] [CrossRef]
- Park, J.Y.; Yoon, Y.G.; Oh, T.K. Prediction of Concrete Strength with P-, S-, R-Wave Velocities by Support Vector Machine (SVM) and Artificial Neural Network (ANN). Appl. Sci. 2019, 9, 4053. [Google Scholar] [CrossRef]
- Angelaki, A.; Singh Nain, S.; Singh, V.; Sihag, P. Estimation of models for cumulative infiltration of soil using machine learning methods. ISH J. Hydraul. Eng. 2021, 27, 162–169. [Google Scholar] [CrossRef]
- Kumar, B.; Kumar, N. Forecasting Marshall stability of waste plastic reinforced concrete using SVM, ANN, and tree-based techniques. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 4569–4587. [Google Scholar] [CrossRef]
- Goh, A.T.C.; Goh, S.H. Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput. Geotech. 2007, 34, 410–421. [Google Scholar] [CrossRef]
- Suthar, M. Applying several machine learning approaches for prediction of unconfined compressive strength of stabilized pond ashes. Neural Comput. Appl. 2020, 32, 9019–9028. [Google Scholar] [CrossRef]
- Thakur, M.S.; Pandhiani, S.M.; Kashyap, V.; Upadhya, A.; Sihag, P. Predicting Bond Strength of FRP Bars in Concrete Using Soft Computing Techniques. Arab. J. Sci. Eng. 2021, 46, 4951–4969. [Google Scholar] [CrossRef]
- Kumar, B.; Kumar, N.; Mehta, V. Evaluation of soft computing techniques for predicting Marshall Stability of waste plastic-reinforced asphalt concrete. J. Struct. Integr. Maint. 2024, 9, 2371038. [Google Scholar] [CrossRef]
- Yang, G.; Yu, W.; Li, Q.J.; Wang, K.; Peng, Y.; Zhang, A. Random Forest–Based Pavement Surface Friction Prediction Using High-Resolution 3D Image Data. J. Test. Eval. 2021, 49, 1141–1152. [Google Scholar] [CrossRef]
- Kumar, A.R.S.; Goyal, M.K.; Ojha, C.S.P.; Singh, R.D.; Swamee, P.K.; Nema, R.K. Application of ANN, Fuzzy Logic and Decision Tree Algorithms for the Development of Reservoir Operating Rules. Water Resour. Manag. 2013, 27, 911–925. [Google Scholar] [CrossRef]
- Dhakate, P.P.; Patil, S.; Rajeswari, K.; Abin, D. Preprocessing and classifcation in WEKA using diferent classifers. Int. J. Eng. Res. Appl. 2014, 4, 91–93. [Google Scholar]
- ASTM C 128; Standard Test Method for Density, Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 1992.
- ASTM C127; Standard Test Method for Density, Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 1992.
- ASTM C131/C131M; Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D4791-10; Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2010.
- ASTM D792-13; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D92–16; Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D5-97; Standard Test Method for Penetration of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 1998.
- ASTM D36; Standard Test Method for Softening Point of Bitumen (Ring and Ball Apparatus). ASTM International: West Conshohocken, PA, USA, 1995.
- ASTM D70; Standard Test Method for Specific Gravity and Density of Semi-Solid Bituminous Materials (Pycnometer Method). ASTM International: West Conshohocken, PA, USA, 1997.
- Aboufoul, M.; Garcia, A. Influence of air voids characteristics on the hydraulic conductivity of asphalt mixture. Road Mater. Pavement Des. 2017, 18, 39–49. [Google Scholar] [CrossRef]
- Russo, F.; Biancardo, S.A.; Formisano, A.; Dell’Acqua, G. Predicting percent air voids content in compacted bituminous hot mixture specimens by varying the energy laboratory compaction and the bulk density assessment method. Constr. Build. Mater. 2018, 164, 508–524. [Google Scholar] [CrossRef]
- Jweihan, Y.S. Predictive model of asphalt mixes’ theoretical maximum specific gravity using gene expression programming. Results Eng. 2023, 19, 101242. [Google Scholar] [CrossRef]
Index | Coarse Aggregate | Marble Powder | Unit | Standard |
---|---|---|---|---|
Water absorption | 2.99 | 2.32 | % | ASTM C-128 [33] |
Bulk density | 2.05 | - | g/cm3 | |
Bulk specific gravity | 2.99 | 1.74 | ||
Apparent specific gravity | 2.93 | 2.61 | ||
Crushing value of aggregate | 13.13 | - | % | ASTM C-127 [34] |
Impact value of aggregate | 12.34 | - | % | |
Aggregate abrasion value | 29.3 | - | % | ASTM C131/C131M [35] |
Flakiness index | 17.3 | - | % | ASTM D-4791 [36] |
Elongation index | 11.9 | - | % | |
Specific gravity | - | 2.53 | ASTM D792 [37] | |
Fineness | - | 2.09 | % |
Index | Value | Standard |
---|---|---|
Flash point test | 267 °C | ASTM D92 [38] |
Penetration test | 94.56 mm | ASTM D5 [39] |
Ring and ball test | 44.4 °C | ASTM D36 [40] |
Specific gravity | 1.14 | ASTM D70 [41] |
Sr. No | Bitumen Content | Vv | Vb | VMA | VFB | Gmb | Total Observations |
---|---|---|---|---|---|---|---|
1 | 4.5–6 | 0.007–13.043 | 8.146–11.873 | 7.848–21.189 | 38.445–121.377 | 2.135–2.496 | 539 |
Bitumen Content | Vv | Vb | VMA | VFB | Gmb | |
---|---|---|---|---|---|---|
Training | ||||||
Mean | 5.245 | 4.031 | 10.302 | 14.33 | 72.70 | 2.335 |
Median | 5.5 | 4.079 | 10.47 | 14.326 | 71.698 | 2.335 |
Mode | 5.5 | 4.49 | 10.713 | 15.203 | 70.465 | 2.317 |
Standard Deviation | 0.553 | 1.530 | 0.911 | 1.985 | 7.722 | 0.045 |
Sample Variance | 0.305 | 2.341 | 0.831 | 3.941 | 59.63 | 0.002 |
Range | 1.5 | 13.441 | 3.571 | 12.182 | 74.78 | 0.33 |
Minimum | 4.5 | −1.241 | 8.225 | 8.244 | 40.27 | 2.156 |
Maximum | 6 | 12.2 | 11.796 | 20.426 | 115.05 | 2.486 |
Count | 377 | 377 | 377 | 377 | 377 | 377 |
Testing | ||||||
Mean | 5.265 | 4.130 | 10.32 | 14.45 | 72.52 | 2.332 |
Median | 5 | 4.2085 | 10.1945 | 14.429 | 71.745 | 2.3315 |
Mode | 6 | 4.202 | 8.975 | 13.176 | 68.111 | 2.378 |
Standard Deviation | 0.574 | 1.841 | 0.974 | 2.1240 | 9.46 | 0.050 |
Sample Variance | 0.3297 | 3.392 | 0.950 | 4.511 | 89.50 | 0.0026 |
Range | 1.5 | 14.721 | 3.727 | 13.341 | 82.932 | 0.361 |
Minimum | 4.5 | −1.678 | 8.146 | 7.848 | 38.445 | 2.135 |
Maximum | 6 | 13.043 | 11.873 | 21.189 | 121.377 | 2.496 |
Count | 162 | 162 | 162 | 162 | 162 | 162 |
Approaches | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
CC | MAE | RMSE | SI | CC | MAE | RMSE | SI | |
GP | 0.9935 | 0.0017 | 0.0058 | 0.00248 | 0.9846 | 0.0028 | 0.0101 | 0.00433 |
ANN | 0.9996 | 0.0004 | 0.0013 | 0.00056 | 0.9999 | 0.0004 | 0.0006 | 0.00026 |
SVM | 0.9995 | 0.0004 | 0.0015 | 0.00064 | 0.9989 | 0.0007 | 0.0024 | 0.00103 |
REP Tree | 0.9551 | 0.0006 | 0.0153 | 0.00655 | 0.9772 | 0.0038 | 0.0098 | 0.00420 |
Removed Parameter | Output Parameter | ANN | ||
---|---|---|---|---|
CC | MAE | RMSE | ||
None | Gmb | 0.9999 | 0.0004 | 0.0006 |
BC | Gmb | 0.9994 | 0.0004 | 0.0016 |
Vv | Gmb | 0.9996 | 0.0004 | 0.0012 |
Vb | Gmb | 0.9994 | 0.0004 | 0.0016 |
VMA | Gmb | 0.9996 | 0.0004 | 0.0012 |
VFB | Gmb | 0.9997 | 0.0005 | 0.0012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, B.; Kumar, N.; Rustum, R.; Shankar, V. Comparative Analysis of Machine Learning Techniques for Predicting Bulk Specific Gravity in Modified Asphalt Mixtures Incorporating Polyethylene Terephthalate (PET), High-Density Polyethylene (HDPE), and Polyvinyl Chloride (PVC). Mach. Learn. Knowl. Extr. 2025, 7, 30. https://doi.org/10.3390/make7020030
Kumar B, Kumar N, Rustum R, Shankar V. Comparative Analysis of Machine Learning Techniques for Predicting Bulk Specific Gravity in Modified Asphalt Mixtures Incorporating Polyethylene Terephthalate (PET), High-Density Polyethylene (HDPE), and Polyvinyl Chloride (PVC). Machine Learning and Knowledge Extraction. 2025; 7(2):30. https://doi.org/10.3390/make7020030
Chicago/Turabian StyleKumar, Bhupender, Navsal Kumar, Rabee Rustum, and Vijay Shankar. 2025. "Comparative Analysis of Machine Learning Techniques for Predicting Bulk Specific Gravity in Modified Asphalt Mixtures Incorporating Polyethylene Terephthalate (PET), High-Density Polyethylene (HDPE), and Polyvinyl Chloride (PVC)" Machine Learning and Knowledge Extraction 7, no. 2: 30. https://doi.org/10.3390/make7020030
APA StyleKumar, B., Kumar, N., Rustum, R., & Shankar, V. (2025). Comparative Analysis of Machine Learning Techniques for Predicting Bulk Specific Gravity in Modified Asphalt Mixtures Incorporating Polyethylene Terephthalate (PET), High-Density Polyethylene (HDPE), and Polyvinyl Chloride (PVC). Machine Learning and Knowledge Extraction, 7(2), 30. https://doi.org/10.3390/make7020030