Numerical Study on the Influence of Saltwater Seepage in High-Pressure Salt-Gypsum Layers on Wellbore Integrity
Abstract
1. Introduction
2. Governing Equations
2.1. Creep Constitutive Equation
2.2. Casing Yield Failure Criterion
2.3. Fluid Seepage Equation in Porous Media
3. Model Development
3.1. Basic Assumptions
3.2. Physical Model
3.3. Boundary Conditions
3.4. Model Parameters
4. Simulation Results and Analysis
4.1. Wellbore Stress Distribution Patterns
4.2. The Influence of Cement Sheath Elastic Modulus on Wellbore Stress Distribution
4.3. The Influence of Inclination Angle and Azimuth Angle on Wellbore Stress Distribution
4.4. The Influence of Brine Density on Wellbore Stress Distribution
4.5. The Influence of Liquid Column Density on Wellbore Stress Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, F.; Liu, J.F.; Bian, Y.; Zhou, Z.W. Fractional derivative creep model of salt rock. J. Sichuan Univ. 2014, 46, 22–28. [Google Scholar] [CrossRef]
- Wang, J.B.; Liu, X.R.; Song, Z.P.; Zhao, B.Y.; Jiang, B.; Huang, T.Z. A whole process creeping model of salt rock under uniaxial compression based on inverse S function. Chin. J. Rock Mech. Eng. 2018, 37, 2446–2459. [Google Scholar] [CrossRef]
- Yi, H.Y.; Lu, L.L.; Cao, W.; Wu, Z.D. Parameters identification and comparative analysis of typical creep models of impurity salt rock. J. North China Inst. Sci. Technol. 2020, 17, 77–81. [Google Scholar]
- Wu, F.; Zhang, H.; Zou, Q.; Li, C.; Chen, J.; Gao, R. Viscoelastic-plastic damage creep model for salt rock based on fractional derivative theory. Mech. Mater. 2020, 150, 103600. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Song, Z.; Feng, S.; Zhang, Y. Nonlinear creep model of salt rock used for displacement prediction of salt cavern gas storage. J. Energy Storage 2022, 48, 103951. [Google Scholar] [CrossRef]
- Kou, Y.Q. Numerical Simulation of Casing Damage in the Process of Oilfield Deveopment. Ph.D. Dissertation, China University of Petroleum (East China), Dongying, China, 2011. [Google Scholar]
- Yang, D. Study on Factors Affecting the Bonding Performance of the Casing-Cement Sheath Interface. Master’s Dissertation, Southwest Petroleum University, Chengdu, China, 2015. [Google Scholar]
- Liu, K.; Wang, Y.B.; Gao, D.L.; Li, X.J.; Zhang, Y. Effects of hydraulic fracturing on horizontal wellbore for shale gas. Acta Petrol. Sin. 2016, 37, 406. [Google Scholar] [CrossRef]
- Yin, F. Research into Directional Well Integrity Under Complicated Working Conditions. Ph.D. Dissertation, China University of Petroleum (Beijing), Beijing, China, 2018. [Google Scholar]
- De Simone, M.; Pereira, F.L.; Roehl, D.M. Analytical methodology for wellbore integrity assessment considering casing-cement-formation interaction. Int. J. Rock Mech. Min. Sci. 2017, 94, 112–122. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, B.; Guan, Z.; Xu, Y.; Zhang, B. Influence of the initial loaded state on the stress distribution of a wellbore system. J. Pet. Sci. Eng. 2017, 157, 547–557. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Yue, J.P.; Li, Q.; Cao, Y.F.; Geng, Y.N.; Liu, S.J.; Zhou, J.L. Experimental study on the hydraulic seal integrity evaluation of casing-cement sheath bonding interface. China Offshore Oil Gas 2018, 30, 129–134. [Google Scholar]
- Gao, D.L.; Liu, K. Progresses in shale gas well integrity research. Oil Gas Geol. 2019, 40, 602–615. [Google Scholar]
- Dou, Y.H.; Wei, K.; Luo, J.B.; Wang, G.Q.; Li, M.F. Analysis of the influence of cement sheath absence on casing strength safety in horizontal well. J. Chin. Pet. Mach. 2019, 9, 17–22. [Google Scholar] [CrossRef]
- Wang, H. The Casing Damage Reasons in NANBAO Oilfield and the Research of Its Countermeasures. Inn. Mong. Petrochem. Ind. 2022, 48, 117–120. [Google Scholar]
- Lin, H.; Song, X.X.; Sun, X.Y.; Yang, B. Analysis of factors influencing casing stress in deep shale gas fractured wells. J. Chin. Pet. Mach. 2022, 50, 84–90. [Google Scholar]
- He, T.; Wang, T.; Wang, D.; Xie, D.; Dong, Z.; Zhang, H.; Ma, T.; Daemen, J. Integrity analysis of wellbores in the bedded salt cavern for energy storage. Energy 2023, 263, 125841. [Google Scholar] [CrossRef]
- Valov, A.; Golovin, S.; Shcherbakov, V.; Kuznetsov, D. Thermoporoelastic model for the cement sheath failure in a cased and cemented wellbore. J. Pet. Sci. Eng. 2022, 210, 109916. [Google Scholar] [CrossRef]
- Michael, A.; Gupta, I. Wellbore integrity after a blowout: Stress evolution within the casing-cement sheath-rock formation system. Results Geophys. Sci. 2022, 12, 100045. [Google Scholar] [CrossRef]
- Yang, S.Y.; Zeng, B.; Yan, Y.; Cao, J.; Han, L.H.; Wang, J.J. Research on casing deformation mechanism and prevention technology in salt rock creep formation. J. Pet. Sci. Eng. 2023, 220, 111176. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Han, B.; Duan, Z. A creep constitutive model for salt rock based on fractional derivatives. Int. J. Rock Mech. Min. Sci. 2011, 48, 116–121. [Google Scholar] [CrossRef]
- Yang, C.H.; Chen, F.; Zeng, Y.J. Investigation on creep damage constitutive theory of salt rock. Chin. J. Rock Mech. Eng. 2002, 21, 1602–1604. [Google Scholar]
- Ślizowski, J.; Lankof, L. Salt-mudstones and rock-salt suitabilities for radioactive-waste storage systems: Rheological properties. Appl. Energy 2003, 75, 137–144. [Google Scholar] [CrossRef]
- Wang, G. A new constitutive creep-damage model for salt rock and its characteristics. Int. J. Rock Mech. Min. Sci. 2004, 41, 61–67. [Google Scholar] [CrossRef]
- Liu, J.; Yang, C.H.; Wu, W.; Gao, X.P. Study on creep characteristics and constitutive relation of rock salt. Rock Soil Mech. 2006, 8, 1268–1271. [Google Scholar] [CrossRef]
- Ren, S.; Guo, S.T.; Jiang, D.Y.; Yang, C.H. Study of creep similar model and creep equivalent material of salt rock. Rock Soil Mech. 2011, 32, 106–110. [Google Scholar] [CrossRef]
- Zhang, H.B.; Wang, Z.Y.; Zhao, Y.J.; Zheng, Y.L. The whole process experiment of salt rocks creep and identification of model parameters. Acta Petrol. Sin. 2012, 33, 904. [Google Scholar]
- Dou, J.T.; Chen, K.G.; Liu, W.Q.; Ma, X.B.; Zhong, J. Creep parameters inversion of salt-gypsum rocks based on integral constitutive equation. Fault-Block Oil Gas Field 2013, 20, 615–618. [Google Scholar]
- Zhang, S.L.; Liang, W.G.; Xiao, N.; Zhao, D.S.; Li, J.; Li, C. A fractional viscoelastic-plastic creep damage model for salt rock considering temperature effect. Chin. J. Rock Mech. Eng. 2022, 41, 3198–3209. [Google Scholar]
- Aasen, J.A.; Aadnoy, B.S. Three-dimensional well tubular design improves margins in critical wells. J. Pet. Sci. Eng. 2007, 56, 232–240. [Google Scholar] [CrossRef]
- Yang, H.L.; Chen, M.; Jin, Y.; Zhang, G.Q. Analysis of casing equivalent collapse resistance in creep formations. J. China Univ. Pet. 2006, 30, 94–97. [Google Scholar]
- Yu, B.F. Research on Injection-Production and Reliability of Aquifer Underground Gas Storage. Ph.D. Dissertation, China University of Petroleum (East China), Dongying, China, 2018. [Google Scholar]
(MPa) | (MPa) | (MPa) | A | B | Q (cal/mol) |
---|---|---|---|---|---|
70.26 | 60.48 | 62.53 | 41.256 | 0.621 | 11,035 |
Elastic Modulus (MPa) | Poisson’s Ratio | Friction Angle (°) | Density (kg/m3) | Outer Diameter (mm) | Inner Diameter (mm) | |
---|---|---|---|---|---|---|
Salt Rock | 5000 | 0.35 | 24 | 2280 | 5000 | 155.5 |
Sandstone | 19,300 | 0.25 | 20 | 2170 | 5000 | 155.5 |
Fluid Density (kg/m3) | Rock Porosity | Viscosity (Pa·s) | Permeability (md) | Pore Pressure (MPa) |
---|---|---|---|---|
1600 | 0.215 | 0.52 | 1200 | 52.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Liu, N.; Zhu, M.; Chen, X. Numerical Study on the Influence of Saltwater Seepage in High-Pressure Salt-Gypsum Layers on Wellbore Integrity. J. Compos. Sci. 2025, 9, 160. https://doi.org/10.3390/jcs9040160
Li B, Liu N, Zhu M, Chen X. Numerical Study on the Influence of Saltwater Seepage in High-Pressure Salt-Gypsum Layers on Wellbore Integrity. Journal of Composites Science. 2025; 9(4):160. https://doi.org/10.3390/jcs9040160
Chicago/Turabian StyleLi, Bin, Nanxiang Liu, Mingchi Zhu, and Xuyue Chen. 2025. "Numerical Study on the Influence of Saltwater Seepage in High-Pressure Salt-Gypsum Layers on Wellbore Integrity" Journal of Composites Science 9, no. 4: 160. https://doi.org/10.3390/jcs9040160
APA StyleLi, B., Liu, N., Zhu, M., & Chen, X. (2025). Numerical Study on the Influence of Saltwater Seepage in High-Pressure Salt-Gypsum Layers on Wellbore Integrity. Journal of Composites Science, 9(4), 160. https://doi.org/10.3390/jcs9040160