Time Response of Delaminated Active Sensory Composite Beams Assuming Non-Linear Interfacial Effects
Abstract
1. Introduction
2. Theoretical Formulation
2.1. Equations of Equilibrium
2.2. Governing Materials Equations
2.3. Kinematic Assumptions
2.4. Strain–Displacement Relations and Electrical Field
2.5. Delamination Interface Interactions
2.6. Laminate Electric Enthalpy and Laminate Matrices
2.7. Finite Element Formulation
3. Materials, Experimental Methods, and Simulation Parameters
3.1. Testing Apparatus
3.2. Simulation Parameters
- (1)
- Through the thickness, following the linear layerwise assumptions and the requirement for accurate displacement and stress distributions, 30 discrete layers were used; 24 layers (3 for each ply) evenly distributed for the composite laminate, 2 layers on top of the laminate (6.3 μm thick each) for the bonding adhesive of the piezelectrics and 4 layers for the piezoceramic actuator or 1layer for the piezopolymer sensor.
- (2)
- Across the length, for the FEM mesh, we used 30 beam elements distributed across the length. The length of each beam was selected appropriately to simulate the exact position of the actuator–sensor pair, as well as to provide a denser mesh in the delamination zone.
4. Results and Discussion
4.1. Analytical Model Efficiency
4.2. Delamination Detection
4.3. Axial and Shear Wave Propagation
4.4. Contour Plots of Axial and Shear Stresses
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sridharan, S. Delamination Behaviour of Composites; Woodhead Pub.: Cambridge, UK, 2008. [Google Scholar]
- Kim, R.; Soni, S. Experimental and Analytical Studies On the Onset of Delamination in Laminated Composites. J. Compos. Mater. 1984, 18, 70–80. [Google Scholar] [CrossRef]
- Zou, Y.; Tong, L.; Steven, G. Vibration-Based Model-Dependent Damage (Delamination) Identification And Health Monitoring For Composite Structures—A Review. J. Sound Vib. 2000, 230, 357–378. [Google Scholar] [CrossRef]
- Pardoen, G.C. Effect of Delamination on the Natural Frequencies of Composite Laminates. J. Compos. Mater. 1989, 23, 1200–1215. [Google Scholar] [CrossRef]
- Wei, Z.; Yam, L.; Cheng, L. Detection of internal delamination in multi-layer composites using wavelet packets combined with modal parameter analysis. Compos. Struct. 2004, 64, 377–387. [Google Scholar] [CrossRef]
- Ihesiulor, O.K.; Shankar, K.; Zhang, Z.; Ray, T. Delamination detection with error and noise polluted natural frequencies using computational intelligence concepts. Compos. Part B Eng. 2014, 56, 906–925. [Google Scholar] [CrossRef]
- Sha, G.; Cao, M.; Radzieński, M.; Ostachowicz, W. Delamination-induced relative natural frequency change curve and its use for delamination localization in laminated composite beams. Compos. Struct. 2019, 230, 111501. [Google Scholar] [CrossRef]
- Gadelrab, R.M. The Effect of Delamination on the Natural Frequencies of A Laminated Composite Beam. J. Sound Vib. 1996, 197, 283–292. [Google Scholar] [CrossRef]
- Zhang, Z.; Shankar, K.; Morozov, E.V.; Tahtali, M. Vibration-based delamination detection in composite beams through frequency changes. J. Vib. Control. 2014, 22, 496–512. [Google Scholar] [CrossRef]
- Mukhopadhyay, T.; Naskar, S.; Karsh, P.K.; Dey, S.; You, Z. Effect of delamination on the stochastic natural frequencies of composite laminates. Compos. Part B Eng. 2018, 154, 242–256. [Google Scholar] [CrossRef]
- Wang, J.; Tong, L. A study of the vibration of delaminated beams using a nonlinear anti-interpenetration constraint model. Compos. Struct. 2002, 57, 483–488. [Google Scholar] [CrossRef]
- Della, C.N.; Shu, D. Free vibration analysis of composite beams with overlapping delaminations. Eur. J. Mech.-A/Solids 2005, 24, 491–503. [Google Scholar] [CrossRef]
- Saravanos, D.A.; Hopkins, D.A. Effects of delaminations on the damped dynamic characteristics of composite laminates: Analysis and experiments. J. Sound Vib. 1996, 192, 977–993. [Google Scholar] [CrossRef]
- Keilers, C.H.; Chang, F.-K.K. Identifying Delamination in Composite Beams Using Built-In Piezoelectrics: Part I—Experiments and Analysis. J. Intell. Mater. Syst. Struct. 1995, 6, 649–663. [Google Scholar] [CrossRef]
- Kessler, S.S.; Spearing, S.M.; Soutis, C. Damage detection in composite materials using Lamb wave methods. Smart Mater. Struct. 2002, 11, 269–278. [Google Scholar] [CrossRef]
- Chrysochoidis, N.A.; Saravanos, D.A. Assessing the effects of delamination on the damped dynamic response of composite beams with piezoelectric actuators and sensors. Smart Mater. Struct. 2004, 13, 733–742. [Google Scholar] [CrossRef]
- Hanagud, S. Delaminations in smart composite structures—A parametric study on vibrations. In Proceedings of the 31st Structures, Structural Dynamics and Materials Conference, Long Beach, CA, USA, 2–4 April 1990; American Institute of Aeronautics and Astronautics: Reston, VA, USA. [Google Scholar] [CrossRef]
- Shen, M.-H.H.; Grady, J.E. Free vibrations of delaminated beams. AIAA J. 1992, 30, 1361–1370. [Google Scholar] [CrossRef]
- Tenek, L.H.; Henneke, E.G.; Gunzburger, M.D. Vibration of delaminated composite plates and some applications to non-destructive testing. Compos. Struct. 1993, 23, 253–262. [Google Scholar] [CrossRef]
- Barbero, E.J.; Reddy, J.N. Modeling of delamination in composite laminates using a layer-wise plate theory. Int. J. Solids Struct. 1991, 28, 373–388. [Google Scholar] [CrossRef]
- Thornburgh, R.; Chattopadhyay, A. Unified Approach to Modeling Matrix Cracking and Delamination in Laminated Composite Structures. AIAA J. 2001, 39, 153–160. [Google Scholar] [CrossRef]
- Hu, N.; Fukunaga, H.; Kameyama, M.; Aramaki, Y.; Chang, F.K. Vibration analysis of delaminated composite beams and plates using a higher-order finite element. Int. J. Mech. Sci. 2002, 44, 1479–1503. [Google Scholar] [CrossRef]
- Ghoshal, A.; Kim, H.S.; Kim, J.; Choi, S.-B.; Prosser, W.H.; Tai, H. Modeling delamination in composite structures by incorporating the Fermi–Dirac distribution function and hybrid damage indicators. Finite Elem. Anal. Des. 2006, 42, 715–725. [Google Scholar] [CrossRef]
- Chrysochoidis, N.A.; Saravanos, D.A. Generalized layerwise mechanics for the static and modal response of delaminated composite beams with active piezoelectric sensors. Int. J. Solids Struct. 2007, 44, 8751–8768. [Google Scholar] [CrossRef]
- Lonkar, K.; Chang, F.-K. Modeling of piezo-induced ultrasonic wave propagation in composite structures using layered solid spectral element. Struct. Health Monit. 2014, 13, 50–67. [Google Scholar] [CrossRef]
- Shen, Y.; Cesnik, C.E.S. Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures. Smart Mater. Struct. 2016, 25, 095021. [Google Scholar] [CrossRef]
- Rekatsinas, C.S.; Chrysochoidis, N.A.; Saravanos, D.A. Investigation of critical delamination characteristics in composite plates combining cubic spline piezo-layerwise mechanics and time domain spectral finite elements. Wave Motion 2021, 106, 102752. [Google Scholar] [CrossRef]
- Kapuria, S.; Ahmed, A. A coupled efficient layerwise finite element model for free vibration analysis of smart piezo-bonded laminated shells featuring delaminations and transducer debonding. Int. J. Mech. Sci. 2021, 194, 106195. [Google Scholar] [CrossRef]
- Jain, M.; Kapuria, S. Efficient layerwise multiphysics spectral element model for delaminated composite strips with PWAS transducers. Eur. J. Mech.-A/Solids 2025, 109, 105479. [Google Scholar] [CrossRef]
- Di Sciuva, M.; Librescu, L. A dynamic nonlinear model of multilayered composite shells featuring damaged interfaces. In Proceedings of the 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA, USA, 3–6 April 2000; American Institute of Aeronautics and Astronautics: Reston, VA, USA; 2000. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Kim, H.S.; Ghoshal, A. Non-linear vibration analysis of smart composite structures with discrete delamination using a refined layerwise theory. J. Sound Vib. 2004, 273, 387–407. [Google Scholar] [CrossRef]
- Feng, Y.; Reddy, R.M.R.; Sheikh, A.H.; Ng, C.-T.; Smith, S.T. A sub-laminate based higher-order model for bending of laminated beams containing multiple delaminations. Compos. Struct. 2022, 294, 115729. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Krawczuk, M.; Cartmell, M.; Gilchrist, M. Wave propagation in delaminated beam. Comput. Struct. 2004, 82, 475–483. [Google Scholar] [CrossRef]
- Chrysochoidis, N.; Saravanos, D. Layerwise Dynamic Response Models for Delamination Composite Beams with Active Piezoelectric Sensors. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, TX, USA, 18–21 April 2005. [Google Scholar] [CrossRef]
- Chrysochoidis, N.A.; Saravanos, D.A. High-frequency dispersion characteristics of smart delaminated composite beams. J. Intell. Mater. Syst. Struct. 2009, 20, 1057–1068. [Google Scholar] [CrossRef]
- Chen, H.; Wang, M.; Bai, R. The effect of nonlinear contact upon natural frequency of delaminated stiffened composite plate. Compos. Struct. 2006, 76, 28–33. [Google Scholar] [CrossRef]
- Rekatsinas, C.; Chrysochoidis, N.; Saravanos, D. Analyzing the nonlinear mechanisms in active wave modulation spectroscopy and their Influence on delamination detection in laminated strips and plates. Proc. SPIE Int. Soc. Opt. Eng. 2019, 10972, 52. [Google Scholar] [CrossRef]
- Gangwar, A.S.; Agrawal, Y.; Joglekar, D.M. Effects of Delamination on Higher Harmonics Generation in Unidirectional GFRP Laminate. In Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022; pp. 411–421. [Google Scholar] [CrossRef]
- Ng, C.T.; Veidt, M. Scattering analysis of fundamental anti-symmetric lamb wave at delaminations in composite laminates. Aust. J. Mech. Eng. 2011, 8, 197–206. [Google Scholar] [CrossRef]
- Ramadas, C.; Balasubramaniam, K.; Joshi, M.; Krishnamurthy, C.V. Interaction of the primary anti-symmetric Lamb mode (Ao) with symmetric delaminations: Numerical and experimental studies. Smart Mater. Struct. 2009, 18, 085011. [Google Scholar] [CrossRef]
- Ramadas, C.; Balasubramaniam, K.; Joshi, M.; Krishnamurthy, C.V. Numerical and experimental studies on propagation of A0 mode in a composite plate containing semi-infinite delamination: Observation of turning modes. Compos. Struct. 2011, 93, 1929–1938. [Google Scholar] [CrossRef]
- PadiyarM, J.; Balasubramaniam, K. Quantitative characterization of interface delamination in composite T-joint using couplant-free Lamb wave methods. J. Reinf. Plast. Compos. 2015, 35, 345–361. [Google Scholar] [CrossRef]
- Li, B.; Ye, L.; Li, Z.; Ma, Z.; Kalhori, H. Quantitative identification of delamination at different interfaces using guided wave signals in composite laminates. J. Reinf. Plast. Compos. 2015, 34, 1506–1525. [Google Scholar] [CrossRef]
- Ramadas, C.; Hood, A.; Padiyar, J.; Balasubramaniam, K.; Joshi, M. Sizing of delamination using time-of-flight of the fundamental symmetric Lamb modes. J. Reinf. Plast. Compos. 2011, 30, 856–863. [Google Scholar] [CrossRef]
- Shoja, S.; Berbyuk, V.; Boström, A. Delamination detection in composite laminates using low frequency guided waves: Numerical simulations. Compos. Struct. 2018, 203, 826–834. [Google Scholar] [CrossRef]
- Chrysochoidis, N. Analytical Models for Smart Piezoelectric Materials and Structures Encompassing Self-Health Monitoring Capabilities. Available online: https://www.didaktorika.gr/eadd/handle/10442/17546?locale=en (accessed on 12 January 2023).
- Heyliger, P.; Saravanos, D.A. Exact free-vibration analysis of laminated plates with embedded piezoe-lectric layers. J. Acoust. Soc. Am. 1995, 98, 1547–1557. [Google Scholar] [CrossRef]
- Bathe, K.-J. Finite Element Procedures; Prentice Hall: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
Property | T300/934 | Pz27 (Ferroperm) | PVDF (LDT1_028K) |
---|---|---|---|
E11 (GPa) | 127 | 58.82 | 3 |
E33 (GPa) | 7.9 | 43.1 | 6 |
v13 | 0.275 | 0.371 | 0.3 |
G13 (GPa) | 3.4 | 22.98 | 1 |
d31 (m/V) | 0 | −170 × 10−12 | −23 × 10−12 |
d33 (m/V) | 0 | 425 × 10−12 | 33 × 10−12 |
d15 (m/V) | 0 | 506 × 10−12 | |
ε31 (farad/m) | 0 | 15.94 × 10−9 | 106 × 10−12 |
ε11 (farad/m) | 0 | 15.94 × 10−9 | 106 × 10−12 |
ρ (kg/m3) | 1578 | 7700 | 1780 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrysochoidis, N.A.; Rekatsinas, C.S.; Saravanos, D.A. Time Response of Delaminated Active Sensory Composite Beams Assuming Non-Linear Interfacial Effects. J. Compos. Sci. 2025, 9, 500. https://doi.org/10.3390/jcs9090500
Chrysochoidis NA, Rekatsinas CS, Saravanos DA. Time Response of Delaminated Active Sensory Composite Beams Assuming Non-Linear Interfacial Effects. Journal of Composites Science. 2025; 9(9):500. https://doi.org/10.3390/jcs9090500
Chicago/Turabian StyleChrysochoidis, Nikolaos A., Christoforos S. Rekatsinas, and Dimitris A. Saravanos. 2025. "Time Response of Delaminated Active Sensory Composite Beams Assuming Non-Linear Interfacial Effects" Journal of Composites Science 9, no. 9: 500. https://doi.org/10.3390/jcs9090500
APA StyleChrysochoidis, N. A., Rekatsinas, C. S., & Saravanos, D. A. (2025). Time Response of Delaminated Active Sensory Composite Beams Assuming Non-Linear Interfacial Effects. Journal of Composites Science, 9(9), 500. https://doi.org/10.3390/jcs9090500