Stability Improvement of Irradiated Polymer Composites by Inorganic Compounds—A Pertinent Solution with Respect to Phenolic Antioxidants
Abstract
1. Introduction
2. Mechanistic Approach
3. Polymer Systems Improved by Inorganic Protectors
3.1. Inorganic Complexes
3.2. Inorganic Clays
3.3. Polymer/Carbon Composites
3.4. Organic/Inorganic Stabilization Couples
4. Suggestions and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Billingham, N.C.; Cahn, R.W.; Haasen, P.; Kramer, E.J. Degradation and Stabilization of Polymers. In A Comprehensive Treatment: Corrosion and Environmental Degradation; Wiley: Berlin, Germany, 2000; pp. 469–507. [Google Scholar]
- Özdemir, T.; Güngör, A.; Akbay, I.; Uzun, H.; Babucçuoglu, Y. Nano Lead Oxide and EPDM Composite for Development of Polymer Based Radiation Shielding Material: Gamma Irradiation and Attenuation Tests. Radiat. Phys. Chem. 2018, 144, 248–255. [Google Scholar] [CrossRef]
- Bernstein, R.; Thornberg, S.M.; Assink, R.A.; Mowery, D.M.; Alam, M.K.; Irwin, A.N.; Hochrein, J.M.; Derzon, D.K.; Klamo, S.B.; Clough, R.L. Insights into Oxidation Mechanisms in Gamma-Irradiated Polypropylene, Utilizing Selective Isotopic Labeling with Analysis by GC/MS, NMR and FTIR. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 265, 8–17. [Google Scholar] [CrossRef]
- Chaudhari, C.V.; Dubey, K.A.; Bhardwaj, Y.K. Radiation-Induced Degradation of Polymers: An Aspect Less Exploited. In Applications of High Energy Radiations; Chow-dhury, S.R., Ed.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2023; pp. 373–407. [Google Scholar]
- Ferry, M.; Ngono, Y. Energy Transfer in Polymers Submitted to Ionizing Radiation: A Review. Radiat. Phys. Chem. 2020, 180, 109320. [Google Scholar] [CrossRef]
- Clifford, D.; Castano, C.; Rojas, J. Supported Transition Metal Nanomaterials: Nanocomposites Synthesized by Ionizing Radiation. Radiat. Phys. Chem. 2017, 132, 52–64. [Google Scholar] [CrossRef]
- Zaharescu, T.; Giurginca, M.; Jipa, S. Radiochemical Oxidation of Ethylene–Propylene Elastomers in the Presence of some Phenolic Antioxidants. Polym. Degrad. Stab. 1999, 63, 245–251. [Google Scholar] [CrossRef]
- Celina, M.C. Review of Polymer Oxidation and its Relationship with Materials Performance and Lifetime Prediction. Polym. Degrad. Stab. 2013, 98, 2419–2429. [Google Scholar] [CrossRef]
- Girard-Perier, N.; Dorey, S.; Marque, S.R.; Dupuy, N. Mapping the Scientific Research on the Gamma Irradiated Polymers Degradation (1975-2018). Radiat. Phys. Chem. 2020, 168, 108577. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, N.; Sachdeva, A. Factors Affecting the Ageing of Polymer Composite: A State of Art. Polym. Degrad. Stab. 2024, 221, 110670. [Google Scholar] [CrossRef]
- Zhao, W.; Dong, Z.; Zhao, L. Radiation Synthesis of Polyhedral Oligomeric Silsesquioxanes (POSS) Gel Polymers. Radiat. Phys. Chem. 2022, 198, 110251. [Google Scholar] [CrossRef]
- Ojeda, T. Polymers and the Environment. In Polymer Science; Yılmaz, F., Ed.; Intech: Lublijana, Croatia, 2013; pp. 1–34. [Google Scholar]
- Planes, E.; Chazeau, L.; Vigier, G.; Fournier, J. Evolution of EPDM Networks Aged by Gamma Irradiation – Consequences on the Mechanical Properties. Polymer 2009, 50, 4028–4038. [Google Scholar] [CrossRef]
- De Almeida, A.; Chazeau, L.; Vigier, G.; Marque, G.; Goutille, Y. Influence of PE/PP Ratio and ENB Content on the Degradation Kinetics of γ-Irradiated EPDM. Polym. Degrad. Stab. 2014, 110, 175–183. [Google Scholar] [CrossRef]
- Żenkiewicz, M.; Czupryńska, J.; Polański, J.; Karasiewicz, T.; Engelgard, W. Effects of Electron-Beam Irradiation on some Structural Properties of Granulated Polymer Blends. Radiat. Phys. Chem. 2008, 77, 146–153. [Google Scholar] [CrossRef]
- Sirin, M.; Zeybek, M.S.; Sirin, K.; Abali, Y. Effect of Gamma Irradiation on the Thermal and Mechanical Behaviour of Polypropylene and Polyethylene Blends. Radiat. Phys. Chem. 2022, 194, 110034. [Google Scholar] [CrossRef]
- Dintcheva, N.T. Overview of Polymers and Biopolymers Degradation and Stabilization Towards Sustainability and Materials Circularity. Polymer 2024, 306, 127136. [Google Scholar] [CrossRef]
- Basfar, A.; Lotfy, S. Radiation-Crosslinking of Shape Memory Polymers Based on Poly(Vinyl Alcohol) in the Presence of Carbon Nanotubes. Radiat. Phys. Chem. 2015, 106, 376–384. [Google Scholar] [CrossRef]
- Chazot, C.A.C.; Hart, A.J. Understanding and Control of Interactions Between Carbon Nanotubes and Polymers for Manufacturing of High-Performance Composite Materials. Compos. Sci. Technol. 2019, 183, 107795. [Google Scholar] [CrossRef]
- Darwesh, R.; Sayyed, M.; Al-Hadeethi, Y.; Alasali, H.J.; Alotaibi, J.S. Enhanced Radiation Shielding Performance of Epoxy Resin Composites with Sb2O3 and Al2O3 Additives. Radiat. Phys. Chem. 2023, 213, 111247. [Google Scholar] [CrossRef]
- Rychlý, J.; Matisová-Rychlá, L. The role of Oxidation in Degradation of Polymers: The Relation of Oxidation to the Light Emission from Oxidized Polymers. Compr. Anal. Chem.. 2008, 53, 451–498. [Google Scholar]
- (Luchian), A.-M.L.; Zaharescu, T.; Râpă, M.; Mariș, M.; Iovu, H. Availability of PLA/SIS Blends for Packaging and Medical Applications.Part II: Contribution of Stabilizer Agents. Radiat. Phys. Chem. 2022, 201, 110446. [Google Scholar] [CrossRef]
- Bansal, N.; Arora, S. Exploring the Impact of Gamma Rays and Electron Beam Irradiation on Physico-Mechanical Properties of Polymers & Polymer Composites: A Comprehensive Review. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2024, 549, 165297. [Google Scholar] [CrossRef]
- Mousavi, S.N.; Entezam, M.; Müller, M.T.; Tavakol, M.; Khonakdar, H.A. Molecular and Thermo-Mechanical Assessment of Long-Chain Branched Polypropylene: Effect of Irradiation Dose, Multifunctional Monomer Content and Molecular Weight. Radiat. Phys. Chem. 2023, 212, 111186. [Google Scholar] [CrossRef]
- Seguchi, T.; Tamura, K.; Shimada, A.; Sugimoto, M.; Kudoh, H. Mechanism of Antioxidant Interaction on Polymer Oxidation by Thermal and Radiation Ageing. Radiat. Phys. Chem. 2012, 81, 1747–1751. [Google Scholar] [CrossRef]
- Zaharescu, T. Algal Extracts – The Appropriate Stabilizers for Radiation Processed UHMWPE. Radiat. Phys. Chem. 2023, 212, 111087. [Google Scholar] [CrossRef]
- Zaharescu, T.; Borbath, T.; Borbath, I. The Contribution of BaTiO3 to the Stability Improvement of Ethylene-Propylene-Diene Rubber. Part III. – Comparative Essay: EPDM vs EPR. Radiat. Phys. Chem. 2024, 218. [Google Scholar] [CrossRef]
- Pongsathit, S.; Pattamaprom, C. Irradiation Grafting of Natural Rubber Latex with Maleic Anhydride and its Compatibilization of Poly(Lactic Acid)/Natural Rubber Blends. Radiat. Phys. Chem. 2018, 144, 13–20. [Google Scholar] [CrossRef]
- Pospíšil, J.; Nešpůrek, S. Chain-Breaking Stabilizers in Polymers: The Current Status. Polym. Degrad. Stab. 1995, 49, 99–110. [Google Scholar] [CrossRef]
- Pilař, J.; Michálková, D.; Šeděnková, I.; Pfleger, J.; Pospíšil, J. NOR and Nitroxide-Based HAS in Accelerated Photooxidation of Carbon-Chain Polymers; Comparison with Secondary HAS: An ESRI and ATR FTIR Study. Polym. Degrad. Stab. 2011, 96, 847–862. [Google Scholar] [CrossRef]
- Seguchi, T.; Tamura, K.; Ohshima, T.; Shimada, A.; Kudoh, H. Degradation Mechanisms of Cable Insulation Materials During Radiation–Thermal Ageing in Radiation Environment. Radiat. Phys. Chem. 2010, 80, 268–273. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Liu, B.; Xia, Y.; Lin, Q. Migration of Polymer Additives and Radiolysis Products from Irradiated PET/PE Films into a Food Simulant. Food Control. 2021, 124, 107886. [Google Scholar] [CrossRef]
- Klemchuk, P.P. Protecting Polymers Against Damage from Gamma Radiation. Radiat. Phys. Chem. 1993, 41, 165–172. [Google Scholar] [CrossRef]
- Tamba, M.; Torreggiani, A. Radiation-Induced Effects in the Electron-Beam Irradiation of Dietary Flavonoids. Radiat. Phys. Chem. 2004, 71, 23–27. [Google Scholar] [CrossRef]
- Doudin, K.; Al-Malaika, S.; Sheena, H.H.; Tverezovskiy, V.; Fowler, P. New Genre of Antioxidants from Renewable Natural Resources: Synthesis and Characterization of Rosemary Plant-Derived Antioxidants and their Performance in Polyolefins. Polym. Degrad. Stab. 2016, 130, 126–134. [Google Scholar] [CrossRef]
- Pospíšil, J.; Pilař, J.; Billingham, N.C.; Marek, A.; Horák, Z.; Nešpůrek, S. Factors Affecting Accelerated Testing of Polymer Photostability. Polym. Degrad. Stab.. 2006, 91, 417–422. [Google Scholar] [CrossRef]
- Uma, S.; Shobana, M. Band Structure and Mechanism of Semiconductor Metal Oxide Heterojunction Gas Sensor. Inorg. Chem. Commun. 2023, 160, 111941. [Google Scholar] [CrossRef]
- Zaharescu, T.; Blanco, I.; Bottino, F. Antioxidant Activity Assisted by Modified Particle Surface in POSS/EPDM Hybrids. Appl. Surf. Sci. 2019, 509, 144702. [Google Scholar] [CrossRef]
- Zaharescu, T.; Ilies, D.-C.; Roşu, T. Thermal and Spectroscopic Analysis of Stabilization Effect of Copper Complexes in EPDM. J. Therm. Anal. Calorim. 2015, 123, 231–239. [Google Scholar] [CrossRef]
- Zaharescu, T. Stabilization Effects of Doped Inorganic Filler on EPDM for Space and Terrestrial Applications. Mater. Chem. Phys. 2019, 234, 102–109. [Google Scholar] [CrossRef]
- Burnea, L.; Zaharescu, T.; Dumitru, A.; Plesa, I.; Ciuprina, F. Radiation Stability of Polypropylene/Lead Zirconate Composites. Radiat. Phys. Chem. 2014, 94, 156–160. [Google Scholar] [CrossRef]
- Collin, S.; Bussière, P.-O.; Therias, S.; Lacoste, J. The Role of Hydroperoxides in the Chemiluminescence of Oxidized Polymers Reconsidered. Eur. Polym. J. 2016, 76, 122–134. [Google Scholar] [CrossRef]
- Jozef, R.; Lyda, R.; Igor, N.; Vladimír, V.; Jozef, P.; Ivica, J.; Ivan, C. Thermooxidative Stability of Hot Melt Adhesives based on Metallocene Polyolefins Grafted with Polar Acrylic Acid Moieties. Polym. Test. 2020, 85, 106422. [Google Scholar] [CrossRef]
- Zaharescu, T.; Borbath, T.; Borbath, I.; Simion, E.; Mirea, R. Thermal Stability of Styrene Block Copolymers for Nuclear Applications. Radiat. Phys. Chem. 2024, 223, 111828. [Google Scholar] [CrossRef]
- Nuñez-Briones, A.; Benavides, R.; Bolaina-Lorenzo, E.; Martínez-Pardo, M.; Kotzian-Pereira-Benavides, C.; Puente-Urbina, B.; García-Cerda, L. Effect of Bi2O3 Nanostructures on X-ray Shielding, Thermal, Mechanical and Biological Properties of PVC Polymer Nanocomposites. Radiat. Phys. Chem. 2023, 216, 111455. [Google Scholar] [CrossRef]
- Tanaka, T. Dielectric Nanocomposites with Insulating Properties. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Dintcheva, N.; Alessi, S.; Arrigo, R.; Przybytniak, G.; Spadaro, G. Influence of the E-Beam Irradiation and Photo-Oxidation Aging on the Structure and Properties of LDPE-OMMT Nanocomposite Films. Radiat. Phys. Chem. 2012, 81, 432–436. [Google Scholar] [CrossRef]
- Raslan, H.A.; Elnaggar, M.Y.; Fathy, E. Flame-retardancy and Physico-Thermomechanical Properties of Irradiated Ethylene Propylene Diene Monomer Inorganic Composites. J. Vinyl Addit. Technol. 2017, 25, 59–67. [Google Scholar] [CrossRef]
- Abou-Laila, M.T.; El-Zayat, M.M.; Madbouly, A.M.; Abdel-Hakim, A. Gamma Irradiation Effects on Styrene Butadiene Rubber/Pb3O4: Mechanical, Thermal, Electrical Investigations and Shielding Parameter Measurements. Radiat. Phys. Chem. 2022. 192, 109897. [CrossRef]
- Blanco, I.; Zaharescu, T. The Effect of Polyhedral Oligomeric Sislesquioxanes (POSSs) Incorporation in Ethylene-Propylene-Diene-Terpolymer (EPDM): A Thermal Study. J. Therm. Anal. Calorim. 2022, 147, 5313–5321. [Google Scholar] [CrossRef]
- Metzger, R.M. (Ed.) Inorganic Chemistry and Nanomaterials. In The Physical Chemist’s Toolbox; Wiley: New York, NY, USA, 2023; pp. 749–921. [Google Scholar]
- Ilies, D.-C.; Pahontu, E.; Shova, S.; Georgescu, R.; Stanica, N.; Olar, R.; Gulea, A.; Rosu, T. Synthesis, Characterization, Crystal Structure and Antimicrobial Activity of Copper(II) Complexes with a Thiosemicarbazone Derived from 3-formyl-6-methylchromone. Polyhedron 2014, 81, 123–131. [Google Scholar] [CrossRef]
- Zaharescu, T.; Râpă, M.; Lungulescu, E.-M.; Butoi, N. Filler Effect on the Degradation of γ-processed PLA/Vinyl POSS Hybrid. Radiat. Phys. Chem. 2018, 153, 188–197. [Google Scholar] [CrossRef]
- Setnescu, R.; Bărcuţan, C.; Jipa, S.; Setnescu, T.; Negoiu, M.; Mihalcea, I.; Dumitru, M.; Zaharescu, T. The Effect of Some Thio-semicarbazide Compounds on Thermal Oxidation of Polypropylene. Polym. Degrad. Stabil. 2004, 85, 997–1001. [Google Scholar] [CrossRef]
- Mezey, R.Ș.; Zaharescu, T.; Lungulescu, M.E.; Marinescu, V.; Shova, S.; Roșu, T. Structural characteristics and thermal behavior of some azomethine compounds from pyridal and 4-aminoantipyrine. J. Therm. Anal. Calorim. 2016, 126, 1763–1776. [Google Scholar] [CrossRef]
- Eren, T.; Kose, M.; Kurtoglu, N.; Ceyhan, G.; McKee, V.; Kurtoglu, M. An Azo-Azomethyne Ligand and its Copper(II) Complex: Synthesis, X-ray Crystal Structure, Spectral, Thermal, Electrochemical and Photoluminescence Properties. Inorg. Chim. Acta. 2015, 430, 268–279. [Google Scholar] [CrossRef]
- Chiu, C.-W.; Huang, T.-K.; Wang, Y.-C.; Alamani, B.G.; Lin, J.-J. Intercalation Strategies in Clay/Polymer Hybrids. Prog. Polym. Sci. 2014, 39, 443–485. [Google Scholar] [CrossRef]
- Huang, H.-D.; Ren, P.-G.; Zhong, G.-J.; Olah, A.; Li, Z.-M.; Baer, E.; Zhu, L. Promising Strategies and New Opportunities for High Barrier Polymer Packaging Films. Prog. Polym. Sci. 2023, 144, 101722. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Xie, Q.; Liu, G.; Ma, C.; Zhang, G. Functional Polymer–Ceramic Hybrid Coatings: Status, Progress, and Trend. Prog. Polym. Sci. 2024, 154, 101840. [Google Scholar] [CrossRef]
- Zhou, H.; Chua, M.H.; Xu, J. Manufacturing of POSS-Polymer Nanocomposites. In Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites. From Synthesis to Applications; Thomas, S., Somasekharan, L., Eds.; Elsevier: New York, NY, USA, 2021; pp. 27–51. [Google Scholar]
- Musto, P.; Abbate, M.; Pannico, M.; Scarinzi, G.; Ragosta, G. Improving the Photo-Oxidative Stability of Epoxy Resins by use of Functional POSS Additives: A Spectroscopic, Mechanical and Morphological Study. Polymer 2012, 53, 5016–5036. [Google Scholar] [CrossRef]
- Peng, D.; Qin, W.; Wu, X. A Study on Resistance to Ultraviolet Radiation of POSS–TiO2/Epoxy Nanocomposites. Acta Astronaut. 2015, 111, 84–88. [Google Scholar] [CrossRef]
- Zaharescu, T.; Marinescu, V.; Hebda, E.; Pielichowski, K. Thermal stability of gamma-irradiated polyurethane/POSS hybrid materials. J. Therm. Anal. Calorim. 2017, 133, 49–54. [Google Scholar] [CrossRef]
- Zaharescu, T.; Chou, Y.; Hebda, E.; Raftopoulos, K.N.; Pielichowski, K. Complementary Assessment of γ-irradiated Polyurethane-POSS Hybrids by Chemiluminescence and Differential Scanning Calorimetry. Polym. Test. 2021, 96, 107117. [Google Scholar] [CrossRef]
- Hasan, I.U.; Zohora, F.T.; Abedin, J.; Rahman, Z. Hybrid Functional Materials and their Applications. In Comprehensive Materials Processing, 2nd ed.; Hashmi, S., Ed.; Elsevier: New York, NY, USA, 2024; Volume 13, pp. 479–504. [Google Scholar]
- Zaharescu, T.; Pielichowski, K. Stabilization Effects of POSS Nanoparticles on Gamma-irradiated Polyurethane. J. Therm. Anal. Calorim. 2015, 124, 767–774. [Google Scholar] [CrossRef]
- Kholodkova, E.; Vcherashnyaya, A.; Bludenko, A.; Chulkov, V.; Ponomarev, A. Radiation-Thermal Approaches to the Processing of Complex Polymer Waste. Radiat. Phys. Chem. 2019, 170, 108664. [Google Scholar] [CrossRef]
- Zaharescu, T.; Dumitru, A.; Lungulescu, M.; Velciu, G. EPDM Composite Membranes Modified with Cerium Doped Lead Zirconate Titanate. Radiat. Phys. Chem. 2016, 118, 133–137. [Google Scholar] [CrossRef]
- Ateeq, M. A State of Art Review on Recycling and Remanufacturing of the Carbon Fiber from Carbon Fiber Polymer Composite. Compos. Part C Open Access 2023, 12, 100412. [Google Scholar] [CrossRef]
- Prashanth, G.; Gadewar, M.; Lalithamba, H.; Rao, S.; Rashmi, K.; Yatish, K.; Swamy, M.M.; Bhagya, N.; Ghosh, M.K. Synthesis, and Applications of Carbon-Integrated Polymer Composites and Foams: A Concise Review. Inorg. Chem. Commun. 2024, 166, 112614. [Google Scholar] [CrossRef]
- Huali, Y.; Hao, T.; Jianhui, P.; Xinfang, C. The Stabilization Effect of Radiation Crosslinking on Positive Temperature Coefficient Performances of Carbon Black-Polymer Composites. Radiat. Phys. Chem. 1993, 42, 135–137. [Google Scholar] [CrossRef]
- Oshima, A.; Udagawa, A.; Morita, Y. Radiation Processing for Carbon Fiber-Reinforced Polytetrafluoroethylene Composite Materials. Radiat. Phys. Chem. 2001, 60, 95–100. [Google Scholar] [CrossRef]
- Martin, A.; Pietras-Ozga, D.; Ponsaud, P.; Kowandy, C.; Barczak, M.; Defoort, B.; Coqueret, X. Radiation-Curing of Acrylate Composites Including Carbon Fibres: A Customized Surface Modification for Improving Mechanical Performances. Radiat. Phys. Chem. 2014, 105, 63–68. [Google Scholar] [CrossRef]
- Azzian, M.I.M.; Mohamad, S.F.; Salleh, W.N.W.; Ismail, N.H.; Ahmad, S.Z.N.; Sazali, M.A.; Guven, O. Surface Modification of PVDF Membrane by Radiation-Induced Admicellar Polymerization of Acrylamide in the Presence of Cationic Surfactant. Radiat. Phys. Chem. 2023, 214, 111309. [Google Scholar] [CrossRef]
- Dubey, K.A.; Mondal, R.K.; Bhardwaj, Y.K. Graphene Assisted Enhancement in the Cyclic Electromechanical Properties of Polyolefin-based Multiphasic Conducting Nano Carbon Black Nanocomposites. Radiat. Phys. Chem. 2024, 214, 111308. [Google Scholar] [CrossRef]
- Zaharescu, T.; Banciu, C. Stabilization Efficiency of Graphene in γ-irradiated Styrene-Isoprene-Styrene Copolymer. Radiat. Phys. Chem. 2023, 214, 111256. [Google Scholar] [CrossRef]
- Karsli, N.G.; Aytac, A.; Akbulut, M.; Deniz, V.; Güven, O. Effects of Irradiated Polypropylene Compatibilizer on the Properties of Short Carbon Fiber Reinforced Polypropylene Composites. Radiat. Phys. Chem. 2012, 84, 74–78. [Google Scholar] [CrossRef]
- Shahnaz, T.; Hayder, G.; Shah, M.A.; Ramli, M.Z.; Ismail, N.; Hua, C.K.; Zahari, N.M.; Mardi, N.H.; Selamat, F.E.; Kabilmiharbi, N.; et al. Graphene-based Nanoarchitecture as a Potent Cushioning/Filler in Polymer Composites and their Applications. J. Mater. Res. Technol. 2023, 28, 2671–2698. [Google Scholar] [CrossRef]
- Patil, U.S.; Kemppainen, J.; Wavrunek, T.; Odegard, G.M. The Effect of Gamma-Ray Irradiation on Polymer-Graphene Nanocomposite Interfaces. Compos. Part B-Eng. 2024, 284, 111715. [Google Scholar] [CrossRef]
- Amiryaghoubi, N.; Fathi, M.; Barar, J.; Omidian, H.; Omidi, Y. Recent Advances in Graphene-based Polymer Composite Scaffolds for Bone/Cartilage Tissue Engineering. J. Drug Deliv. Sci. Technol. 2022, 72, 103360. [Google Scholar] [CrossRef]
- Majumder, S.; Meher, A.; Moharana, S.; Kim, K.H. Graphene Nanoribbon Synthesis and Properties in Polymer Composites: A Review. Carbon 2023, 216, 118558. [Google Scholar] [CrossRef]
- Fu, X.; Lin, J.; Liang, Z.; Yao, R.; Wu, W.; Fang, Z.; Zou, W.; Wu, Z.; Ning, H.; Peng, J. Graphene Oxide as a Promising Nanofiller for Polymer Composite. Surfaces Interfaces 2023, 37, 102747. [Google Scholar] [CrossRef]
- Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998, 102, 4477–4482. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, S.; Wang, X.; Zhang, P.; Mao, Z.; Zhang, X. Progression from Graphene and Graphene Oxide to High-Performance Epoxy Resin-based Composite. Polym. Degrad. Stab. 2024, 223, 110731. [Google Scholar] [CrossRef]
- Chu, J.Y.; Lee, K.H.; Kim, A.R.; Yoo, D.J. Improved Electrochemical Performance of Composite Anion Exchange Membranes for Fuel Cells Through Cross-Linking of the Polymer Chain with Functionalized Graphene Oxide. J. Membr. Sci. 2020, 611, 118385. [Google Scholar] [CrossRef]
- Zaharescu, T.; Banciu, C. Packaging Materials Based on Styrene-Isoprene-Styrene Triblock Copolymer Modified with Graphene. Polymers 2023, 15, 353. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.A.; Lan, R.; Dai, R.; Jiang, K.; Shen, H.; Hong, R.; Xu, J.; Li, L.; Li, Z. Improved Oxidation Stability and Crosslink Density of Chemically Crosslinked Ultrahigh Molecular Weight Polyethylene Using the Antioxidant Synergy for Artificial Joints. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2022, 111, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, H.; Bai, J.; Liu, X.; Ding, Y.; Yang, M. A Novel Polyhedral Oligomeric Silsesquioxane Antioxidant-based on Amide-Linked Hindered Phenols and its Antioxidative Behavior in Polyamide 6,6. Polym. Degrad. Stab. 2024, 229, 110939. [Google Scholar] [CrossRef]
- Zhang, J.; Ke, Q.; Bai, J.; Yang, M. Synthesis of a Novel Organic-Inorganic Hindered Phenol Antioxidant Derived from Polyhedral Oligomeric Silsesquioxane and its Antioxidative Behavior in Polypropylene. Polym. Degrad. Stab. 2023, 218, 110550. [Google Scholar] [CrossRef]
- Zaharescu, T.; Mateescu, C. Stability Efficiencies of POSS and Microalgae Extracts on the Durability Ofethylene-Propylene-Diene Monomer Based Hybrids. Polymers 2022, 14, 187. [Google Scholar] [CrossRef] [PubMed]
- Zaharescu, T.; Mateescu, C. Investigation on Some Algal Extracts as Appropriate Stabilizers for Radiation-Processed Polymers. Polymers 2022, 14, 4971. [Google Scholar] [CrossRef] [PubMed]
- Celina, M.; Linde, E.; Brunson, D.; Quintana, A.; Giron, N. Overview of Accelerated Aging and Polymer Degradation Kinetics for Combined Radiation-Thermal Environments. Poly. Degrad. Stab. 2019, 166, 353–378. [Google Scholar] [CrossRef]
- Gupta, R.; Singh, M.K.; Rangappa, S.M.; Siengchin, S.; Dhakal, H.N.; Zafar, S. Recent Progress in Additive Inorganic Flame Retardants Polymer Composites: Degradation Mechanisms, Modeling and Applications. Heliyon 2024, 10, 39662. [Google Scholar] [CrossRef]
- Sahare, P.H.; Dhole, L.P.; Burande, S. A Review Paper on Investigation of Mechanical and Wear Properties of Polymer Composites Subjected to Environmental Degradation. Mater. Today Proc. 2024, 5, 107. [Google Scholar] [CrossRef]
- Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M. Improvement of Mechanical and Thermal Properties of High Energy Electron Beam Irradiated HDPE/Hydroxyapatite Nanocomposite. Radiat. Phys. Vhem. 2017, 130, 229–235. [Google Scholar] [CrossRef]
- Spadaro, G.; Alessi, S.; Dispenza, C.; Sun, Y.; Chmielewski, A. Molecular Modifications in Irradiated Polumymers. In Applications of Ionizing Radiation in Polymer Processing; Institute of Nuclear Chemistry and Technologies: Warsaw, Poland, 2017; pp. 168–183. [Google Scholar]
- Çağlayan, T.; Güven, O. Preparation and Characterization of Poly(Ethylene-Vinyl Acetate) Based Nanocomposites Using Radiation-Modified Montmorillonite. Radiat. Phys. Chem. 2020, 169, 107844. [Google Scholar] [CrossRef]
- Nho, Y.-C.; Sohn, J.-Y.; Shin, J.; Park, J.-S.; Lim, Y.-M.; Kang, P.-H. Preparation of Nanocomposite γ-Al2O3/Polyethylene Separator Crosslinked by Electron Beam Irradiation for Lithium Secondary Battery. Radiat. Phys. Chem. 2017, 132, 65–70. [Google Scholar] [CrossRef]
- Mustafa, M.; Salem Al-Ahmadi, A.N.; Mwafy, E.A.; Elsharkawy, W.B.; Nafee, S.S. Nickel Oxide Nanoparticles Embedded in Polymer-Matrix Nanocomposite Prepared by Nanosecond Laser Ablation Method for Optoelectronic Applications. Radiat. Phys. Chem. 2025, 226, 112262. [Google Scholar] [CrossRef]
- Zaharescu, T.; Bumbac, M.; Nicolescu, C.M. Stability Effects of Added Biomass on Microalgae Styrene–Butadiene–Styrene Composites. J. Therm. Anal. Calorim. 2024. [CrossRef]
- Takács, K.; Németh, M.; Renkecz, T.; Tátraaljai, D.; Pukánszky, B. Stabilization of PE with the Natural Antioxidant T-Resveratrol: Interaction of the Primary and the Secondary Antioxidant. Polym. Degrad. Stab. 2024, 230, 111046. [Google Scholar] [CrossRef]
- Zaharescu, T. The Stabilization by Synergistic Effect of Silica Nanoparticles Assisted by Rosemary Powder in the Thermal Degradation of Styrene-Isoprene-Styrene Triblock Copolymer. Radiat. Phys. Chem. 2023, 206, 110765. [Google Scholar] [CrossRef]
- Luo, T.; Hu, Y.; Zhang, M.; Jia, P.; Zhou, Y. Recent Advances of Sustainable and Recyclable Polymer Materials from Renewable Resources. Resour. Chem. Mater. 2024, 10, 4. [Google Scholar] [CrossRef]
- Vazirov, R.; Shkuro, A.; Buryndin, V.; Zakharov, P.; Shishlov, O.; Vazirova, E. The Effect of High-Energy Electron Beam Irradiation on the Physicochemical Properties of PET Material. Radiat. Phys. Chem. 2024, 227, 112392. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaharescu, T.; Lugāo, A.B. Stability Improvement of Irradiated Polymer Composites by Inorganic Compounds—A Pertinent Solution with Respect to Phenolic Antioxidants. J. Compos. Sci. 2025, 9, 47. https://doi.org/10.3390/jcs9010047
Zaharescu T, Lugāo AB. Stability Improvement of Irradiated Polymer Composites by Inorganic Compounds—A Pertinent Solution with Respect to Phenolic Antioxidants. Journal of Composites Science. 2025; 9(1):47. https://doi.org/10.3390/jcs9010047
Chicago/Turabian StyleZaharescu, Traian, and Ademar B. Lugāo. 2025. "Stability Improvement of Irradiated Polymer Composites by Inorganic Compounds—A Pertinent Solution with Respect to Phenolic Antioxidants" Journal of Composites Science 9, no. 1: 47. https://doi.org/10.3390/jcs9010047
APA StyleZaharescu, T., & Lugāo, A. B. (2025). Stability Improvement of Irradiated Polymer Composites by Inorganic Compounds—A Pertinent Solution with Respect to Phenolic Antioxidants. Journal of Composites Science, 9(1), 47. https://doi.org/10.3390/jcs9010047