Wet Compression Molding of Biocomposites for a Transportation Industry Application
Abstract
1. Introduction
- Natural fiber reinforcement;
- High-bio-content thermoset resin as the matrix;
- No prepreg;
- Manufacturing cycle time less than 10 min for a 3–4 mm thick laminate;
- Low use of consumables;
- Simple tooling design.
2. Literature Review
3. Materials and Methods
3.1. WCM Process
- Pour a mixed-liquid thermoset resin on top of a dry composite laminate preform and lay it within a temperature-controlled female mold (viscous draping), or pour resin on top of the dry preform inside the mold (dry draping). The female mold typically requires a venting arrangement to draw vacuum.
- Use a matching temperature-controlled male mold with a resin sealing system mounted on a high-tonnage press to rapidly push the resin through the dry preform’s thickness.
- Cure the impregnated laminate in place at an elevated temperature.
- Eject the consolidated and cured composite part.
3.2. Bio-Based Materials
3.3. Process and Tooling Design
- Choose the resin catalyst and curing temperature to achieve the desired cure time.
- Measure the resin viscosity or obtain it from the manufacturer’s product data sheets.
- Experimentally determine the reinforcement/resin permeability.
- Estimate resin impregnation time, timp, for a particular molding pressure and resin viscosity.
- Pick the specific WCM approach—viscous draping or dry draping—and estimate the minimum amount of resin required per part.
- Estimate the total cycle time, tc.
- Design tooling to include resin sealing features and strategically located vacuum ports and part ejection features protected from resin ingress by semi-permeable membranes.
- Steps 1 and 2—Resin choice and viscosity
- Step 3—Permeability Measurement
- Step 4—Resin Impregnation Time
- Step 5—WCM Approachand Resin Volume Required
- Step 6—Total cycle time
- Step 7—Tooling design
3.4. Experimental Plan
3.4.1. Thickness Measurements
3.4.2. Fiber Volume Fraction and Theoretical Permeability
3.4.3. Density and Flexural Property Testing Measurements
4. Results and Discussion
4.1. Thickness Measurements
4.2. Fiber Volume Fraction and Theoretical Permeability
4.3. Density and Flexural Property Testing Measurements
5. Conclusions and Future Work
- O-ring seal incorporated into the top mold to maintain the high impregnation pressure and prevent resin leakage;
- Strategically located vacuum ports covered with a semi-permeable membrane (e.g., peel ply) in the bottom mold to remove trapped air and prevent resin ingress during processing;
- Ejection pins in the bottom mold, also covered with pieces of semi-permeable membrane, to quickly eject the part after curing.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akampumuza, O.; Wambua, P.M.; Ahmed, A.; Li, W.; Qin, X.H. Review of the applications of biocomposites in the automotive industry. Polym. Compos. 2017, 38, 2553–2569. [Google Scholar] [CrossRef]
- Walczyk, D.; Bucinell, R.; Fleishman, S.; Joshi, S. A Case Study of Biocomposite Material Use in Automotive Applications. In Proceedings of the American Society of Composites 36th Technical Conference, College Station, TX, USA, 20–22 September 2021. [Google Scholar]
- Baskarana, M.; Ortiz de Mendibila, I.; Sarrionandia, M.; Aurrekoetxea, J.; Acosta, J.; Argarate, U.; Chico, D. Manufacturing Cost Comparison for RTM, HP-RTM and CRTM for an Automotive Roof. In Proceedings of the ECCM16—16th European Conference on Composite Materials, Seville, Spain, 22–26 June 2014. [Google Scholar]
- Gardiner, G. Wet Compression Molding. Available online: https://www.gardnerweb.com/articles/wet-compression-molding (accessed on 15 April 2025).
- Sebe, G.; Cetin, N.S.; Hill, C.; Hughes, M. RTM Hemp Fibre-Reinforced Polyester Composites. Appl. Compos. Mater. 2000, 7, 341–349. [Google Scholar] [CrossRef]
- Rouison, D.; Sain, M.; Couturier, M. Resin transfer molding of natural fiber reinforced composites: Cure simulation. Compos. Sci. Technol. 2004, 64, 629–644. [Google Scholar] [CrossRef]
- Young, W.-B.; Chiu, C.-W. Study on Compression Transfer Molding. J. Compos. Mater. 1995, 29, 2180–2191. [Google Scholar] [CrossRef]
- Shojaei, A. Numerical simulation of three-dimensional flow and analysis of filling process in compression resin transfer moulding. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1434–1450. [Google Scholar] [CrossRef]
- Simacek, P.; Advani, S.G.; Lobst, S.A. Modeling Flow in Compression Resin Transfer Molding for Manufacturing of Complex Lightweight High-Performance Automotive Parts. J. Compos. Mater. 2008, 42, 2523–2545. [Google Scholar] [CrossRef]
- Bhat, P.; Merotte, J.; Simacek, P.; Advani, S.G. Process analysis of compression resin transfer molding. Compos. Part A Appl. Sci. Manuf. 2009, 40, 431–441. [Google Scholar] [CrossRef]
- Bockelmann, P. Process Control in Compression Molding of Composites. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2017. [Google Scholar]
- Fels, J.; Meirson, G.; Ugresic, V.; Dugsin, P.; Henning, F.; Hrymak, A. Mechanical property difference between composites produced using vacuum assisted liquid compression molding and high pressure resin transfer molding. In Proceedings of the ACCE2017—17th Annual Automotive Composites Conference and Exhibition, Novi, MI, USA, 6–8 September 2017. [Google Scholar]
- Keller, A.; Dransfeld, C.; Masania, K. Flow and heat transfer during compression resin transfer moulding of highly reactive epoxies. Compos. B Eng. 2018, 153, 167–175. [Google Scholar] [CrossRef]
- Fial, J.; Harr, M.; Bohler, P.; Middendorf, P. Automated wet compression moulding of load-path optimised TFP preforms with low cycle times. IOP Conf. Ser. Mater. Sci. Eng. 2018, 406, 12018. [Google Scholar] [CrossRef]
- Henning, F.; Kärger, L.; Dörr, D.; Schirmaier, F.J.; Seuffert, J.; Bernath, A. Fast processing and continuous simulation of automotive structural composite components. Compos. Sci. Technol. 2019, 171, 261–279. [Google Scholar] [CrossRef]
- Lee, S.; Hong, C.; Choi, T.; Kim, H.G.; Im, S.W.; Kang, S.C.; Park, Y.B.; Jia, W. CSAI analysis of non-crimp fabric cross-ply laminate manufactured through wet compression molding process. Compos. Struct. 2021, 255, 113056. [Google Scholar] [CrossRef]
- Ayatollahi, S. Effect of Process Parameters on the Mechanical Properties of Carbon Fiber Epoxy Composites by Wet Compression Molding. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2023. [Google Scholar]
- Muthuvel, B.; Bhattacharyya, D.; Bickerton, S. Development of innovative flow visualisation methods to investigate the stages of Wet Compression Moulding (WCM) process. IOP Conf. Ser. Mat. Sci. Eng. 2020, 912, 52013. [Google Scholar] [CrossRef]
- Chang, C.Y. Experimental analysis of mold filling in vacuum assisted compression resin transfer molding. J. Reinf. Plast. Compos. 2012, 31, 1630–1637. [Google Scholar] [CrossRef]
- Muthuvel, B.; Bhattacharyya, D.; Bickerton, S. A parametric flow visualisation study on the impregnation and consolidation stages of the Wet Compression Moulding process. Part I Process parameters. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106634. [Google Scholar] [CrossRef]
- Poppe, C.; Albrecht, F.; Krauss, C.; Kärger, L. A 3D Modelling Approach for Fluid Progression during Process Simulation of Wet Compression Moulding—Motivation & Approach. Procedia Manuf. 2020, 47, 85–92. [Google Scholar]
- Poppe, C.; Albrecht, F.; Krauss, C.; Kärger, L. Towards numerical prediction of flow-induced fiber displacements during wet compression molding (WCM). In Proceedings of the ESAFORM 2021—24th International Conference on Material Forming, Liège, Belgium, 14–16 April 2021. [Google Scholar]
- Wet Compression Molding. Available online: https://www.frimo.com/en/wet-compression-molding (accessed on 15 April 2025).
- Huntsman Advanced Materials Develops a New Compression Molding Process. Available online: https://www.huntsman.com/about/advanced-materials/news/detail/12600/huntsman-advanced-materials-develops-a-new-compression (accessed on 15 April 2025).
- Bergmann, J.; Dörmann, H.; Lange, R. Interpreting process data of wet pressing process. Part 1: Theoretical approach. J. Compos. Mater. 2015, 50, 2399–2407. [Google Scholar] [CrossRef]
- Bergmann, J.; Dörmann, H.; Lange, R. Interpreting process data of wet pressing process. Part 2: Verification with real values. J. Compos. Mater. 2015, 50, 2409–2419. [Google Scholar] [CrossRef]
- Hem Mill Inc. Available online: https://www.facebook.com/Hempmill/ (accessed on 15 April 2025).
- Ekoa by Lingrove. Available online: https://www.lingrove.com/ (accessed on 15 April 2025).
- What Is Biomid Fiber. Available online: https://www.biomidfiber.com/what-is-biomid-fiber%3F (accessed on 15 April 2025).
- Absecon Contract Upholstery Fabric. Available online: https://www.abseconmills.com/ (accessed on 15 April 2025).
- Sicomin GreenPoxy 33. Available online: https://sicomin.com/datasheets/srGreenPoxy33_sd477x.pdf (accessed on 15 April 2025).
- Neto, J.S.S.; de Queiroz, H.F.M.; Aguiar, R.A.A.; Banea, M.D. A Review on the Thermal Characterisation of Natural and Hybrid Fiber Composites. Polymers 2021, 13, 4425. [Google Scholar] [CrossRef]
- ASTM D2584-11; Standard Test Method for Ignition Loss of Cured Reinforced Resins. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM D3171-22; Standard Test Methods for Constituent Content of Composite Materials. ASTM International: West Conshohocken, PA, USA, 2022.
- Amikhosravi, A.; Pishvar, M.; Hamidi, Y.K.; Altan, M.C. Accurate characterization of fiber and void volume fractions of natural fiber composites by pyrolysis in a nitrogen atmosphere. AIP Conf. 2020, 2205, 20032. [Google Scholar]
- Gebart, B.R. Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 1992, 26, 1100–1133. [Google Scholar] [CrossRef]
- ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D2395-17; Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Liu, M.; Thygesen, A.; Summerscales, J.; Meyer, A.S. Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review. Ind. Crop Prod. 2017, 108, 660–683. [Google Scholar] [CrossRef]
- Amiri, A.; Triplett, Z.; Moreira, A.; Brezinka, N.; Alcock, M.; Ulven, C.A. Standard density measurement method development for flax fiber. Ind. Crop Prod. 2017, 96, 196–202. [Google Scholar] [CrossRef]
- Alcock, M.; Ahmed, S.; DuCharme, S.; Ulven, C.A. Influence of Stem Diameter on Fiber Diameter and the Mechanical Properties of Technical Flax Fibers from Linseed Flax. Fibers 2018, 6, 10. [Google Scholar] [CrossRef]
- Jasti, A.; Biswas, S. Characterization of Elementary Industrial Hemp (Cannabis sativa L.) Fiber and Its Fabric. J. Nat. Fibers 2023, 20, 2158982. [Google Scholar] [CrossRef]
t (s) | |||
---|---|---|---|
x (m) | BioMid | Hemp | Flax |
0.005 | 125 | 135 | 55 |
0.010 | 285 | 285 | 95 |
0.015 | 615 | 510 | 140 |
0.020 | 975 | 930 | 255 |
P (Pa) | |||
μr @ 27 °C (Pa·s) | 1.30 | ||
K (m2) |
Fiber Arrangement | c | C1 | Vfmax |
---|---|---|---|
Square | 57 | ||
Hexagonal | 53 |
Metric | BioMid | Hemp | Flax |
---|---|---|---|
Avg. Thickness, h (mm) | 3.84 | 2.87 | 3.01 |
Standard Deviation | 0.06 | 0.03 | 0.12 |
Variable (Units) | BioMid | Hemp | Flax | Notes |
---|---|---|---|---|
n (# plies) | 18 | 4 | 5 | |
ρar (kg/m3) | 0.203 | 0.814 | 0.366 | See Ref. [2] |
ρf (kg/m3) | 1500 [29] | 1500 [39] | 1400 [40] | |
h (m) | 0.00384 | 0.00287 | 0.00301 | From Table 2 |
Vf (%) | 63.4 | 75.6 | 43.4 | |
Technical Fiber Diameter Value/Range, 2R (μm) | 11 [29] | 106–142 [41] | 35–150 [42] | |
K⊥ (m2) | ||||
K (m2) | From Table 1 |
Dim 1 (mm) | Dim 2 (mm) | Thickness (mm) | Mass (g) | Measured Density (kg/m3) | Calculated Density (kg/m3) | ||
---|---|---|---|---|---|---|---|
BioMid/Epoxy | μ | 25.60 | 12.99 | 3.81 | 1.657 | 1309 | 1360 |
σ | 0.05 | 0.05 | 0.12 | 0.042 | 14 | n/a | |
Hemp/Epoxy | μ | 25.44 | 12.84 | 2.84 | 1.184 | 1276 | 1410 |
σ | 0.08 | 0.03 | 0.05 | 0.013 | 29 | n/a | |
Flax/Epoxy | μ | 25.48 | 12.84 | 2.94 | 1.230 | 1278 | 1285 |
σ | 0.10 | 0.02 | 0.15 | 0.060 | 18 | n/a |
Span (mm) | Width (mm) | Thickness (mm) | ||
---|---|---|---|---|
BioMid/Epoxy | μ | 61.0 | 12.90 | 3.76 |
σ | 0.0 | 0.05 | 0.11 | |
Hemp/Epoxy | μ | 61.0 | 12.81 | 2.81 |
σ | 0.0 | 0.05 | 0.10 | |
Flax/Epoxy | μ | 61.0 | 12.799 | 2.887 |
σ | 0.0 | 0.049 | 0.133 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, S.; Walczyk, D.; Bucinell, R.; Kuppers, J. Wet Compression Molding of Biocomposites for a Transportation Industry Application. J. Compos. Sci. 2025, 9, 496. https://doi.org/10.3390/jcs9090496
Joshi S, Walczyk D, Bucinell R, Kuppers J. Wet Compression Molding of Biocomposites for a Transportation Industry Application. Journal of Composites Science. 2025; 9(9):496. https://doi.org/10.3390/jcs9090496
Chicago/Turabian StyleJoshi, Sharmad, Daniel Walczyk, Ronald Bucinell, and Jaron Kuppers. 2025. "Wet Compression Molding of Biocomposites for a Transportation Industry Application" Journal of Composites Science 9, no. 9: 496. https://doi.org/10.3390/jcs9090496
APA StyleJoshi, S., Walczyk, D., Bucinell, R., & Kuppers, J. (2025). Wet Compression Molding of Biocomposites for a Transportation Industry Application. Journal of Composites Science, 9(9), 496. https://doi.org/10.3390/jcs9090496