Experimental Study on Zeolite–Polyester-Coated Jute–Sisal Fibre Back Sheets for Improved Efficiency of Solar Panels: A Renewable Composite Material Strategy
Abstract
1. Introduction
2. Materials and Methodology
Vacuum-Assisted Resin Transfer Moulding Technique
3. Material Properties Assessment
3.1. Physical Properties
3.2. Tensile Strength Testing (Mechanical Properties)
3.3. Scanning Electron Microscope Analysis with Energy-Dispersive X-Ray Spectroscopy
3.4. XRD X-Ray Diffraction Analysis
3.5. Thermal Properties-Differential Scanning Calorimetry Analysis
4. Manufacturing Process of Solar Panel with Jute–Sisal Fibre Back Sheet
5. Experimental Investigation
5.1. Techno-Thermodynamic Measurement Setup and System Architecture
Energy Flow and Measurement Logic
5.2. Experimental Investigation: Phase I
5.3. Experimental Investigation: Phase II
6. Statistical Analysis
7. Discussion
8. Conclusions
9. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| A | Current |
| V | Voltage |
| W | Maximum Power |
| Vf | Fibre-Volume Fraction |
| CV | Coefficient of Variation |
| PPT | Mean Thickness of Panel / Number of Layers |
| TS | Tensile Strength |
| YM | Young’s Modulus |
| FS | Failure Strain |
| keV | Kilo Electron Volts |
| Si | Silicon |
| Al | Aluminium |
| Na | Sodium |
| C | Carbon |
| TiO2 | Titanium Dioxide |
| Ca | Calcium |
| K | Potassium |
| TC | Thermal Conductivity |
| SHC | Specific Heat Capacity |
| ISC | Short-Circuit Current |
| VOC | Open-Circuit Voltage |
| Pmax | Maximum Power |
| FF | Fill Factor |
| RSH | Shunt Resistance |
| RS | Lower Series Resistance |
| IPM | Current at Maximum Power |
| VPM | Voltage at Maximum Power |
References
- Preet, S. A review on the outlook of thermal management of photovoltaic panel using phase change material. Energy Clim. Change 2021, 2, 100033. [Google Scholar] [CrossRef]
- Rathore, N.; Panwar, N.L. Strategic overview of management of future solar photovoltaic panel waste generation in the Indian context. Waste Manag. Res. 2022, 40, 504–518. [Google Scholar] [CrossRef]
- Preet, S.; Smith, S.T. A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: Challenges and future outlook. J. Clean. Prod. 2024, 448, 141661. [Google Scholar] [CrossRef]
- Adedeji, P.A.; Akinlabi, S.A.; Madushele, N.; Olatunji, O.O. Beyond site suitability: Investigating temporal variability for utility-scale solar-PV using soft computing techniques. Renew. Energy Focus 2021, 39, 72–89. [Google Scholar] [CrossRef]
- Preet, S.; Mathur, S.; Mathur, J.; Sharma, M.K.; Chowdhury, A. Energy characterization of forced ventilated Photovoltaic-DSF system in hot summer of composite climate. Energy Built Environ. 2024, 5, 704–718. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, N.; Wang, B.; Razaqpur, A.G. Thermal performance of a novel building wall incorporating a dynamic phase change material layer for efficient utilization of passive solar energy. Constr. Build. Mater. 2022, 317, 126017. [Google Scholar] [CrossRef]
- Gressler, S.; Part, F.; Scherhaufer, S.; Obersteiner, G.; Huber-Humer, M. Advanced materials for emerging photovoltaic systems—Environmental hotspots in the production and end-of-life phase of organic, dye-sensitized, perovskite, and quantum dots solar cells. Sustain. Mater. Technol. 2022, 34, e00501. [Google Scholar] [CrossRef]
- Herrando, M.; Elduque, D.; Javierre, C.; Fueyo, N. Life Cycle Assessment of solar energy systems for the provision of heating, cooling and electricity in buildings: A comparative analysis. Energy Convers. Manag. 2022, 257, 115402. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy as a Climate Solution, Environ. Prot; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017; pp. 1–8. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Nov/IRENA_A_key_climate_solution_2017.pdf?la=en&hash=A9561C1518629886361D12EFA11A051E004C5C98 (accessed on 13 October 2025).
- International Energy Agency. World Energy Outlook- WEO2022; International Energy Agency: Singapore, 2022; p. 524. [Google Scholar]
- IRENA. Renewable Capacity; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2022; ISBN 9789292603427. Available online: www.irena.org (accessed on 13 October 2025).
- Wade, A.; Gmbh, V.W.; Heath, G.; Wambach, K.; Sinha, P.; Materials, R. IRENA and IEA PVPS (2016)—End-of-Life Management: Solar Photovoltaic Panels; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2016; ISBN 9789295111981. [Google Scholar]
- International Renewable Energy Agency. Renewable Capacity Statistics 2023 STATISTIQUES DE CAPACITÉ RENOUVELABLE 2023 ESTADÍSTICAS DE CAPACIDAD RENOVABLE 2023 About IRENA; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2023; ISBN 978-92-9260-525-4. Available online: www.irena.org (accessed on 13 October 2025).
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strateg. Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- Voronko, Y.; Eder, G.C.; Breitwieser, C.; Mühleisen, W.; Neumaier, L.; Feldbacher, S.; Oreski, G.; Lenck, N. Repair options for PV modules with cracked backsheets. Energy Sci. Eng. 2021, 9, 1583–1595. [Google Scholar] [CrossRef]
- Ghahremani, A.; Adams, S.D.; Norton, M.; Khoo, S.Y.; Kouzani, A.Z. Delamination Techniques of Waste Solar Panels: A Review. Clean Technol. 2024, 6, 280–298. [Google Scholar] [CrossRef]
- Bouraiou, A.; Hamouda, M.; Chaker, A.; Neçaibia, A.; Mostefaoui, M.; Boutasseta, N.; Ziane, A.; Dabou, R.; Sahouane, N.; Lachtar, S. Experimental investigation of observed defects in crystalline silicon PV modules under outdoor hot dry climatic conditions in Algeria. Sol. Energy 2018, 159, 475–487. [Google Scholar] [CrossRef]
- Lamson, J.A.; Baur, S.W. Solar thermal electric panel (STEP): Performance analysis. In Proceedings of the AEI 2008 Conference—AEI 2008 Building Integration Solutions, Denver, CO, USA, 24–27 September 2008; Volume 328, pp. 1–8. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Huang, Y. Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials. Sol. Energy Mater. Sol. Cells 2008, 92, 1382–1387. [Google Scholar] [CrossRef]
- Julien, S.E.; Kempe, M.D.; Eafanti, J.J.; Morse, J.; Wang, Y.; Fairbrother, A.; Napoli, S.; Hauser, A.W.; Ji, L.; O’Brien, G.S.; et al. Characterizing photovoltaic backsheet adhesion degradation using the wedge and single cantilever beam tests, Part I: Field Modules. Sol. Energy Mater. Sol. Cells 2020, 215, 110669. [Google Scholar] [CrossRef]
- Tamoor, M.; Samak, N.A.; Yang, M.; Xing, J. The Cradle-to-Cradle Life Cycle Assessment of Polyethylene terephthalate: Environmental Perspective. Molecules 2022, 27, 1599. [Google Scholar] [CrossRef]
- Alaaeddin, M.H.; Sapuan, S.M.; Zuhri, M.Y.M.; Zainudin, E.S.; Al-Oqla, F.M. Development of photovoltaic module with fabricated and evaluated novel backsheet-based biocomposite materials. Materials 2019, 12, 3007. [Google Scholar] [CrossRef]
- Zakriya, G.M.; Ramakrishnan, G.; Palani Rajan, T.; Abinaya, D. Study of thermal properties of jute and hollow conjugated polyester fibre reinforced non-woven composite. J. Ind. Text. 2017, 46, 1393–1411. [Google Scholar] [CrossRef]
- Naik, T.P.; Gairola, S.; Singh, I.; Sharma, A.K. Microwave-assisted alkali treatment of sisal fiber for fabricating composite as non-structural building materials. Constr. Build. Mater. 2024, 411, 134651. [Google Scholar] [CrossRef]
- Kurien, R.A.; Biju, A.; Raj, A.K.; Chacko, A.; Joseph, B.; Koshy, C.P.; Paul, C. Comparative Mechanical Properties of Duck Feather–Jute Fiber Reinforced Hybrid Composites. Trans. Indian Inst. Met. 2023, 76, 2575–2580. [Google Scholar] [CrossRef]
- Nath, D.; Debnath, S.; Datta, M.; Chakrabarti, S.; Ghosh, S.; Ghosh, B. Poly(vinyl acetate)-coated jute fabric reinforced polyester composite with enhanced mechanical performance: Interfacial hydrogen bond and autohesion mechanism. J. Ind. Text. 2022, 51, 1121–1142. [Google Scholar] [CrossRef]
- Bahmani, H.; Mostafaei, H. Impact of Fibers on the Mechanical and Environmental Properties of High-Performance Concrete Incorporating Zeolite. J. Compos. Sci. 2025, 9, 222. [Google Scholar] [CrossRef]
- Sathyanarayanan, A.; Murugesan, B.; Rajamanickam, N.; Ordoñez, C.; Onyelowe, K.C.; Ulloa, N. Comprehensive study on zeolitepolyester composite coated sheet for eco-friendly solar panels for enhanced panel performance and reduced panel temperature. Sci. Rep. 2024, 14, 20072. [Google Scholar] [CrossRef]
- Walter, L.; Scherdel, M.; Taha, I. Fabrication and Characterisation of Fully Bio-Based Flax Fibre-Reinforced Polyester Composites. J. Compos. Sci. 2025, 9, 241. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Ho, S.C.; Huang, A.C.; Shu, C.M. Potential explosion hazard of polyester resin dust formed from a granulation process: Limiting oxygen concentration with different pressures. Appl. Therm. Eng. 2018, 135, 74–82. [Google Scholar] [CrossRef]
- Krishnan, L.; Kandola, B.K.; Ebdon, J.R. The effects of some phosphorus-containing fire retardants on the properties of glass fibre-reinforced composite laminates made from blends of unsaturated polyester and phenolic resins. J. Compos. Sci. 2021, 5, 258. [Google Scholar] [CrossRef]
- Mir Md, S.S.; Chan, M.Y.; Koay, S.C. Mechanical properties of polyester/corn husk fibre composite produced using vacuum infusion technique. Polym. Polym. Compos. 2021, 29, S1532–S1540. [Google Scholar] [CrossRef]
- Bhatt, A.T.; Gohil, P.P. To Study effect of VARTM process parameters for composite strength: Taguchi approach. IOP Conf. Ser. Mater. Sci. Eng. 2020, 1004, 012001. [Google Scholar] [CrossRef]
- Balasubramanian, M.; SenthilSelvan, S.; Aishwarya, S.; Kumar, M.R. Experimental Investigation of Cement Mortar to Improve the Strength by Adding Sisal Fiber. Lect. Notes Civ. Eng. 2022, 194, 163–175. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Omraj, K.; Mukilan, P.; Aishwarya, S. Experimental Study on a Concrete Member in Rectangular Cross-Section Using Wrapping of Sisal Fibre-Reinforced Concrete. Lect. Notes Civ. Eng. 2022, 194, 319–328. [Google Scholar] [CrossRef]
- Abinaya, T.L.; Balasubramanian, M.; Surendar, G. Analysis and Design of Shear Capacity of Sisal Fibre-Reinforced Concrete Member in Rectangular Cross-Section. Lect. Notes Civ. Eng. 2022, 194, 153–162. [Google Scholar] [CrossRef]
- ASTM 3822-07; Standard Test Method for Tensile Properties of Single Textile Fibers. ASTM International: West Conshohocken, PA, USA, 2007; pp. 1–10.
- Manickaraj, K.; Ramamoorthi, R.; Sathish, S.; Makeshkumar, M. Effect of hybridization of novel African teff and snake grass fibers reinforced epoxy composites with bio castor seed shell filler: Experimental investigation. Polym. Polym. Compos. 2022, 30, 096739112211022. [Google Scholar] [CrossRef]
- Manickaraj, K.; Ramamoorthi, R.; Johnson Santhosh, A. A comparative study on the mechanical properties of African teff and snake grass fiber-reinforced hybrid composites: Effect of bio castor seed shell/glass/SiC filler. Int. Polym. Process. 2023, 38, 551–563. [Google Scholar] [CrossRef]
- Mcclure, D.J.; Paul, S. Polyester Film as a Substrate a Tutororial; Society of Vacuum Coaters: Albuquerque, NM, USA, 2007; pp. 692–699. [Google Scholar]
- Thennarasan Latha, A.; Murugesan, B.; Skariah Thomas, B. Compressed earth block reinforced with sisal fiber and stabilized with cement: Manual compaction procedure and influence of addition on mechanical properties. Mater. Today Proc. 2023, 85 Pt 1, 157–177. [Google Scholar] [CrossRef]
- Kurien, R.A.; Selvaraj, D.P.; Koshy, C.P. Worn Surface Morphological Characterization of NaOH-Treated Chopped Abaca Fiber Reinforced Epoxy Composites. J. Bio- Tribo-Corrosion 2021, 7, 31. [Google Scholar] [CrossRef]
- Singh, T.; Lendvai, L.; Dogossy, G.; Fekete, G. Physical, mechanical, and thermal properties of Dalbergia sissoo wood waste-filled poly(lactic acid) composites. Polym. Compos. 2021, 42, 4380–4389. [Google Scholar] [CrossRef]
- Kim, N.; Kang, H.; Hwang, K.J.; Han, C.; Hong, W.S.; Kim, D.; Lyu, E.; Kim, H. Study on the degradation of different types of backsheets used in PV module under accelerated conditions. Sol. Energy Mater. Sol. Cells 2014, 120, 543–548. [Google Scholar] [CrossRef]
- Anagnostopoulos, A.; Elena Navarro, M.; Sharma, S.; Ahmad, A.; Maksum, Y.; Ding, Y. From waste to value: Utilising waste foundry sand in thermal energy storage as a matrix material in composites. Sol. Energy 2024, 268, 112294. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, H.; Ingole, S.B.; Kumari, S.; Gori, Y.; Srivastava, A.P.; Khan, A.K. Advanced Materials for High-Efficiency Solar Cells: A Comprehensive Exploration in Material Science. E3S Web Conf. 2024, 511, 01014. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Jadhav, V. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Sol. Energy 2018, 169, 55–66. [Google Scholar] [CrossRef]
- Mamun, M.A.A.; Islam, M.M.; Hasanuzzaman, M.; Selvaraj, J. Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy Built Environ. 2022, 3, 278–290. [Google Scholar] [CrossRef]
- Ajao, K.R.; Ambali, R.M.; Mahmoud, M.O. Determination of the optimal tilt angle for solar photovoltaic panel in Ilorin, Nigeria. J. Eng. Sci. Technol. Rev. 2013, 6, 87–90. [Google Scholar] [CrossRef]
- Takyi, G.; Nyarko, F.K. Investigation of the Effect of Temperature Coefficients on Mono-Crystalline Silicon PV Module Installed in Kumasi, Ghana. J. Power Energy Eng. 2020, 8, 20–34. [Google Scholar] [CrossRef]
- Ur Rehman, S.; Farooq, M.; Qamar, A.; Usman, M.; Ahmad, G.; Sultan, M.; Wajid Saleem, M.; Hussain, I.; Imran, M.; Ali, Q.; et al. Experimental investigation to thermal performance of different photo voltaic modules for efficient system design. Alexandria Eng. J. 2022, 61, 12623–12634. [Google Scholar] [CrossRef]
- Ogbulezie, J.C.; Njok, A.O.; Panjwani, M.K.; Panjwani, S.K. The impact of high temperature and irradiance source on the efficiency of polycrystalline photovoltaic panel in a controlled environment. Int. J. Electr. Comput. Eng. 2020, 10, 3942–3947. [Google Scholar] [CrossRef]
- Rosyid, O.A. Comparative performance testing of photovoltaic modules in tropical climates of Indonesia. AIP Conf. Proc. 2016, 1712, 020004. [Google Scholar] [CrossRef]
- Nachtigalová, I.; Suchánek, M. Measurement Uncertainty Evaluation Using Monte Carlo Method. (Technical Note, pp. 1–7). Institute of Chemical Technology, Prague. Available online: https://uprt.vscht.cz/vav/RSoftware/S19help.pdf (accessed on 13 October 2025).
- Farrance, I.; Frenkel, R. Uncertainty in measurement: A review of monte carlo simulation using microsoft excel for the calculation of uncertainties through functional relationships, including uncertainties in empirically derived constants. Clin. Biochem. Rev. 2014, 35, 37–61. [Google Scholar] [PubMed]
- Sauer, K.J.; Roessler, T.; Hansen, C.W. Modeling the irradiance and temperature dependence of photovoltaic modules in PVsyst. IEEE J. Photovolt. 2015, 5, 152–158. [Google Scholar] [CrossRef]
- Leow, W.Z.; Irwan, Y.M.; Safwati, I.; Irwanto, M.; Amelia, A.R.; Syafiqah, Z.; Fahmi, M.I.; Rosle, N. Simulation study on photovoltaic panel temperature under different solar radiation using computational fluid dynamic method. J. Phys. Conf. Ser. 2020, 1432, 012052. [Google Scholar] [CrossRef]
- Barnett, P.R.; Hmeidat, N.S.; Zheng, B.; Penumadu, D. Toward a circular economy: Zero-waste manufacturing of carbon fiber-reinforced thermoplastic composites. npj Mater. Sustain. 2024, 2, 3. [Google Scholar] [CrossRef]
- Siabdallah, M.; Bouafia, S.; Siabdallah, H. Experimental Study of a Cooling Photovoltaic Solar Panel Using Water-Wet Jute Fabric. J. Sol. Energy Eng. 2025, 147, 041007. [Google Scholar] [CrossRef]
- Alazzawi, S.; Mahmood, W.A.; Shihab, S.K. Comparative study of natural fiber-Reinforced composites for sustainable thermal insulation in construction. Int. J. Thermofluids 2024, 24, 100839. [Google Scholar] [CrossRef]
- Shalwan, A.; Alajmi, M.; Alajmi, A. Insulation Characteristics of Sisal Fibre/Epoxy Composites. Int. J. Polym. Sci. 2017, 2017, 7312609. [Google Scholar] [CrossRef]
















| Sl.No | Description | Thickness of CJS | ||
|---|---|---|---|---|
| Sample 3 Left Corner | Sample 4 Centre | Sample 5 Right Corner | ||
| 1 | Top section | 1.83 | 1.89 | 1.87 |
| 2 | Reduced area Middle section | 1.9 | 1.95 | 1.92 |
| 3 | Bottom section | 1.86 | 1.91 | 1.84 |
| 4 | Mean (mm) | 1.89 | ||
| 5 | CV | 2.07 | ||
| 6 | PPT (mm) | 0.94 | ||
| Sl. No | Description | Sample Name | TS Mpa | YM Gpa | FS % |
|---|---|---|---|---|---|
| 1 | Coated Jute–Sisal Fibre | Sample No 3 | 20.02 | 4.09 | 1.064 |
| 2 | Sample No 4 | 20.21 | 3.64 | 1.055 | |
| 3 | Sample No 5 | 25.80 | 4.01 | 1.045 |
| Element | Uncoated JS (wt%) | Coated JS (wt%) | PET (wt%) | Key Observation |
|---|---|---|---|---|
| C | Present | Present | Present | Higher in PET due to polymer, reduced in coated JS due to zeolite presence |
| O | Present | Present | Present | High in natural fibres, but lower in PET |
| Si | Trace | Present (higher) | - | Characteristic of zeolite |
| Al | - | Present | - | From zeolite |
| Na, K | - | Trace | - | Zeolite components |
| Ca | Trace (from natural fibre ash) | May increase with coating | - | Mineral trace in natural fibres, absent in PET |
| TiO2 | - | - | Present | Minimal amount |
| Solar Panel Elements | TC (W/m·K) | Density (kg/m3) | SHC (J/kg·K) |
|---|---|---|---|
| Ethylene Vinyl Acetate (EVA) Film | 0.3 | 930 | 2050 |
| Polycrystalline Cells | 142 | 2350 | 786 |
| Polyethylene Terephthalate (Conventional) Back Sheet | 0.2 | 1350 | 1350 |
| Zeolite–Polyester Resin-Coated Jute-Mixed Sisal Fibre Back Sheet | 0.25 | 1335 | 1150 |
| Uncoated Jute-Mixed Sisal Fibre Back Sheet | 0.05 | 1380 | 1300 |
| Description | Specifications |
|---|---|
| Panel Dimensions | 20 × 20 cm |
| Thickness | Less than 0.3 cm |
| Type of Solar Cells | Polycrystalline |
| No of Solar Cells | Six (6) |
| Maximum Power | 4.5 watt |
| Voltage | 3 V |
| Current | 1.5 A |
| Latitude | 12.82 |
| Longitude | 80.04 |
| Site Location | Kattankulathur, Chennai, India |
| Annual Air Temperature | 25 °C to 35 °C |
| Annual Solar Irradiation | 5.5 to 6.5 (kWh/m2/day) |
| Solar-Panel Tilt Angle | 13° |
| Description | PET Panel | Coated Jute-Mixed Sisal Fibre Panel | Uncoated Jute-Mixed Sisal Fibre Panel |
|---|---|---|---|
| ISC | 1.15 A | 1.23 A | 1.17 A |
| VOC | 12.48 V | 12.79 V | 12.68 V |
| Pmax | 13.39 W | 14.79 W | 13.87 W |
| IPM | 1.1 A | 1.19 A | 1.13 A |
| VPM | 12.17 V | 12.43 V | 12.27 V |
| Light Intensity (Irradiance) | 932.5 W/m2 | 914.8 W/m2 | 910.6 W/m2 |
| Area | 0.12 m2 | 0.12 m2 | 0.12 m2 |
| Incident Solar Power on Panel | 111.9 (W) | 109.78 (W) | 109.27 (W) |
| Efficiency (%) | 11.96% | 13.47% | 12.69% |
| Fill Factor (FF) | 93.28% | 94.03% | 93.46% |
| RS | 6.2 Ω | 9 Ω | 10.25 Ω |
| RSH | 249.6 Ω | 355.28 Ω | 317 Ω |
| P_Load | 13.387 W | 14.79 W | 13.87 W |
| V_Load | 12.17 V | 12.43 V | 12.27 V |
| I_Load | 1.1 A | 1.19 A | 1.13 A |
| Temperature | 60.25 °C | 60.20 °C | 60.42 °C |
| Description | Sample | Standard Deviation | MU | Average | Confidence Level: 0.95 and Z Score: 1.96 | |
|---|---|---|---|---|---|---|
| MoE | CI | |||||
| Current (A) | PET Solar Panel | 0.10 | 0.0270 | 0.98 | 0.01 | 0.97 1.00 |
| CJS Solar Panel | 0.11 | 0.0291 | 1.06 | 0.01 | 1.05 1.07 | |
| JS Solar Panel | 0.11 | 0.0293 | 1.02 | 0.01 | 1.01 1.04 | |
| Voltage (V) | PET Solar Panel | 0.45 | 0.1164 | 2.88 | 0.06 | 2.82 2.94 |
| CJS Solar Panel | 0.38 | 0.0991 | 3.20 | 0.05 | 3.15 3.25 | |
| JS Solar Panel | 0.41 | 0.1053 | 3.02 | 0.05 | 2.96 3.07 | |
| Temperature (C) | PET Solar Panel | 10.04 | 2.5929 | 43.10 | 1.31 | 41.79 44.41 |
| CJS Solar Panel | 9.84 | 2.5398 | 39.87 | 1.29 | 38.58 41.15 | |
| JS Solar Panel | 9.83 | 2.5380 | 41.66 | 1.28 | 40.38 42.95 | |
| Power (W) | PET Solar Panel | 0.72 | 0.1861 | 2.87 | 0.09 | 2.78 2.97 |
| CJS Solar Panel | 0.74 | 0.1903 | 3.43 | 0.10 | 3.33 3.52 | |
| JS Solar Panel | 0.73 | 0.1882 | 3.12 | 0.10 | 3.03 3.22 | |
| Panel Type | Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
|---|---|---|---|---|---|---|---|
| PET Panel | Model | 7.28 | 6 | 1.21 | 1.6348 × 106 | <0.0001 | Significant |
| A—Open-Circuit Voltage (V) | 0.0697 | 1 | 0.0697 | 93,948.57 | <0.0001 | ||
| B—Current (A) | 0.0398 | 1 | 0.0398 | 53,631.78 | <0.0001 | ||
| C—Temperature C | 1.332 × 10−6 | 1 | 1.332 × 10−6 | 1.80 | 0.2170 | ||
| AB | 0.0007 | 1 | 0.0007 | 929.79 | <0.0001 | ||
| AC | 4.077 × 10−7 | 1 | 4.077 × 10−7 | 0.5495 | 0.4797 | ||
| BC | 2.262 × 10−9 | 1 | 2.262 × 10−9 | 0.0030 | 0.9573 | ||
| Residual | 5.936 × 10−6 | 8 | 7.420 × 10−7 | ||||
| Cor Total | 7.28 | 14 | |||||
| CJS Panel | Model | 7.60 | 6 | 1.27 | 1.138 × 106 | <0.0001 | Significant |
| A—Open-Circuit Voltage (V) | 0.0322 | 1 | 0.0322 | 28,912.56 | <0.0001 | ||
| B—Current (A) | 0.0117 | 1 | 0.0117 | 10,514.89 | <0.0001 | ||
| C—Temperature C | 1.309 × 10−6 | 1 | 1.309 × 10−6 | 1.18 | 0.3099 | ||
| AB | 0.0006 | 1 | 0.0006 | 545.62 | <0.0001 | ||
| AC | 3.577 × 10−8 | 1 | 3.577 × 10−8 | 0.0321 | 0.8622 | ||
| BC | 2.899 × 10−7 | 1 | 2.899 × 10−7 | 0.2604 | 0.6236 | ||
| Residual | 8.907 × 10−6 | 8 | 1.113 × 10−6 | ||||
| Cor Total | 7.60 | 14 | |||||
| JS Panel | Model | 7.44 | 6 | 1.24 | 1.127 × 106 | <0.0001 | Significant |
| A—Open-Circuit Voltage (V) | 0.0343 | 1 | 0.0343 | 31,133.03 | <0.0001 | ||
| B—Current (A) | 0.0489 | 1 | 0.0489 | 44,413.06 | <0.0001 | ||
| C—Temperature C | 2.789 × 10−7 | 1 | 2.789 × 10−7 | 0.2535 | 0.6282 | ||
| AB | 0.0005 | 1 | 0.0005 | 454.66 | <0.0001 | ||
| AC | 7.089 × 10−7 | 1 | 7.089 × 10−7 | 0.6443 | 0.4454 | ||
| BC | 4.430 × 10−7 | 1 | 4.430 × 10−7 | 0.4026 | 0.5435 | ||
| Residual | 8.803 × 10−6 | 8 | 1.100 × 10−6 | ||||
| Cor Total | 7.44 | 14 |
| Description | Conventional PET Panel | CJS Panel | JS Panel |
|---|---|---|---|
| Standard Deviation (Std. Dev) | 0.0106 | 0.0070 | 0.0070 |
| Mean | 2.87 | 3.42 | 3.42 |
| C.V.% | 0.3700 | 0.2032 | 0.2032 |
| R2 | 0.9999 | 0.9999 | 0.9999 |
| Adjusted R2 | 0.9998 | 0.9999 | 0.9996 |
| Predicted R2 | 0.9996 | 0.9998 | 0.9998 |
| Adeq Precision | 314.0081 | 473.7057 | 477.7057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathyanarayanan, A.; Murugesan, B.; Rajamanickam, N. Experimental Study on Zeolite–Polyester-Coated Jute–Sisal Fibre Back Sheets for Improved Efficiency of Solar Panels: A Renewable Composite Material Strategy. J. Compos. Sci. 2025, 9, 599. https://doi.org/10.3390/jcs9110599
Sathyanarayanan A, Murugesan B, Rajamanickam N. Experimental Study on Zeolite–Polyester-Coated Jute–Sisal Fibre Back Sheets for Improved Efficiency of Solar Panels: A Renewable Composite Material Strategy. Journal of Composites Science. 2025; 9(11):599. https://doi.org/10.3390/jcs9110599
Chicago/Turabian StyleSathyanarayanan, Aishwarya, Balasubramanian Murugesan, and Narayanamoorthi Rajamanickam. 2025. "Experimental Study on Zeolite–Polyester-Coated Jute–Sisal Fibre Back Sheets for Improved Efficiency of Solar Panels: A Renewable Composite Material Strategy" Journal of Composites Science 9, no. 11: 599. https://doi.org/10.3390/jcs9110599
APA StyleSathyanarayanan, A., Murugesan, B., & Rajamanickam, N. (2025). Experimental Study on Zeolite–Polyester-Coated Jute–Sisal Fibre Back Sheets for Improved Efficiency of Solar Panels: A Renewable Composite Material Strategy. Journal of Composites Science, 9(11), 599. https://doi.org/10.3390/jcs9110599

