Effect of Different Mouthwashes on the Hardness and Color Stability of CAD/CAM Materials: An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Materials Used and Specimen Preparation
2.3. Immersion in Different Solutions
2.4. Vickers Hardness Test
2.4.1. Color Measurement
2.4.2. Statistical Analysis
3. Results
3.1. Microhardness Analysis
3.2. Color Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Yao, J.; Du, Z.; Guo, J.; Lei, W. Comparative evaluation of mechanical properties and color stability of dental resin composites for chairside provisional restorations. Polymers 2024, 16, 2089. [Google Scholar] [CrossRef]
- Bayraktar, Y.; Karaduman, K.; Ayhan, B.; Karsiyaka Hendek, M. The effect of SARS-CoV-2 effective mouthwashes on the staining, translucency and surface roughness of a nanofill resin composite. Am. J. Dent. 2021, 34, 166–170. [Google Scholar]
- Sfondrini, M.F.; Gandini, P.; Malfatto, M.; Di Corato, F.; Trovati, F.; Scribante, A. Computerized casts for orthodontic purpose using powder-free intraoral scanners: Accuracy, execution time, and patient feedback. Biomed. Res. Int. 2018, 2018, 4103232. [Google Scholar] [CrossRef]
- Alnsour, M.M.; Alamoush, R.A.; Silikas, N.; Satterthwaite, J.D. The effect of erosive media on the mechanical properties of CAD/CAM composite materials. J. Funct. Biomater. 2024, 15, 292. [Google Scholar] [CrossRef]
- Munoz, A.; Zhao, Z.; Paolone, G.; Louca, C.; Vichi, A. Flexural strength of CAD/CAM lithium-based silicate glass-ceramics: A narrative review. Materials 2023, 16, 4398. [Google Scholar] [CrossRef]
- Alamoush, R.A.; Salim, N.A.; Elraggal, A.; Satterthwaite, J.D.; Silikas, N. The effect of water storage on nanoindentation creep of various CAD-CAM composite blocks. BMC Oral Health 2023, 23, 543. [Google Scholar] [CrossRef]
- Alharbi, A.; Ardu, S.; Bortolotto, T.; Krejci, I. Stain susceptibility of composite and ceramic CAD/CAM blocks versus direct resin composites with different resinous matrices. Odontology 2017, 105, 162–169. [Google Scholar] [CrossRef]
- Rahman, S.; Montero, M.T.V.; Rowe, K.; Kirton, R.; Kunik, F. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: A review of current evidence. Expert Rev. Clin. Pharmacol. 2021, 14, 601–621. [Google Scholar] [CrossRef]
- Jothy, K. Evaluation of the effects of povidone iodine and hydrogen peroxide mouthwashes on orthodontic archwires: An in vitro study. J. Contemp. Dent. Pract. 2023, 24, 228–237. [Google Scholar] [CrossRef]
- Hazar, A.; Hazar, E. Effects of different antiviral mouthwashes on the surface roughness, hardness, and color stability of composite CAD/CAM materials. J. Appl. Biomater. Funct. Mater. 2024, 22, 22808000241248886. [Google Scholar] [CrossRef]
- Yılmaz, K.; Özdemir, E.; Gönüldaş, F. Effects of immersion in various beverages, polishing and bleaching systems on surface roughness and microhardness of CAD/CAM restorative materials. BMC Oral Health 2024, 24, 1458. [Google Scholar] [CrossRef]
- Das, K.; Murthy, C.S.; Naganath, M.; Mehta, D.; Anitha Kumari, R.; Karobari, M.I.; Venkataiah, V.S. Insights into the effects and implications of acidic beverages on resin composite materials in dental restorations: An in vitro study. J. Esthet. Restor. Dent. 2025, 37, 1013–1023. [Google Scholar] [CrossRef]
- Gulakar, T.L.; Comert, G.N.; Karaman, E.; Cakan, U.; Ozel, G.S.; Ahmet, S.O. Effect of simulated gastric acid on aesthetical restorative CAD-CAM materials’ microhardness and flexural strength. Niger. J. Clin. Pract. 2023, 26, 1505–1511. [Google Scholar] [CrossRef]
- Ozera, E.H.; Pascon, F.M.; Correr, A.B.; Puppin-Rontani, R.M.; de Castilho, A.R.; Correr-Sobrinho, L.; de Paula, A.B. Color stability and gloss of esthetic restorative materials after chemical challenges. Braz. Dent. J. 2019, 30, 52–57. [Google Scholar] [CrossRef]
- Schmohl, L.; Roesner, A.J.; Fuchs, F.; Wagner, M.; Schmidt, M.B.; Hahnel, S.; Rauch, A.; Koenig, A. Acid resistance of CAD/CAM resin composites. Biomedicines 2022, 10, 1383. [Google Scholar] [CrossRef]
- Berto-Inga, J.; Santander-Rengifo, F.; Ladera-Castañeda, M.; López-Gurreonero, C.; Castro Pérez-Vargas, A.; Cornejo-Pinto, A.; Cervantes-Ganoza, L.; Cayo-Rojas, C. Surface microhardness of bulk-fill resin composites handled with gloves. Int. Dent. J. 2023, 73, 489–495. [Google Scholar] [CrossRef]
- Ruse, N.D.; Sadoun, M.J. Resin-composite blocks for dental CAD/CAM applications. J. Dent. Res. 2014, 93, 1232–1234. [Google Scholar] [CrossRef]
- Alamoush, R.A.; Salim, N.A.; Silikas, N.; Satterthwaite, J.D. Long-term hydrolytic stability of CAD/CAM composite blocks. Eur. J. Oral Sci. 2022, 130, e12834. [Google Scholar] [CrossRef]
- Cengiz, S.; Sarac, S.; Özcan, M. Effects of simulated gastric juice on color stability, surface roughness and microhardness of laboratory-processed composites. Dent. Mater. J. 2014, 33, 343–348. [Google Scholar] [CrossRef]
- Al-Thobity, A.M.; Gad, M.M.; Farooq, I.; Alshahrani, A.S.; Al-Dulaijan, Y.A. Acid effects on the physical properties of different CAD/CAM ceramic materials: An in vitro analysis. J. Prosthodont. 2021, 30, 135–141. [Google Scholar] [CrossRef]
- Švančárková, A.; Galusková, D.; Nowicka, A.E.; Pálková, H.; Galusek, D. Effect of Corrosive Media on the Chemical and Mechanical Resistance of IPS e.max® CAD Based Li2Si2O5 Glass-Ceramics. Materials 2022, 15, 365. [Google Scholar] [CrossRef]
- Esquivel-Upshaw, J.F.; Dieng, F.Y.; Clark, A.E.; Neal, D.; Anusavice, K.J. Surface degradation of dental ceramics as a function of environmental pH. J. Dent. Res. 2013, 92, 467–471. [Google Scholar] [CrossRef]
- Hsu, S.M.; Ren, F.; Batich, C.D.; Clark, A.E.; Neal, D.; Esquivel-Upshaw, J.F. Effect of pH Cycling Frequency on Glass-Ceramic Corrosion. Materials 2020, 13, 3655. [Google Scholar] [CrossRef]
- Bauer, K.; Carek, A.; Slokar Benić, L.; Badel, T. Determination of the color change of various esthetic monolithic monochromatic computer-aided design/computer-aided manufacturing materials. Materials 2024, 17, 3160. [Google Scholar] [CrossRef]
- Malkondu, Ö.; Yurdagüven, H.; Say, E.C.; Kazazoğlu, E.; Soyman, M. Effect of bleaching on microhardness of esthetic restorative materials. Oper. Dent. 2011, 36, 177–186. [Google Scholar] [CrossRef]
- Türker, S.B.; Biskin, T. The effect of bleaching agents on the microhardness of dental aesthetic restorative materials. J. Oral Rehabil. 2002, 29, 657–661. [Google Scholar] [CrossRef]
- Bigliardi, P.L.; Alsagoff, S.A.L.; El-Kafrawi, H.Y.; Pyon, J.-K.; Wa, C.T.C.; Villa, M.A. Povidone iodine in wound healing: A review of current concepts and practices. Int. J. Surg. 2017, 44, 260–268. [Google Scholar] [CrossRef]
- Nakamura, K.; Shirato, M.; Kanno, T.; Örtengren, U.; Lingström, P.; Niwano, Y. Antimicrobial activity of hydroxyl radicals generated by hydrogen peroxide photolysis against Streptococcus mutans biofilm. Int. J. Antimicrob. Agents 2016, 48, 373–380. [Google Scholar] [CrossRef]
- Tanthanuch, S.; Kukiattrakoon, B.; Naiyanart, C.; Promtong, T.; Yothinwatthanabamrung, P.; Pumpua, S. Effect of mouthwashes for COVID-19 prevention on surface changes of resin composites. Int. Dent. J. 2023, 73, 511–517. [Google Scholar] [CrossRef]
- Ramírez-Vargas, G.G.; Medina Y Mendoza, J.E.; Aliaga-Mariñas, A.S.; Ladera-Castañeda, M.I.; Cervantes-Ganoza, L.A.; Cayo-Rojas, C.F. Effect of polishing on the surface microhardness of nanohybrid composite resins subjected to 35% hydrogen peroxide: An in vitro study. J. Int. Soc. Prev. Community Dent. 2021, 11, 216–221. [Google Scholar] [CrossRef]
- Limsiriwong, W.; Klaisiri, A.; Krajangta, N. Effect of anti-COVID-19 mouthwashes on shear bond strength of resin-matrix ceramics repaired with resin composite using universal adhesive: An in vitro study. J. Funct. Biomater. 2023, 14, 158. [Google Scholar] [CrossRef]
- Elsherbini, A.; Fathy, S.M.; Al-Zordk, W.; Özcan, M.; Sakrana, A.A. Mechanical performance and surface roughness of lithium disilicate and zirconia-reinforced lithium silicate ceramics before and after exposure to acidic challenge. Dent. J. 2025, 13, 117. [Google Scholar] [CrossRef]
- Saleh, K.A.; Hammad, I.A.; Aly, Y.M. Effect of mouth rinses on the stainability of monolithic lithium disilicate glass-ceramics with different surface treatments: An in vitro study. J. Prosthet. Dent. 2023, 130, 935.e1–935.e6. [Google Scholar] [CrossRef]
- Pecho, O.E.; Martos, J.; Pinto, K.V.A.; Pinto, K.V.A.; Baldissera, R.A. Effect of hydrogen peroxide on color and whiteness of resin-based composites. J. Esthet. Restor. Dent. 2019, 31, 132–139. [Google Scholar] [CrossRef]
- Aguilera, F.R.; Viñas, M.; Sierra, J.M.; Vinuesa, T.; Fernandez de Henestrosa, A.R.; Furmanczyk, M.; Trullàs, C.; Jourdan, E.; López-López, J.; Jorba, M. Substantivity of mouth-rinse formulations containing cetylpyridinium chloride and O-cymen-5-ol: A randomized-crossover trial. BMC Oral Health 2022, 22, 646. [Google Scholar] [CrossRef]
- Paravina, R.D.; Pérez, M.M.; Ghinea, R. Acceptability and perceptibility thresholds in dentistry: A comprehensive review of clinical and research applications. J. Esthet. Restor. Dent. 2019, 31, 103–112. [Google Scholar] [CrossRef]
- Alshamrani, S.A.; Alobaid, B.F.; Alharkan, H.M. Comparative analysis of color stability among 3D-printed resin-based, CAD/CAM, and conventional interim fixed prosthodontic materials. J. Pharm. Bioallied Sci. 2024, 16, S4618–S4622. [Google Scholar] [CrossRef]
- Egilmez, F.; Ergun, G.; Cekic-Nagas, I.; Vallittu, P.K.; Lassila, L.V.J. Does artificial aging affect mechanical properties of CAD/CAM composite materials. J. Prosthodont. Res. 2018, 62, 65–74. [Google Scholar] [CrossRef]
- Albani, R.; Habib, S.R.; AlQahtani, A.; AlHelal, A.A.; Alrabiah, M.; Anwar, S. The Surface Roughness of Contemporary Indirect CAD/CAM Restorative Materials That Are Glazed and Chair-Side-Finished/Polished. Materials 2024, 17, 997. [Google Scholar] [CrossRef]




| Material/Abbreviation/pH | Manufacturer | Composition |
|---|---|---|
| N!ce® (NICE) | Straumann (Basel, Switzerland) | SiO2 64–70%, Li2O 10.5–12.5%, Al2O3 10.5–11.5%, Na2O 1–3%, K2O 0–3%, P2O5 3–8%, ZrO2 0–0.5%, CaO 1–2% |
| Lava Ultimate (LAVA) | 3M ESPE (St. Paul, MN, USA) | 20% polymeric matrix (Bis-GMA, UDMA, Bis-EMA, and TEGDMA), 80% nanoceramic fillers (20 nm silica, 4–11 μm zirconia, and infiltrated nanoclusters of both). |
| Hydrogen peroxide (HP), (pH = 3) | Peroxfarma (Barcelona, Spain) | 3% hydrogen peroxide and purified water |
| Povidone-iodine (PVP-I), (pH = 3.67) | NORMON (Madrid, Spain) | 7% w/v povidone-iodine, disodium phosphate, and purified water |
| Distilled water (Control), (pH = 7) | Bosque verde (Cheste, Valencia, Spain) | Distilled water |
| Material | Young’s Modulus (GPa) | Tensile Strength (MPa) | Compressive Strength (MPa) | Flexural Strength (MPa) |
|---|---|---|---|---|
| NICE | 60–70 | 90–110 | 900–1200 | 350 ± 50 |
| Lava Ultimate | 12–14 | 100–120 | 350–400 | 204 |
| Material | Solution | ΔL (Mean± SD) | Δa (Mean ± SD) | Δb (Mean ± SD) |
|---|---|---|---|---|
| NICE | Distilled water | 0.438 ± 1.104 | −0.275 ± 0.266 | 1.300 ± 0.540 |
| Hydrogen peroxide | −1.975 ± 1.308 | −0.138 ± 0.213 | 2.363 ± 0.560 | |
| Povidone-iodine | −0.950 ± 2.100 | −0.550 ± 0.245 | 1.700 ± 1.155 | |
| LAVA | Distilled water | −1.000 ± 0.484 | −0.375 ± 0.167 | 0.575 ± 0.871 |
| Hydrogen peroxide | −0.963 ± 1.687 | −0.963 ± 0.407 | 1.225 ± 2.204 | |
| Povidone-odine | −1.000 ± 0.703 | −1.025 ± 0.255 | 2.525 ± 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, M.; Tian, R.; Llena, C.; Ghilotti, J.; Sanz, J.L. Effect of Different Mouthwashes on the Hardness and Color Stability of CAD/CAM Materials: An In Vitro Study. J. Compos. Sci. 2025, 9, 598. https://doi.org/10.3390/jcs9110598
Melo M, Tian R, Llena C, Ghilotti J, Sanz JL. Effect of Different Mouthwashes on the Hardness and Color Stability of CAD/CAM Materials: An In Vitro Study. Journal of Composites Science. 2025; 9(11):598. https://doi.org/10.3390/jcs9110598
Chicago/Turabian StyleMelo, María, Ruilin Tian, Carmen Llena, James Ghilotti, and José Luís Sanz. 2025. "Effect of Different Mouthwashes on the Hardness and Color Stability of CAD/CAM Materials: An In Vitro Study" Journal of Composites Science 9, no. 11: 598. https://doi.org/10.3390/jcs9110598
APA StyleMelo, M., Tian, R., Llena, C., Ghilotti, J., & Sanz, J. L. (2025). Effect of Different Mouthwashes on the Hardness and Color Stability of CAD/CAM Materials: An In Vitro Study. Journal of Composites Science, 9(11), 598. https://doi.org/10.3390/jcs9110598

