Study on the Performance of Cage Braided Tube with PEG/CNT Composite Coatings for Heated Tobacco Product Filters
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PEG/CNT Mixture Solutions
2.3. Preparation of the Cooling Section of the Braided Tube
2.4. Characterization
Experimental Instruments and Test Conditions
3. Results and Discussion
3.1. Thermal Properties and Morphological Characteristics of Braided Tubes
0.4 wt% CNT: λ = 0.213 W/m·K (+122%)
0.6 wt% CNT: λ = 0.414 W/m·K (+331%)
0.8 wt% CNT: λ = 0.597 W/m·K (+521%)
3.2. Pressure Drop Performance of the Cooling Section of the Braided Tube
3.3. Cooling Performance of the Cooling Section of the Braided Tube
3.4. Cigarette Smoke Composition
4. Conclusions
- The endothermic capacity of the braided tubes showed a positive correlation with the polyethylene glycol (PEG) concentration. At a PEG impregnation level of 30 wt%, the composite achieved an optimal enthalpy of 92.85 J/g—a viscosity range that simultaneously facilitated effective carbon nanotube (CNT) dispersion. The synergistic effect of 30 wt% PEG and 0.8 wt% CNT resulted in a remarkable thermal conductivity of 0.597 W/m·K, corresponding to a 521% enhancement over the untreated baseline. Thermogravimetric analysis (TG) confirmed exceptional thermal stability across all PEG/CNT composites, with decomposition temperatures consistently maintained at 350 °C; therefore, the material of the braided tube at the cooling section of the filter rod will not undergo thermal decomposition and generate additional chemical components, and has good thermal stability.
- The average suction resistance of the braided tube cooling section after smoking is 68.5 Pa, and the diameter of the core material is negatively correlated with the suction resistance. The incorporation of PEG/CNT has no significant effect on the suction resistance of the braided tube. The suction resistance of the IQOS heated tobacco stick is 157 Pa. As a result, the suction resistance of the cooling section of the braided tube was reduced by 56.4% compared to the suction resistance of IQOS heated tobacco sticks, thereby improving the smoking experience.
- The cooling performance of CA/PVA/PET braided tubes was systematically evaluated, revealing that untreated samples exhibit maximum flue gas temperatures ranging from 55 to 60 °C. Impregnation with PEG/CNT composite solutions significantly enhanced the cooling efficiency, with the temperature reduction effect exhibiting a positive correlation with the CNT concentration. Optimal cooling performance was achieved using 3 mm diameter tubes treated with a 30 wt% PEG/0.8 wt% CNT solution, which effectively lowered the flue gas temperature to 47.8 °C through the combined mechanisms of PEG’s phase-change heat absorption properties and the enhanced thermal conductivity of CNTs.
- GC-MS analysis of smoke components revealed no statistically significant differences (p > 0.05 for all measured constituents) among CA/PVA/PET braided tubes fabricated with different core materials. An overall analysis of the data further confirmed the absence of significant variations in smoke components between samples. These results confirm that integrating braided tube structures into the cooling section maintains smoke composition integrity, thereby preserving the essential sensory characteristics of the smoking experience.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goniewicz, M. IBS11.01 Electronic Cigarettes and Heat-Not-Burn Tobacco Products—How Are They Different. J. Thorac. Oncol. 2019, 14, S101. [Google Scholar] [CrossRef]
- Goodall, S.; Gale, N.; Thorne, D.; Hadley, S.; Prasad, K.; Gilmour, I.; Miazzi, F.; Proctor, C. Evaluation of behavioural, chemical, toxicological and clinical studies of a tobacco heated product glo™ and the potential for bridging from a foundational dataset to new product iterations. Toxicol. Rep. 2022, 9, 1426–1442. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wang, C.; Zhao, W.; Wang, X.; Dou, Y.; Yang, J.; Tan, J. The Effect of Heating Pretreatment on the Pyrolysis and Sensory Quality of Heated Cigarette Tobacco Flakes. Chin. Tob. Sci. 2025, 46, 60–68. [Google Scholar]
- Ding, S.; Zhang, J.; Tuo, S.; Wang, Y.; Cai, J.; Liu, X.; Ren, J. Filling structure design and cooling mechanism study of the heat-not-burn cigarettes with sidewall openings. Int. Commun. Heat Mass Transf. 2024, 153, 107405. [Google Scholar] [CrossRef]
- Mušič, B.; Jemec Kokalj, A.; Sever Škapin, A. Influence of Weathering on the Degradation of Cellulose Acetate Microplastics Obtained from Used Cigarette Butts. Polymers 2023, 15, 2751. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, S.; Chen, X.; Jing, X.; Wang, J.; Li, Y.; Li, C. Preliminary Study on Melt-Spinning, Adhesion and Adsorption Properties of Poly(lactic acid). Chin. J. Polym. Sci. 2009, 7, 959–966. [Google Scholar] [CrossRef]
- Ruiz, M.B.; Pérez-Camargo, R.A.; López, J.V.; Penott-Chang, E.; Múgica, A.; Coulembier, O.; Müller, A.J. Accelerating the crystallization kinetics of linear polylactides by adding cyclic poly (L-lactide): Nucleation, plasticization and topological effects. Int. J. Biol. Macromol. 2021, 186, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Sarı, A.; Bicer, A.; Al-Sulaiman, F.A.; Karaipekli, A.; Tyagi, V.V. Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: Preparation and thermal energy storage properties. Energy Build. 2018, 164, 166–175. [Google Scholar] [CrossRef]
- Mu, S.; Guo, J.; Yu, Y.; An, Q.; Zhang, S.; Wang, D.; Chen, S.; Huang, X.; Li, S. Synthesis and thermal properties of cross-linked poly(acrylonitrile-co-itaconate)/polyethylene glycol as novel form-stable change material. Energy Convers. Manag. 2016, 110, 176–183. [Google Scholar] [CrossRef]
- Pielichowska, K.; Bieda, J.; Szatkowski, P. Polyurethane/graphite nano-platelet composites for thermal energy storage. Renew. Energy 2016, 91, 456–465. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, T.; Shen, Y.; Li, M.; Fan, X. Paper Tubes That Release Fragrance Based on Flue Gas Temperature and Their Applications. CN201711427033.4, 26 December 2017. [Google Scholar]
- Song, S.; Hu, B.; Qu, G.; Wang, Z.; Qi, G.; Tang, K.; Li, B. Reinforced Interfacial Interaction to Fabricate Poly(vinylidene fluoride) Composites with High Thermal Conductivity for Heat Exchangers. Ind. Eng. Chem. Res. 2020, 59, 17845–17855. [Google Scholar] [CrossRef]
- Ali, Z.; Yaqoob, S.; D’Amore, A. Impact of Dispersion Methods on Mechanical Properties of Carbon Nanotube (CNT)/Iron Oxide (Fe3O4)/Epoxy Composites. C 2024, 10, 66. [Google Scholar] [CrossRef]
- Liu, X.S.; Fu, Q.G.; Wang, H.H.; Tong, M.D.; Zhang, J.P.; Song, Q. Improving thermal shock and ablation resistance of high thermal conductivity carbon/carbon composites by introducing carbon nanotubes. Carbon Lett. 2020, 30, 721–733. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J. Enhancing the thermal conductivity of PEG composites with freeze-drying and surface treatment of MXene and CNT. Mater. Today Chem. 2023, 27, 101305. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Y.; Zheng, J. Polydimethylsiloxane-based phase transition composites with excellent low-temperature flexibility for battery thermal management. Mater. Today Commun. 2025, 44, 111958. [Google Scholar] [CrossRef]
- Lamastra, F.R.; Bragaglia, M.; Paleari, L.; Nanni, F.; Fabborcino, F.; Scarselli, M. Form-Stable Phase-Change Materials Using Chemical Vapor Deposition-Derived Porous Supports: Carbon Nanotube/Diatomite Hybrid Powder and Carbon Nanotube Sponges. Materials 2024, 17, 5721. [Google Scholar] [CrossRef]
- Huang, B. Carbon nanotubes and their polymeric composites: The applications in tissue engineering. Biomanuf. Rev. 2020, 5, 3. [Google Scholar] [CrossRef]
- British American Tobacco. Delivering Today, Investing in Tomorrow; British American Tobacco: London, UK, 2016. [Google Scholar]
- Leigh, N.J.; Page, M.K.; Robinson, D.L.; Heldwein, S.D.; O’Connor, R.J.; Goniewicz, M.L. Nicotine, Humectants, and Tobacco-Specific Nitrosamines (TSNAs) in IQOS HTPs (HTPs): A Cross-Country Study. Toxics 2024, 12, 180. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, J.; Gao, J.; Wu, J.; Xie, Y.; Gao, N. Research progress on heat and mass transfer and release of key substances in electric heating cigarettes. Tob. Sci. Technol. 2022, 55, 100–112. [Google Scholar]
- Andrew, T.; Louise, A.C. Cigarette filter fibres as a sink and source of trace metals in coastal waters. Chemosphere 2023, 349, 140845. [Google Scholar]
- Paszkiewicz, G.M.; Pauly, J.L. Spectrofluorometric method for measuring tobacco smoke particulate matter on cigarette filters and Cambridge pads. Tob. Control 2008, 17 (Suppl. 1), i53–i58. [Google Scholar] [CrossRef] [PubMed]
- Pauly, J.L.; Mepani, A.B.; Lesses, J.D.; Cummings, K.M.; Streck, R.J. Cigarettes with defective filters marketed for 40 years: What Philip Morris never told smokers. Tob. Control 2002, 11 (Suppl. 1), i51–i61. [Google Scholar] [CrossRef]
- Liao, T.; Li, W.; Yang, X.; Zhao, J.; Zhang, X. Preparation and Thermal Properties of Carbon Nanotube/Polyethylene Glycol Composite Phase Transition Fibres. J. Text. Sci. 2025, 46, 9–16. [Google Scholar]
- Luo, W.; Xie, L.; Qin, L.; Ding, D.; Wen, J.; Wu, M.; Guo, X.; Du, W.; Yin, X.; Deng, C. Preparation and application of ‘cooling and low retention’ filters for heated cigarettes. Tob. Sci. Technol. 2021, 54, 50–57. [Google Scholar]
- Haiduc, A.; Zanetti, F.; Zhao, X.; Schlage, W.K.; Scherer, M.; Pluym, N.; Schlenger, P.; Ivanov, N.V.; Majeed, S.; Hoeng, J.; et al. Analysis of chemical deposits on tooth enamel exposed to total particulate matter from cigarette smoke and tobacco heating system 2.2 aerosol by novel GC–MS deconvolution procedures. J. Chromatogr. B 2020, 1152, 122228. [Google Scholar] [CrossRef]
- Golpe, M.C.; Ramil, M.; Rodríguez, I. Comprehensive characterization of volatile and semi-volatile compounds in e-liquids for electronic cigarette using gas chromatography accurate mass spectrometry. J. Chromatogr. A 2023, 1703, 464114. [Google Scholar] [CrossRef]
- Zhou, J.; Bai, R.; Zhu, Y. Determination of four tobacco-specific nitrosamines in mainstream cigarette smoke by gas chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. RCM 2007, 21, 4086–4092. [Google Scholar] [CrossRef]
- Anhui China Tobacco Industry Co., Ltd. A Composite Filter Rod That Selectively Reduces the Release of Phenol, a Harmful Component in Mainstream Cigarette Smoke. CN201210578840.7, 14 May 2014. [Google Scholar]
- Hunan China Tobacco Industry Co., Ltd. An Additive to Reduce Harmful Components in Cigarette Smoke and Cigarettes. CN200910308650.1, 14 April 2010. [Google Scholar]
- Zheng, Y.; Shen, L.; Ma, D.; Yang, Y.; Zhang, Q.; Wu, J.; Bao, A.; Wu, Y.; Long, Y.; Chen, Z. Research Progress on Factors Affecting the suction resistance Stability of Slim Cigarettes. Agric. Prod. Process. 2023, 12, 71–74+78. [Google Scholar]
- Chen, L.; Yu, Z.; Zhang, B.; Zhu, Q.; Fan, H.; Qiu, Y. Prediction method of cigarette suction resistance based on correlation analysis. Comput. Electron. Agric. 2023, 208, 107808. [Google Scholar] [CrossRef]
- Nantong Acetate Fiber Co., Ltd.; Zhuhai Acetate Fiber Co., Ltd.; Kunming Acetate Fiber Co., Ltd. Porous Elements That Can Be Used for Cigarettes and Filter Rods and Cigarettes Containing the Porous Elements. CN202421362450.0, 13 June 2025. [Google Scholar]
- Nantong Acetate Fiber Co., Ltd.; Zhuhai Acetate Fiber Co., Ltd.; Kunming Acetate Fiber Co., Ltd. An Aerosol Production Product, Preparation Method and Its Application. CN202410770822.1, 3 December 2024. [Google Scholar]
- Nantong Acetate Fiber Co., Ltd.; Tianjin University of Technology. A Cigarette Filter Rod and Its Preparation Method. CN202410770818.5, 3 September 2024. [Google Scholar]
Samples | Heat Absorption Enthalpy (J/g) |
---|---|
Unsoaked PEG solution braided tube | 1.27 |
Soak braided tubes in a 10 wt% PEG solution | 45.74 |
Soak braided tubes in a 20 wt% PEG solution | 77.79 |
Soak braided tubes in a 30 wt% PEG solution | 92.85 |
Soak braided tubes in a 40 wt% PEG solution | 117.80 |
Sample Names | Thermal Conductivity (W/m·K) | Rate of Increase |
---|---|---|
30%PEG/0%CNT braided fabric | 0.096 | - |
30%PEG/0.2%CNT braided fabric | 0.146 | 52.1% |
30%PEG/0.4%CNT braided fabric | 0.213 | 122% |
30%PEG/0.6%CNT braided fabric | 0.414 | 331% |
30%PEG/0.8%CNT braided fabric | 0.597 | 521% |
Sample Names | Suction Resistance | Significance | ||
---|---|---|---|---|
2.5–0%PEG0%CNT | 91.0 | 92.0 | 89.0 | c |
2.5–30%PEG/0.2%CNT | 93.5 | 95.2 | 91.8 | ab |
2.5–30%PEG/0.4%CNT | 94.0 | 92.0 | 96.0 | ab |
2.5–30%PEG/0.6%CNT | 92.4 | 94.0 | 90.8 | bc |
2.5–30%PEG/0.8%CNT | 95.0 | 95.9 | 94.1 | a |
3–0%PEG/0%CNT | 80.5 | 80.0 | 81.0 | def |
3–30%PEG/0.2%CNT | 80.0 | 80.6 | 79.4 | ef |
3–30%PEG/0.4%CNT | 82.0 | 81.0 | 83.0 | de |
3–30%PEG/0.6%CNT | 83.0 | 81.0 | 85.0 | d |
3–30%PEG/0.8%CNT | 83.1 | 82.1 | 83.9 | d |
3.5–0%PEG/0%CNT | 78.0 | 80.0 | 76.0 | fg |
3.5–30%PEG/0.2%CNT | 80.0 | 81.0 | 79.0 | ef |
3.5–30%PEG/0.4%CNT | 76.0 | 74.5 | 77.5 | g |
3.5–30%PEG/0.6%CNT | 78.0 | 76.0 | 80.1 | fg |
3.5–30%PEG/0.8%CNT | 82.1 | 82.0 | 83.0 | de |
Samples | Temp (°C) | ||||
---|---|---|---|---|---|
2.5–30%PEG/0.8%CNT | 52 | 51.3 | 52.1 | 51.6 | 52.9 |
3–30%PEG/0.8%CNT | 47.8 | 47.5 | 48.1 | 47.7 | 48.7 |
3.5–30%PEG/0.8%CNT | 49.2 | 49.6 | 48.9 | 49.5 | 49.9 |
2.5 mm | 3 mm | 3.5 mm | F | p | LSD | |
---|---|---|---|---|---|---|
(n = 5) | (n = 5) | (n = 5) | ||||
Temp (°C) | 51.98 ± 0.61 | 47.96 ± 0.47 | 49.72 ± 0.38 | 84.86 ** | <0.01 | 1 > 2,3; 3 > 2 |
(M ± SD) | (M ± SD) | (M ± SD) |
Sample Name | TPM | Water | Nicotine | Tar | Glycerine |
---|---|---|---|---|---|
2.5–30%PEG/0.2%CNT | 27.90 | 13.58 | 1.11 | 13.21 | 4.07 |
2.5–30%/0.4%CNT | 28.60 | 13.43 | 1.10 | 14.07 | 3.88 |
2.5–30%PEG/0.6%CNT | 28.40 | 14.15 | 1.07 | 13.18 | 3.33 |
2.5–30%PEG/0.8%CNT | 27.80 | 13.51 | 0.98 | 13.31 | 3.51 |
3.0–30%PEG/0.2%CNT | 29.50 | 14.44 | 1.12 | 13.95 | 3.16 |
3.0–30%PEG/0.4%CNT | 31.00 | 15.23 | 1.20 | 14.57 | 3.51 |
3.0–30%PEG/0.6%CNT | 25.80 | 12.33 | 0.83 | 12.64 | 2.69 |
3.0–30%PEG/0.8%CNT | 30.90 | 15.03 | 1.11 | 14.76 | 4.43 |
3.5–30%PEG/0.2%CNT | 30.50 | 15.70 | 1.16 | 13.64 | 3.59 |
3.5–30%PEG/0.4%CNT | 28.90 | 15.18 | 1.01 | 12.71 | 2.69 |
3.5–30%PEG/0.6%CNT | 30.30 | 14.72 | 1.17 | 14.42 | 3.54 |
3.5–30%PEG/0.8%CNT | 29.40 | 14.87 | 1.11 | 13.42 | 4.27 |
PLA sheet | 32.30 | 16.05 | 1.24 | 14.96 | 2.97 |
Ingredients | Hollow Diameter of Cooling Section of Braided Tube | F | Significance | ||
---|---|---|---|---|---|
2.5 mm | 3 mm | 3.5 mm | |||
M ± SD | M ± SD | M ± SD | |||
TPM | 28.175 ± 0.386 | 29.3 ± 2.432 | 29.775 ± 0.754 | 1.222 | 0.339 |
Water | 13.668 ± 0.327 | 14.258 ± 1.328 | 15.118 ± 0.433 | 3.1 | 0.095 |
Nicotine | 1.065 ± 0.059 | 1.065 ± 0.162 | 1.113 ± 0.073 | 0.258 | 0.778 |
Tar | 13.443 ± 0.422 | 13.98 ± 0.958 | 13.548 ± 0.704 | 0.612 | 0.563 |
Glycerine | 3.698 ± 0.338 | 3.448 ± 0.736 | 3.523 ± 0.647 | 0.184 | 0.835 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, S.; Ding, W.; Tang, Z.; Wen, M.; Wang, R. Study on the Performance of Cage Braided Tube with PEG/CNT Composite Coatings for Heated Tobacco Product Filters. J. Compos. Sci. 2025, 9, 455. https://doi.org/10.3390/jcs9090455
Liu Y, Zhang S, Ding W, Tang Z, Wen M, Wang R. Study on the Performance of Cage Braided Tube with PEG/CNT Composite Coatings for Heated Tobacco Product Filters. Journal of Composites Science. 2025; 9(9):455. https://doi.org/10.3390/jcs9090455
Chicago/Turabian StyleLiu, Yuhui, Shujie Zhang, Weixuan Ding, Zhuoyu Tang, Modi Wen, and Rui Wang. 2025. "Study on the Performance of Cage Braided Tube with PEG/CNT Composite Coatings for Heated Tobacco Product Filters" Journal of Composites Science 9, no. 9: 455. https://doi.org/10.3390/jcs9090455
APA StyleLiu, Y., Zhang, S., Ding, W., Tang, Z., Wen, M., & Wang, R. (2025). Study on the Performance of Cage Braided Tube with PEG/CNT Composite Coatings for Heated Tobacco Product Filters. Journal of Composites Science, 9(9), 455. https://doi.org/10.3390/jcs9090455