Lithium-Containing Sorbents Based on Rice Waste for High-Temperature Carbon Dioxide Capture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Silicon Oxide and Carbonized Silicon Oxide from Rice Wastes
2.2. Preparation of Sorbents
2.3. Evaluation of CO2 Sorption
2.4. Investigation of the Physico-Chemical Characteristics of Samples
3. Results
Pre-Sorption Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dossumov, K.; Yergazieva, G.Y.; Churina, D.H.; Tayrabekova, S.Z.; Tulebayev, E.M. Effect of the Method of Preparation of a Supported Cerium Oxide Catalyst on Its Activity in the Conversion of Ethanol to Ethylene. Theor. Exp. Chem. 2016, 52, 123–126. [Google Scholar] [CrossRef]
- Gao, X.; Li, J.; Zheng, M.; Cai, S.; Zhang, J.; Askari, S.; Dewangan, N.; Ashok, J.; Kawi, S. Recent Progress in Anti-Coking Ni Catalysts for Thermo-Catalytic Conversion of Greenhouse Gases. Process Saf. Environ. Prot. 2021, 156, 598–616. [Google Scholar] [CrossRef]
- Mehryar, M.; Hafezalkotob, A.; Azizi, A.; Sobhani, F.M. Cooperative Reliability Allocation in Network Flow Problems Considering Greenhouse Gas Emissions: Optical Fiber Networks Structure. J. Clean. Prod. 2021, 326, 129315. [Google Scholar] [CrossRef]
- Hincks, S.; Carter, J.; Connelly, A. A New Typology of Climate Change Risk for European Cities and Regions: Principles and Applications. Glob. Environ. Chang. 2023, 83, 102767. [Google Scholar] [CrossRef]
- Voldsund, M.; Jordal, K.; Anantharaman, R. Hydrogen Production with CO2 Capture. Int. J. Hydrogen Energy 2016, 41, 4969–4992. [Google Scholar] [CrossRef]
- Li, C.; Ahmad, S.F.; Ahmad Ayassrah, A.Y.A.B.; Irshad, M.; Telba, A.A.; Mahrous Awwad, E.; Imran Majid, M. Green Production and Green Technology for Sustainability: The Mediating Role of Waste Reduction and Energy Use. Heliyon 2023, 9, e22496. [Google Scholar] [CrossRef]
- Okorie, D.I.; Wesseh, P.K., Jr. Fossil Fuel Subsidy Removal, Economic Welfare, and Environmental Quality under Alternative Policy Schemes. J. Clean. Prod. 2024, 450, 141991. [Google Scholar] [CrossRef]
- Soepyan, F.B.; Habib, M.; Zhang, Z.; Nemetz, L.R.; Haque, M.E.; Esquino, A.M.; Rivero, J.R.; Bhattacharyya, D.; Lipscomb, G.G.; Matuszewski, M.S.; et al. Optimization of a Natural Gas Power Plant with Membrane and Solid Sorbent Carbon Capture Systems. Carbon Capture Sci. Technol. 2024, 10, 100165. [Google Scholar] [CrossRef]
- Sheng, L.; Wang, K.; Deng, J.; Chen, G.; Luo, G. Gas–Liquid Microdispersion and Microflow for Carbon Dioxide Absorption and Utilization: A Review. Curr. Opin. Chem. Eng. 2023, 40, 100917. [Google Scholar] [CrossRef]
- Li, Y.; Dai, Y.; Dai, W.; He, F.; Li, Z.; Zhong, X.; Tao, Q. Bifunctional Solid-State Ionic Liquid Supported Amidoxime Chitosan Adsorbents for Th(IV) and U(VI): Enhanced Adsorption Capacity from the Synergistic Effect. Int. J. Biol. Macromol. 2024, 257, 128708. [Google Scholar] [CrossRef]
- Lin, L.; Meng, Y.; Ju, T.; Han, S.; Meng, F.; Li, J.; Du, Y.; Song, M.; Lan, T.; Jiang, J. Characteristics, Application and Modeling of Solid Amine Adsorbents for CO2 Capture: A Review. J. Environ. Manag. 2023, 325, 116438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, Y.; Lei, P.; Yang, Z.; Liu, L.; Zhang, Z. CaO-Based Adsorbents Derived from Municipal Solid Waste Incineration Bottom Ash for CO2 Capture. Sustain. Mater. Technol. 2024, 39, e00856. [Google Scholar] [CrossRef]
- Jiao, J.; Cao, J.; Xia, Y.; Zhao, L. Improvement of Adsorbent Materials for CO2 Capture by Amine Functionalized Mesoporous Silica with Worm-Hole Framework Structure. Chem. Eng. J. 2016, 306, 9–16. [Google Scholar] [CrossRef]
- Liu, Z.; Teng, Y.; Zhang, K.; Chen, H.; Yang, Y. CO2 Adsorption Performance of Different Amine-Based Siliceous MCM-41 Materials. J. Energy Chem. 2015, 24, 322–330. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, G.; Yan, H.; Zhao, Y. The Latest Development on Amine Functionalized Solid Adsorbents for Post-Combustion CO2 Capture: Analysis Review. Chin. J. Chem. Eng. 2021, 35, 17–43. [Google Scholar] [CrossRef]
- Liu, X.; Saren, S.; Chen, H.; Jeong, J.H.; Li, M.; Dang, C.; Miyazaki, T.; Thu, K. Open Adsorption System for Atmospheric CO2 Capture: Scaling and Sensitivity Analysis. Energy 2024, 294, 130805. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Peng, Y.-L.; Zou, J.-S.; Yang, T.; Liu, Z.; Qiu, F.; Liu, C.; Jiang, S. Probing the Differences in CO2 Adsorption/Desorption Behaviors of Solid Amine Sorbents in Fixed and Fluidized Beds. Sep. Purif. Technol. 2024, 343, 127171. [Google Scholar] [CrossRef]
- Li, X.; Zhao, K.; Li, Z.; Li, X.; Peng, K. All-solid-waste-derived CaO-based sorbents for simultaneously enhanced calcium looping CO2 capture and thermochemical energy storage. J. Clean. Prod. 2024, 470, 143270. [Google Scholar] [CrossRef]
- Cai, L.; Xue, H.; Yang, X.; Lin, Y.; Hu, X.; Zhang, Y. Facile synthesis of polymer-derived K, Ti co-doped Li4SiO4-based sorbent for efficient and stable post-combustion CO2 capture. Chem. Eng. J. 2024, 493, 152399. [Google Scholar] [CrossRef]
- Afandi, N.; Satgunam, M.; Mahalingam, S.; Manap, A.; Nagi, F.; Liu, W.; Johan, R.B.; Turan, A.; Wei-Yee Tan, A.; Yunus, S. Review on the Modifications of Natural and Industrial Waste CaO Based Sorbent of Calcium Looping with Enhanced CO2 Capture Capacity. Heliyon 2024, 10, e27119. [Google Scholar] [CrossRef]
- Li, P.; Jiang, Z.; Guo, H.; Zhao, W.; Zheng, F.; Chen, Y.; Yan, B.; Chen, D. Lithium Based High Temperature Sorbent from Copper Slag: Synthesis and CO2 Capture Performance. Ceram. Int. 2023, 49, 37435–37444. [Google Scholar] [CrossRef]
- Teixeira, P.; Correia, P.; Pinheiro, C.I.C. CO2 Capture by CaCO3-MgO and CeO2-MgO Sorbents Promoted by Ternary Alkali Metal Salts in a Fixed Bed Reactor. Chem. Eng. Sci. 2024, 289, 119856. [Google Scholar] [CrossRef]
- Liang, S.; Aihemaiti, A.; Cai, Y.; Su, Y.; Li, R.; Quan, Z.; Zhang, Z. New Insights into Stabilizing Mechanism of Ca9Al6O18 Stabilizing Ca-Based Sorbents for CO2 Cyclic Capture under Mild Conditions. Chem. Eng. J. 2023, 474, 145908. [Google Scholar] [CrossRef]
- Cai, L.; Tan, G.; Yang, X.; Xue, H.; Lin, Y.; Hu, X.; Song, Z.; Zhang, Y. Efficient Carbon Dioxide Adsorption Properties of Cellular Structure Li4SiO4 Sorbents Prepared by Additive Manufacturing Based on Polymer-Derived Ceramics Strategy. Chem. Eng. J. 2024, 483, 149125. [Google Scholar] [CrossRef]
- Wang, J.; Chen, K.; Wang, Y.; Lei, J.; Alsubaie, A.; Ning, P.; Wen, S.; Zhang, T.; Almalki, A.S.A.; Alhadhrami, A.; et al. Effect of K2CO3 Doping on CO2 Sorption Performance of Silicate Lithium-Based Sorbent Prepared from Citric Acid Treated Sediment. Chin. J. Chem. Eng. 2022, 51, 10–20. [Google Scholar] [CrossRef]
- Cui, H.; Li, X.; Chen, H.; Gu, X.; Cheng, Z.; Zhou, Z. Sol-Gel Derived, Na/K-Doped Li4SiO4-Based CO2 Sorbents with Fast Kinetics at High Temperature. Chem. Eng. J. 2020, 382, 122807. [Google Scholar] [CrossRef]
- Rossi, D.; Anguillesi, I.; Desideri, U.; Seggiani, M. Easy Fabrication Method of Li4SiO4-K2CO3 Based Pellets for CO2 Capture at High Temperature. Chem. Eng. J. 2024, 481, 148615. [Google Scholar] [CrossRef]
- Seggiani, M.; Stefanelli, E.; Puccini, M.; Vitolo, S. CO2 Sorption/Desorption Performance Study on K2CO3-Doped Li4SiO4-Based Pellets. Chem. Eng. J. 2018, 339, 51–60. [Google Scholar] [CrossRef]
- Stefanelli, E.; Puccini, M.; Vitolo, S.; Seggiani, M. CO2 Sorption Kinetic Study and Modeling on Doped-Li4SiO4 under Different Temperatures and CO2 Partial Pressures. Chem. Eng. J. 2020, 379, 122307. [Google Scholar] [CrossRef]
- Dantas, T.L.; Rodrigues, A.E.; Moreira, R.F.P.M. Separation of Carbon Dioxide from Flue Gas Using Adsorption on Porous Solids. Greenh. Gases-Capturing Util. Reduct. 2012, 3, 57–80. [Google Scholar] [CrossRef]
- Rahmatmand, B.; Keshavarz, P.; Ayatollahi, S. Study of Absorption Enhancement of CO2 by SiO2, Al2O3, CNT, and Fe3O4 Nanoparticles in Water and Amine Solutions. J. Chem. Eng. Data 2016, 61, 1378–1387. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Yang, J. Hydrothermal Synthesis and Methylene Blue Adsorption Performance of Novel 3D Hierarchical Li2Si2O5 Hydrate Particles. Sci. Rep. 2020, 10, 5545. [Google Scholar] [CrossRef] [PubMed]
- Sanna, A.; Ramli, I.; Maroto-Valer, M.M. Novel Na-Silicates CO2 Sorbents from Fly Ash. Energy Procedia 2014, 63, 739–744. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, P.; Guo, X.; Han, D.; Chao, Y. High Temperature Capture of CO2 on Li4SiO4-Based Sorbents from Biomass Ashes. Environ. Prog. Sustain. Energy 2015, 34, 526–532. [Google Scholar] [CrossRef]
- Zhao, M.; Fan, H.; Yan, F.; Song, Y.; He, X.; Memon, M.Z.; Bhatia, S.K.; Ji, G. Kinetic Analysis for Cyclic CO2 Capture Using Lithium Orthosilicate Sorbents Derived from Different Silicon Precursors. Dalton Trans. 2018, 47, 9038–9050. [Google Scholar] [CrossRef]
- Tsubouchi, N.; Nishio, M.; Shinohara, Y.; Bud, J.; Mochizuki, Y. Production of Activated Carbon from Peat by with Natural Soda Ash and Effect of Nitrogen Addition on the Development of Surface Area. Fuel Process. Technol. 2018, 176, 76–84. [Google Scholar] [CrossRef]
- Buchner, S.; Balzaretti, N.M. Pressure and Temperature Stability Range of Crystalline Lithium Metasilicate in a Binary Li2O·2SiO2 Glass. J. Phys. Chem. Solids 2013, 74, 1179–1183. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent Advances in Carbon Capture Storage and Utilisation Technologies: A Review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Subha, P.V.; Nair, B.N.; Visakh, V.; Sreerenjini, C.R.; Mohamed, A.P.; Warrier, K.G.K.; Yamaguchi, T.; Hareesh, U.S. Germanium-Incorporated Lithium Silicate Composites as Highly Efficient Low-Temperature Sorbents for CO2 Capture. J. Mater. Chem. A 2018, 6, 7913–7921. [Google Scholar] [CrossRef]
- Li, J.; Michalkiewicz, B.; Min, J.; Ma, C.; Chen, X.; Gong, J.; Mijowska, E.; Tang, T. Selective Preparation of Biomass-Derived Porous Carbon with Controllable Pore Sizes toward Highly Efficient CO2 Capture. Chem. Eng. J. 2019, 360, 250–259. [Google Scholar] [CrossRef]
- Xue, L.; Haseeb, M.; Mahmood, H.; Alkhateeb, T.T.Y.; Murshed, M. Renewable Energy Use and Ecological Footprints Mitigation: Evidence from Selected South Asian Economies. Sustainability 2021, 13, 1613. [Google Scholar] [CrossRef]
- Mahmud, N.A.; Osman, N.; Jani, A.M.M. Characterization of Acid Treated Activated Carbon From Oil Palm Empty Fruit Bunches (EFB). J. Phys. Conf. Ser. 2018, 1083, 012049. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, W.; Jin, X.; Wang, G.; Lu, H.; Wang, H.; Chen, D.; Fan, B.; Hou, T.; Zhang, R. Effect of the Particle Size of Quartz Powder on the Synthesis and CO2 Absorption Properties of Li4SiO4 at High Temperature. Ind. Eng. Chem. Res. 2013, 52, 1886–1891. [Google Scholar] [CrossRef]
- Alemi, A.; Khademinia, S. Part I: Lithium Metasilicate (Li2SiO3)—Mild Condition Hydrothermal Synthesis, Characterization, and Optical Properties. Int. Nano Lett. 2015, 5, 15–20. [Google Scholar] [CrossRef]
- Zhang, T.; Li, M.; Ning, P.; Jia, Q.; Wang, Q.; Wang, J. K2CO3 Promoted Novel Li4SiO4-Based Sorbents from Sepiolite with High CO2 Capture Capacity under Different CO2 Partial Pressures. Chem. Eng. J. 2020, 380, 122515. [Google Scholar] [CrossRef]
- Seggiani, M.; Puccini, M.; Vitolo, S. Alkali Promoted Lithium Orthosilicate for CO2 Capture at High Temperature and Low Concentration. Int. J. Greenh. Gas Control 2013, 17, 25–31. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, C.; Zhang, S.; Wu, Y. Steam Methane Reforming Reaction Enhanced by a Novel K2CO3-Doped Li4SiO4 Sorbent: Investigations on the Sorbent and Catalyst Coupling Behaviors and Sorbent Regeneration Strategy. Int. J. Hydrogen Energy 2016, 41, 4831–4842. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, K.; Yin, Z.; Zhao, P.; Su, Z.; Sun, J. Molten K2CO3-Promoted High-Performance Li4SiO4 Sorbents at Low CO2 Concentrations. Thermochim. Acta 2017, 655, 284–291. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Xing, W.; Xue, Q.; Yan, Z.; Zhuo, S.; Qiao, S.Z. Critical Role of Small Micropores in High CO2 Uptake. Phys. Chem. Chem. Phys. 2013, 15, 2523. [Google Scholar] [CrossRef]
- Ghuge, N.S.; Debashis Mandal, M.C.; Jadeja, B. Chougule. Carbon dioxide absorption in packed bed of lithium orthosilicate pebbles. Sep. Sci. Technol. 2022, 58, 849–861. [Google Scholar] [CrossRef]
Composition | Designation | Specific Surface, m2/g |
---|---|---|
10 wt. % Li2CO3/SiO2 | 10Li/SiO2 | 40 |
10 wt. % Li2CO3 + 1 wt. % K2CO3/SiO2 | 11LiK/SiO2 | 120 |
10 wt. % Li2CO3/SiO2 + С | 10Li/SiO2 + С | 140 |
10 wt. % Li2CO3 + 1 wt. % K2CO3/SiO2 + С | 11LiK/SiO2 + С | 191 |
Composition of Sorbents | Preparation Methods | CO2 Sorption Temperature/°C | Sorption Time (min) | Sorption Capacity | Ref./This Work |
---|---|---|---|---|---|
Li2/Na2/K2CO3 | - | 580 | 120 | 0.179 gCO2/g sorbent | [44] |
NaF-doped Li4SiO4 | Sacrificial carbon template method | 575 | 30 | 0.30 gCO2/g sorbent | [46] |
Li4SiO4 | Solid state reaction process | 400 | - | 31% | [48] |
LS-LO10Na | Solid-state reaction method | 550 | - | 0.308 gCO2/g sorbent | [49] |
Li4SiO4 with 10 wt% Na2CO3 and 5 wt% K2CO3 | Impregnated suspension method | 550 | 30 | 0.296 gCO2/g sorbent | [50] |
11LiK/SiO2 | Mixing method | 500 | 30 | 36% | [This work] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yergaziyeva, G.; Mambetova, M.; Makayeva, N.; Diyarova, B.; Appazov, N. Lithium-Containing Sorbents Based on Rice Waste for High-Temperature Carbon Dioxide Capture. J. Compos. Sci. 2024, 8, 376. https://doi.org/10.3390/jcs8090376
Yergaziyeva G, Mambetova M, Makayeva N, Diyarova B, Appazov N. Lithium-Containing Sorbents Based on Rice Waste for High-Temperature Carbon Dioxide Capture. Journal of Composites Science. 2024; 8(9):376. https://doi.org/10.3390/jcs8090376
Chicago/Turabian StyleYergaziyeva, Gaukhar, Manshuk Mambetova, Nursaya Makayeva, Banu Diyarova, and Nurbol Appazov. 2024. "Lithium-Containing Sorbents Based on Rice Waste for High-Temperature Carbon Dioxide Capture" Journal of Composites Science 8, no. 9: 376. https://doi.org/10.3390/jcs8090376
APA StyleYergaziyeva, G., Mambetova, M., Makayeva, N., Diyarova, B., & Appazov, N. (2024). Lithium-Containing Sorbents Based on Rice Waste for High-Temperature Carbon Dioxide Capture. Journal of Composites Science, 8(9), 376. https://doi.org/10.3390/jcs8090376