Production and Mechanical Performance of Tantalum Strengthened Alumina–Zirconia Composites with Graphene Addition
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Powders
2.2. Materials Processing and Sintering
2.3. X-Ray Diffraction (XRD) and Raman Characterization
2.4. Microstructural and Mechanical Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaushal, S.; Zeeshan, M.D.; Ansari, M.I.; Sharma, D. Progress in tribological research of Al2O3 ceramics: A review. Mater. Today 2023, 82, 163–167. [Google Scholar]
- Chen, W.; Han, M.; Yang, S. Research Progress of Al2O3 Ceramic Composites. J. Mater. Eng. 2011, 3, 91–96. [Google Scholar]
- Wang, H.Z.; Gao, L.; Guo, J.K. The effect of nanoscale SiC particles on the microstructure of Al2O3 ceramics. Ceram. Int. 2000, 26, 391–396. [Google Scholar]
- Gao, L.; Hong, J.; Miyamoto, H.; Torre, S.D.D. Bending strength and microstructure of Al2O3 ceramics densified by spark plasma sintering. J. Eur. Ceram. Soc. 2000, 20, 2149–2152. [Google Scholar] [CrossRef]
- Shen, Z.; Johnsson, M.; Zhao, Z.; Nygren, M. Spark Plasma Sintering of Alumina. J. Eur. Ceram. Soc. 2002, 85, 1921–1927. [Google Scholar]
- Wang, S.W.; Chen, L.D.; Hirai, T. Densification of Al2O3 Powder Using Spark Plasma Sintering. J. Mater. Res. 2011, 15, 982–987. [Google Scholar]
- Piconi, C. Alumina. In Comprehensive Biomaterials; Elsevier: Amsterdam, The Netherlands, 2011; pp. 73–94. [Google Scholar]
- Smirnov, A.; Podrabinnik, P.A.; Babushkin, N.N.; Kuznetsova, E.V.; Pristinskiy, Y.O.; Khmyrov, R.S. Development of Al2O3 and PLA ceramic-polymer filament for 3D printing by fused deposition modelling method. AIP Conf. Proc. 2022, 2467, 020047. [Google Scholar]
- Tuan, W.H.; Chen, R.Z.; Wang, T.C.; Cheng, C.H.; Kuo, P.S. Mechanical properties of Al2O3/ZrO2 composites. J. Eur. Ceram. Soc. 2002, 22, 2827–2833. [Google Scholar]
- Meng, F.; Liu, C.; Zhang, F.; Tian, Z.; Huang, W. Densification and mechanical properties of fine-grained Al2O3–ZrO2 composites consolidated by spark plasma sintering. J. Alloys Compd. 2012, 512, 63–67. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, W.; Wu, H.; Huang, R.; He, R.; Jiang, Q.; Wu, S. Research into the mechanical properties, sintering mechanism and microstructure evolution of Al2O3-ZrO2 composites fabricated by a stereolithography-based 3D printing method. Mater. Chem. Phys. 2018, 207, 1–10. [Google Scholar]
- Nettleship, I.; Stevens, R. Tetragonal zirconia polycrystal (TZP)—A review. Int. J. High Technol. Ceram. 1987, 3, 1–32. [Google Scholar] [CrossRef]
- Stevens, R. An introduction to Zirconia: Zirconia and Zirconia Ceramics, 2nd ed.; Magnesium Electrón Publications; Magnesium Electrum: Twickenham, NY, USA, 1986. [Google Scholar]
- Garvie, R.C.; Hannink, R.H.; Pascoe, R.T. Ceramic steel? Nature 1975, 258, 703. [Google Scholar] [CrossRef]
- Hannink, R.H.J.; Kelly, P.M.; Muddle, B.C. Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 2000, 83, 461–487. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Pecharromán, C.; Bartolomé, J.F.; Requena, J.; Moya, J.S.; Deville, S.; Chevalier, J.; Torrecillas, R. Percolative Mechanism of Aging in Zirconia-Containing Ceramics for Medical Applications. Adv. Mater. 2003, 15, 507–511. [Google Scholar] [CrossRef]
- Huang, T.S.; Rahaman, M.N.; Bal, B.S. Alumina–tantalum composite for femoral head applications in total hip arthroplasty. Mater. Sci. Eng. C 2009, 29, 1935–1941. [Google Scholar] [CrossRef]
- Weidner, A.; Ranglack-Klemm, Y.; Zienert, T.; Aneziris, C.G.; Biermann, H. Mechanical High-Temperature Properties and Damage Behavior of Coarse-Grained Alumina Refractory Metal Composites. Materials 2019, 12, 3927. [Google Scholar] [CrossRef]
- Thomson, K.E.; Jiang, D.; Yao, W.; Ritchie, R.O.; Mukherjee, A.K. Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. Acta Mater. 2012, 60, 622–632. [Google Scholar] [CrossRef]
- Smirnov, A.; Bartolomé, J.F. Mechanical Properties and Fatigue Life of ZrO2-Ta Composites Prepared by Hot Pressing. J. Eur. Ceram. Soc. 2012, 32, 3899–3904. [Google Scholar] [CrossRef]
- Smirnov, A.; Beltrán, J.I.; Rodriguez-Suarez, T.; Pecharromán, C.; Muñoz, M.C.; Moya, J.S.; Bartolomé, J.F. Unprecedented simultaneous enhancement in damage tolerance and fatigue resistance of zirconia/Ta composites. Sci. Rep. 2017, 7, 449. [Google Scholar] [CrossRef]
- Bartolomé, J.F.; Gutiérrez-González, C.F.; Torrecillas, R. Mechanical properties of alumina–zirconia–Nb micro–nano-hybrid composites. Compos. Sci. Technol. 2008, 68, 1392–1398. [Google Scholar] [CrossRef]
- Gutierrez-Gonzalez, C.F.; Bartolomé, J.F. Damage Tolerance and R-Curve Behavior of Al2O3–ZrO2–Nb Multiphase Composites with Synergistic Toughening Mechanism. J. Mater. Res. 2008, 23, 570–578. [Google Scholar] [CrossRef]
- Smirnov, A.; Bartolomé, J.F.; Kurland, H.D.; Grabow, J.; Müller, F.A. Design of a new zirconia–alumina–Ta micro-nanocomposite with unique mechanical properties. J. Am. Ceram. Soc. 2016, 99, 3205–3209. [Google Scholar] [CrossRef]
- Burger, W.; Kiefer, G. Alumina, Zirconia and Their Composite Ceramics with Properties Tailored for Medical Applications. J. Compos. Sci. 2021, 5, 306. [Google Scholar] [CrossRef]
- Piconi, C.; Sprio, S. Oxide Bioceramic Composites in Orthopedics and Dentistry. J. Compos. Sci. 2021, 5, 206. [Google Scholar] [CrossRef]
- Bartolomé, J.F.; Moya, J.S.; Couceiro, R.; Gutiérrez-González, C.F.; Guitián, F.; Martinez-Insua, A. In vitro and in vivo evaluation of a new zirconia/niobium biocermet for hard tissue replacement. Biomaterials 2016, 76, 313–320. [Google Scholar] [CrossRef]
- Smirnov, A.; Yanushevich, O.; Krikheli, N.; Solis Pinargote, N.W.; Peretyagin, P.; Grigoriev, S.; Alou, L.; Sevillano, D.; López-Piriz, R.; Guitian, F. 3Y-TZP/Ta Biocermet as a Dental Material: An Analysis of the In Vitro Adherence of Streptococcus Oralis Biofilm and an In Vivo Pilot Study in Dogs. Antibiotics 2024, 13, 175. [Google Scholar] [CrossRef]
- Smirnov, A.; Guitián, F.; Ramirez-Rico, J.; Bartolomé, J.F. A zirconia/tantalum biocermet: In vitro and in vivo evaluation for biomedical implant applications. J. Mater. Chem. B. 2024, 12, 8919–8928. [Google Scholar] [CrossRef]
- Sun, J.; Du, S. Application of graphene derivatives and their nanocomposites in tribology and lubrication: A review. RSC Adv. 2019, 9, 40642–40661. [Google Scholar] [CrossRef]
- Paul, G.; Hirani, H.; Kuila, T.; Murmu, N.C. Nanolubricants Dispersed with Graphene and its Derivatives: An Assessment and Review of the Tribological Performance. Nanoscale 2019, 11, 3458–3483. [Google Scholar] [CrossRef] [PubMed]
- Markandan, K.; Chin, J.K.; Tan, M.T.T. Recent progress in graphene based ceramic composites: A review. J. Mater. Res. 2016, 32, 84–106. [Google Scholar] [CrossRef]
- Ahmad, I.; Anwar, S.; Xu, F.; Zhu, Y. Tribological investigation of multi-layer graphene reinforced alumina ceramic nanocomposites. J. Tribol. 2018, 141, 022002. [Google Scholar] [CrossRef]
- Solis Pinargote, N.W.; Meleshkin, Y.; Bentseva, E.; Kuznetsova, E.; Kytmanov, A.; Kurmysheva, A.Y.; Smirnov, A. Influence of graphene oxide content on the wear resistance of zirconia toughened alumina composites consolidated by spark plasma sintering. High Temp. Mat. Proc. Int. Q. High-Technol. Plasma Proc. 2024, 28, 81–91. [Google Scholar]
- Sktani, Z.D.I.; Arab, A.; Mohamed, J.J.; Ahmad, Z.A. Effects of additives additions and sintering techniques on the microstructure and mechanical properties of Zirconia Toughened Alumina (ZTA): A review. Inter. J. Refrac. Met. And Hard Mater. 2022, 106, 105870. [Google Scholar] [CrossRef]
- Yu, Z.; Zheng, Y.; Sun, J.; Zhao, J. Recent advances in toughening of alumina-based ceramic machining tools. Inter. J. Refrac. Met. Hard Mater. 2026, 137, 107436. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, F.; Yang, K.; Xiao, N.; Tang, J.; Xiong, Y.; Zhang, G.; Duan, M.; Chen, H. Important contributions of carbon materials in tribology: From lubrication abilities to wear mechanisms. J. Alloys Compd. 2024, 979, 173454. [Google Scholar] [CrossRef]
- Goswami, S.; Ghosh, R.; Hirani, H.; Mandal, N. Mechano-tribological performance of Graphene/CNT reinforced alumina nanocomposites–Review and quantitative insights. Ceram. Inter. 2022, 48, 11879–11908. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, F.; Chen, Y.; Zhang, H.; Xiong, B.; Chen, H. Recent progress on carbon-based composites in multidimensional applications. Composites Part A Appl. Sci. Manuf. 2022, 157, 106906. [Google Scholar] [CrossRef]
- Su, Y.; Zhu, T.; Cheng, Y.; Sun, N.; Wang, H.; Li, Y.; Hu, F.; Xie, Z. Tribological properties and wear mechanisms of WC-ZrO2-Al2O3-GNPs ceramics against typical counterparts. Wear 2025, 564, 205705. [Google Scholar] [CrossRef]
- Llorente, J.; Belmonte, M. Rolled and twisted graphene flakes as self-lubricant and wear protecting fillers into ceramic composites. Carbon 2020, 159, 45–50. [Google Scholar] [CrossRef]
- Sun, C.; Huang, Y.; Shen, Q.; Wang, W.; Pan, W.; Zong, P.A.; Yang, L.; Xing, Y.; Wan, C. Embedding two-dimensional graphene array in ceramic matrix. Sci. adv. 2020, 6, eabb1338. [Google Scholar] [CrossRef] [PubMed]
- Cygan, T.; Petrus, M.; Wozniak, J.; Cygan, S.; Teklińska, D.; Kostecki, M.; Jaworska, L.; Olszyna, A. Mechanical properties and tribological performance of alumina matrix composites reinforced with graphene-family materials. Ceram. Inter. 2020, 46, 7170–7177. [Google Scholar] [CrossRef]
- Duntu, S.H.; Eliasu, A.; Ahmad, I.; Islam, M.; Boakye-Yiadom, S. Synergistic effect of graphene and carbon nanotubes on wear behaviour of alumina-zirconia nanocomposites. Mater. Characteriz. 2021, 175, 111056. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Smirnov, A.; Solis Pinargote, N.W.; Peretyagin, N.; Pristinskiy, Y.; Peretyagin, P.; Bartolomé, J.F. Zirconia Reduced Graphene Oxide Nano-Hybrid Structure Fabricated by the Hydrothermal Reaction Method. Materials 2020, 13, 687. [Google Scholar] [CrossRef]
- Smirnov, A.; Peretyagin, P.; Bartolomé, J.F. Processing and mechanical properties of new hierarchical metal-graphene flakes reinforced ceramic matrix composites. J. Eur. Ceram. Soc. 2019, 39, 3491–3497. [Google Scholar] [CrossRef]
- Garvie, R.C.; Nicholson, P.S. Phase analysis in zirconia systems. J Amer. Ceram.Soc. 1972, 55, 303–305. [Google Scholar] [CrossRef]
- Toraya, H.; Yoshimura, M.; Somiya, S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray difraction. J. Am. Ceram. Soc. 1984, 67, 119–121. [Google Scholar] [CrossRef]
- ISO 6872:2015; Dentistry—Ceramic Materials. International Organization for Standardization: Geneva, Switzerland, 2015.
- Miranzo, P.; Moya, J.S. Elastic/plastic indentation in ceramics: A fracture toughness determination method. Ceram. Int. 1984, 10, 147–152. [Google Scholar] [CrossRef]
- Grigoriev, S.; Smirnov, A.; Pinargote, N.W.S.; Yanushevich, O.; Kriheli, N.; Kramar, O.; Pristinskiy, Y.; Peretyagin, P. Evaluation of Mechanical and Electrical Performance of Aging Resistance ZTA Composites Reinforced with Graphene Oxide Consolidated by SPS. Materials 2022, 15, 2419. [Google Scholar] [CrossRef] [PubMed]
- Tomanik, E.; Christinelli, W.; Souza, R.M.; Oliveira, V.L.; Ferreira, F.; Zhmud, B. Review of Graphene-Based Materials for Tribological Engineering Applications. Eng 2023, 4, 2764–2811. [Google Scholar] [CrossRef]
- Shahriary, L.; Athawale, A.A. Graphene oxide synthesized by using modified Hummers approach. Int. J. Renew. Energy Environ. Eng. 2014, 2, 58–63. [Google Scholar]
- Miranzo, P.; Ramírez, C.; Román-Manso, B.; Garzón, L.; Gutiérrez, H.R.; Terrones, M.; Ocal, C.; Osendi, M.I.; Belmonte, M. In situ processing of electrically conducting graphene/SiC nanocomposites. J. Eur. Ceram. Soc. 2013, 33, 1665. [Google Scholar] [CrossRef]
- Yazdani, B.; Xia, Y.; Ahmad, I.; Zhu, Y. Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J. Eur. Ceram. Soc. 2015, 35, 179. [Google Scholar] [CrossRef]
- Lahiri, D.; Khaleghi, E.; Bakshi, S.R.; Li, W.; Olevsky, E.A.; Agarwal, A. Graphene-induced strengthening in spark plasma sintered tantalum carbide–nanotube composite. Scr. Mater. 2013, 68, 285. [Google Scholar] [CrossRef]
- Walker, L.S.; Marotto, V.R.; Rafiee, M.A.; Koratkar, N.; Corral, E.L. Toughening in graphene ceramic composites. ACS Nano 2011, 5, 3182. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Vereschaka, A.A.; Vereschaka, A.S.; Kutin, A.A. Cutting tools made of layered composite ceramics with nano-scale multilayered coatings. Procedia CIRP 2012, 1, 301–306. [Google Scholar] [CrossRef]
- Loganathan, A.; Gandhi, A.S. Effect of phase transformations on the fracture toughness of yttria stabilized zirconia. Mater. Sci. Eng. A. 2012, 556, 927–935. [Google Scholar] [CrossRef]
- Kim, D.-J.; Tien, T.-Y. Phase Stability and Physical Properties of Cubic and Tetragonal ZrO2 in the System ZrO2–Y2O3–Ta2O5. J. Am. Ceram. Soc. 1991, 74, 3061–3065. [Google Scholar] [CrossRef]






| Materials | c | a | c/a | 
|---|---|---|---|
| Matrix | 5.1735 | 5.0997 | 1.014 | 
| ZTA-Ta | 5.1827 | 5.0865 | 1.0189 | 
| ZTA-Ta-rGO | 5.1827 | 5.0865 | 1.0189 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peretyagin, P.; Yanushevich, O.; Krikheli, N.; Pristinskiy, Y.; Solis Pinargote, N.W.; Smirnov, A.; Grigoriev, N. Production and Mechanical Performance of Tantalum Strengthened Alumina–Zirconia Composites with Graphene Addition. J. Compos. Sci. 2025, 9, 577. https://doi.org/10.3390/jcs9110577
Peretyagin P, Yanushevich O, Krikheli N, Pristinskiy Y, Solis Pinargote NW, Smirnov A, Grigoriev N. Production and Mechanical Performance of Tantalum Strengthened Alumina–Zirconia Composites with Graphene Addition. Journal of Composites Science. 2025; 9(11):577. https://doi.org/10.3390/jcs9110577
Chicago/Turabian StylePeretyagin, Pavel, Oleg Yanushevich, Natella Krikheli, Yuri Pristinskiy, Nestor Washington Solis Pinargote, Anton Smirnov, and Nikita Grigoriev. 2025. "Production and Mechanical Performance of Tantalum Strengthened Alumina–Zirconia Composites with Graphene Addition" Journal of Composites Science 9, no. 11: 577. https://doi.org/10.3390/jcs9110577
APA StylePeretyagin, P., Yanushevich, O., Krikheli, N., Pristinskiy, Y., Solis Pinargote, N. W., Smirnov, A., & Grigoriev, N. (2025). Production and Mechanical Performance of Tantalum Strengthened Alumina–Zirconia Composites with Graphene Addition. Journal of Composites Science, 9(11), 577. https://doi.org/10.3390/jcs9110577
 
        


 
       