Investigation on the Mechanical and Thermal Properties of Jute/Carbon Fiber Hybrid Composites with the Inclusion of Crab Shell Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Crab Shell Powder Hybrid Composites
2.3. Mechanical Testing
2.4. Thermal Testing
2.5. Characterization Testing
3. Results and Discussion
3.1. Tensile Behavior of the Crab Shell Powder Hybrid Composites
3.2. Flexural Behavior of the Crab Shell Powder Hybrid Composites
3.3. Impact Strength of the Crab Shell Powder Hybrid Composites
3.4. Hardness of the Crab Shell Powder Hybrid Composites
3.5. Tensile Fractured Surface Morphology
3.6. Differential Scanning Calorimetry (DSC) Analysis
3.7. Thermogravimetry Analysis (TGA)
3.8. Characterization of the Composites Using SEM with EDS Data
4. Conclusions
- The 5% crab shell powder hybrid composite showed enhancements in tensile, flexural and impact strength by 21%, 52%, and 50%, respectively, compared to other weight percentages.
- The inclusion of 5% crab shell powder enhanced the hardness of the hybrid composite by 33%.
- The heat flow capacity of the 5% crab shell powder hybrid composite was improved by 8.6%.
- The thermal stability of the hybrid composite was improved as the initial decomposition temperature was raised from 395.06 °C to 419.57 °C with the inclusion of 5% crab shell powder.
- SEM images of the crab shell powder hybrid composites showed good interfacial bonding between the fiber and matrix.
- The SEM with EDS data showed the presence of crab shell powder in the hybrid composites.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bahrami, A.; Soltani, N.; Pech-Canul, M.I.; Gutiérrez, C.A. Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Crit. Rev. Environ. Sci. Technol. 2016, 46, 143–208. [Google Scholar] [CrossRef]
- Das, O.; Babu, K.; Shanmugam, V.; Sykam, K.; Tebyetekerwa, M.; Neisiany, R.E.; Försth, M.; Sas, G.; Gonzalez-Libreros, J.; Capezza, A.J.; et al. Natural and industrial wastes for sustainable and renewable polymer composites. Renew. Sustain. Energy Rev. 2022, 158, 112054. [Google Scholar] [CrossRef]
- Oladele, I.O.; Isola, B.A. Development of bone particulate reinforced epoxy composite for biomedical application. J. Appl. Biotechnol. Bioeng. 2016, 1, 35–40. [Google Scholar]
- Ma, Y.; Wu, S.; Zhuang, J.; Tong, J.; Qi, H. Tribological and physio-mechanical characterization of cow dung fibers reinforced friction composites: An effective utilization of cow dung waste. Tribol. Int. 2019, 131, 200–211. [Google Scholar] [CrossRef]
- Bose, S.; Pandey, A.; Mondal, A.; Mondal, P. A novel approach in developing aluminum hybrid green metal matrix composite material using waste eggshells, cow dung ash, snail shell ash and boron carbide as reinforcements. In Advances in Industrial and Production Engineering; Springer: Singapore, 2019; pp. 551–562. [Google Scholar]
- Olabisi, A.I.; Adam, A.N.; Okechukwu, O.M. Development and assessment of composite brake pad using pulverized cocoa beans shells filler. Int. J. Mater. Sci. Appl. 2016, 5, 66–78. [Google Scholar]
- Olabisi, A.I.; Boye, T.E.; Eyere, E. Evaluation of pure aluminium inoculated with varying grain sizes of an agro-waste based inoculant. Adv. Sci. Technol. Eng. Syst. J. 2017, 2, 14–25. [Google Scholar] [CrossRef]
- Fono-Tamo, R.S.; Koya, O.A. Characterisation of Pulverised Palm Kernel Shell for Sustainable Waste Diversification. Int. J. Sci. Eng. Res. 2013, 4, 6–10. [Google Scholar]
- Aigbodion, S.; Ezema, I.C. Multifunctional A356 alloy/PKSAnp composites: Microstructure and mechanical properties. Def. Technol. 2019, 16, 731–736. [Google Scholar] [CrossRef]
- Oladele, I.O.; Okoro, A.M. The effect of palm kernel shell ash on the mechanical properties of as-cast aluminium alloy matrix composites. Leonardo J. Sci. 2016, 28, 15–30. [Google Scholar]
- Petrović, J.; Mladenović, S.; Marković, I.; Dimitrijević, S. Characterization of Hybrid Aluminum Composites Reinforced with Al2O3 Particles and Walnut-Shell Ash. Mater. Technol. 2022, 56, 115–122. [Google Scholar] [CrossRef]
- Tile, J.M.; Nyior, G.B.; Sidi, M.S. Mechanical properties of Al-Mg-Si/Groundnut shell particulate composite produced by stir casting method. Am. J. Eng. Res. 2018, 7, 247–252. [Google Scholar]
- Kumar, S.; Dwivedi, S.; Dwivedi, V.K. Synthesis and characterization of ball-milled eggshell and Al2O3 reinforced hybrid green composite material. J. Met. Mater. Miner. 2020, 30, 67–75. [Google Scholar] [CrossRef]
- Dwivedi, S.P.; Saxena, A.; Sharma, S.; Srivastava, A.K.; Maurya, N.K. Influence of SAC and eggshell addition in the physical, mechanical and thermal behaviour of Cr reinforced aluminium based composite. Int. J. Cast Met. Res. 2021, 34, 43–55. [Google Scholar] [CrossRef]
- Sinkiewicz, I.; Śliwińska, A.; Staroszczyk, H.; Kołodziejska, I. Alternative methods of preparation of soluble keratin from chicken feathers. Waste Biomass Valoriz. 2017, 8, 1043–1048. [Google Scholar] [CrossRef]
- Govindharaj, M.; Roopavath, U.K.; Rath, S.N. Valorization of discarded Marine Eel fish skin for collagen extraction as a 3D printable blue biomaterial for tissue engineering. J. Clean. Prod. 2019, 230, 412–419. [Google Scholar] [CrossRef]
- Eddya, M.; Tbib, B.; Khalil, E.H. A comparison of chitosan properties after extraction from shrimp shells by diluted and concentrated acids. Heliyon 2020, 6, e03486. [Google Scholar] [CrossRef] [PubMed]
- Boughriba, S.; Souissi, N.; Jridi, M.; Li, S.; Nasri, M. Thermal, mechanical and microstructural characterization and antioxidant potential of Rhinobatoscemiculusgelatin films supplemented by titanium dioxide doped silver nanoparticles. Food Hydrocoll. 2020, 103, 105695. [Google Scholar] [CrossRef]
- Arulvel, S.; Elayaperumal, A.; Jagatheeshwaran, M.S. Discussion on the feasibility of using proteinized/deproteinized crab shell particles for coating applications: Synthesis and characterization. J. Environ. Chem. Eng. 2016, 4, 3891–3899. [Google Scholar]
- Ahmed, J.; Mehrajfatema, M.; Arfat, Y.A.; Thai, T.L.A. Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocoll. 2017, 71, 141–148. [Google Scholar] [CrossRef]
- Subaer Kusumawati, Y.; Akhlus, S.; Akifah, N.; Fansuri, H. Thermo-Mechanical Properties of An Anti-Bacteria Coating Material Based on A Hybrid Composite Geopolymer-Chitosan. Ceram. Silikáty 2019, 63, 223–231. [Google Scholar] [CrossRef]
- Singaravelu, D.L.; Ragh, M.R.; Vijay, R.; Manoharan, S.; Kchaou, M. Development and Performance Evaluation of Eco-Friendly Crab Shell Powder Based Brake Pads for Automotive Applications. Int. J. Automot. Mech. Eng. 2019, 16, 6502–6523. [Google Scholar] [CrossRef]
- IS 2742-4; Automotive vehicles—Brake linings, Part 4: Co-efficient of friction—Method of test. Bureau of Indian Standards: New Delhi, India, 1994.
- Gadgey, K.K.; Bahekar, A. Investigation of Mechanical Properties of Crab Shell: A Review. Int. J. Latest Trends Eng. Technol. 2019, 8, 268–281. [Google Scholar]
- Kumaran, P.; Mohanamurugan, S.; Madhu, S.; Vijay, R.; Singaravelu, D.L.; Vinod, A.; Sanjay, M.R.; Siengchin, S. Investigation on thermo-mechanical characteristics of treated/untreated Portunus sanguinolentus shell powder-based jute fabrics reinforced epoxy composites. J. Ind. Text. 2020, 50, 427–459. [Google Scholar] [CrossRef]
- Soundhar, A.; Jayakrishna, K.; Sultan, M.; Shah, M.; Safri, S.N.A. Investigations on fatigue analysis and biomimetic mineralization of glass fiber/sisal fiber/chitosan reinforced hybrid polymer sandwich composites. J. Mater. Res. Technol. 2021, 10, 512–525. [Google Scholar]
- Ismail, R.; Cionita, T.; Shing, W.L.; Fitriyana, D.F.; Siregar, J.P.; Bayuseno, A.P.; Nugraha, F.W.; Muhamadin, R.C.; Junid, R.; Endot, N.A. Synthesis and Characterization of Calcium Carbonate Obtained from Green Mussel and Crab Shells as a Biomaterials Candidate. Materials 2022, 15, 5712. [Google Scholar] [CrossRef] [PubMed]
- Arockiam, A.J.; Rajesh, S.; Karthikeyan, S.; Thiagamani, S.M.K.; Padmanabhan, R.G.; Hashem, M.; Fouad, H.; Ansari, A. Mechanical and thermal characterization of additive manufactured fish scale powder reinforced PLA biocomposites. Mater. Res. Express 2023, 10, 075504. [Google Scholar]
- Cheng, P.; Peng, Y.; Li, S.; Rao, Y.; Duigou, A.L.; Wang, K.; Ahzi, S. 3D printed continuous fiber reinforced composite lightweight structures: A review and outlook. Compos. Part B 2023, 250, 110450. [Google Scholar] [CrossRef]
- Pranavi, U.; Reddy, P.V.; Venukumar, S.; Cheepu, M. Evaluation of mechanical and wear properties of Al 5059/B4C/Al2O3 hybrid metal matrix composites. J. Compos. Sci. 2022, 6, 86. [Google Scholar] [CrossRef]
Property | Jute Fiber | Carbon Fiber |
---|---|---|
Strength | 380 g/m2 | 300 g/m2 |
Thickness | 0.6 mm | 0.4 mm |
Density | 1.5 g/cm3 | 1.8 g/cm3 |
Designation | Composite Composition |
---|---|
Pure epoxy | 100% Epoxy |
1% | 1% Crab shell powder + 99% Epoxy |
3% | 3% Crab shell powder + 97% Epoxy |
5% | 5% Crab shell powder + 95% Epoxy |
7% | 7% Crab shell powder + 93% Epoxy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocharla, R.P.B.; Bandlamudi, R.K.; Mirza, A.A.; Kolli, M.; Shanmugam, R.; Cheepu, M. Investigation on the Mechanical and Thermal Properties of Jute/Carbon Fiber Hybrid Composites with the Inclusion of Crab Shell Powder. J. Compos. Sci. 2024, 8, 296. https://doi.org/10.3390/jcs8080296
Kocharla RPB, Bandlamudi RK, Mirza AA, Kolli M, Shanmugam R, Cheepu M. Investigation on the Mechanical and Thermal Properties of Jute/Carbon Fiber Hybrid Composites with the Inclusion of Crab Shell Powder. Journal of Composites Science. 2024; 8(8):296. https://doi.org/10.3390/jcs8080296
Chicago/Turabian StyleKocharla, Ravi Prakash Babu, Raghu Kumar Bandlamudi, Abdul Ahad Mirza, Murahari Kolli, Ragavanantham Shanmugam, and Muralimohan Cheepu. 2024. "Investigation on the Mechanical and Thermal Properties of Jute/Carbon Fiber Hybrid Composites with the Inclusion of Crab Shell Powder" Journal of Composites Science 8, no. 8: 296. https://doi.org/10.3390/jcs8080296
APA StyleKocharla, R. P. B., Bandlamudi, R. K., Mirza, A. A., Kolli, M., Shanmugam, R., & Cheepu, M. (2024). Investigation on the Mechanical and Thermal Properties of Jute/Carbon Fiber Hybrid Composites with the Inclusion of Crab Shell Powder. Journal of Composites Science, 8(8), 296. https://doi.org/10.3390/jcs8080296