Ab Initio Modelling of g-ZnO Deposition on the Si (111) Surface
Abstract
1. Introduction
2. Models and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, K.M.; Benitto, J.J.; Vijaya, J.J.; Bououdina, M. Recent Advances in ZnO-Based Nanostructures for the Photocatalytic Degradation of Hazardous, Non-Biodegradable Medicines. Crystals 2023, 13, 329. [Google Scholar] [CrossRef]
- Sheikhi, S.; Aliannezhadi, M.; Tehrani, F.S. The Effect of PEGylation on Optical and Structural Properties of ZnO Nanostructures for Photocatalyst and Photodynamic Applications. Mater. Today Commun. 2023, 34, 105103. [Google Scholar] [CrossRef]
- Alnaim, N.; Kumar, S.; Alshoaibi, A. Structural, Morphological, Electronic Structural, Optical, and Magnetic Properties of ZnO Nanostructures. Materials 2022, 15, 8889. [Google Scholar] [CrossRef] [PubMed]
- Morandi, S.; Fioravanti, A.; Cerrato, G.; Lettieri, S.; Sacerdoti, M.; Carotta, M.C. Facile Synthesis of ZnO Nano-Structures: Morphology Influence on Electronic Properties. Sens. Actuators B Chem. 2017, 249, 581–589. [Google Scholar] [CrossRef]
- Ayoub, I.; Kumar, V.; Abolhassani, R.; Sehgal, R.; Sharma, V.; Sehgal, R.; Swart, H.C.; Mishra, Y.K. Advances in ZnO: Manipulation of Defects for Enhancing Their Technological Potentials. Nanotechnol. Rev. 2022, 11, 575–619. [Google Scholar] [CrossRef]
- Bhandari, K.P.; Sapkota, D.R.; Jamarkattel, M.K.; Stillion, Q.; Collins, R.W. Zinc Oxide Nanoparticles—Solution-Based Synthesis and Characterizations. Nanomaterials 2023, 13, 1795. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Casas, B.; Galdámez-Martínez, A.; Gutiérrez-Flores, J.; Baca Ibañez, A.; Kumar Panda, P.; Santana, G.; de la Vega, H.A.; Suar, M.; Gutiérrez Rodelo, C.; Kaushik, A.; et al. Bio-Acceptable 0D and 1D ZnO Nanostructures for Cancer Diagnostics and Treatment. Mater. Today 2021, 50, 533–569. [Google Scholar] [CrossRef]
- Trivedi, S.; Nemade, H.B. ZnO Nanorod-based Love Wave Delay Line for High Mass Sensitivity: A Finite Element Analysis. IET Sci. Meas. Technol. 2019, 13, 1245–1253. [Google Scholar] [CrossRef]
- Ebert, M.; Ghazali, N.A.B.; Kiang, K.S.; Zeimpekis, I.; Maerz, B.; de Planque, M.R.R.; Chong, H.M.H. Multichannel ZnO Nanowire Field Effect Transistors by Lift-off Process. Nanotechnology 2018, 29, 415302. [Google Scholar] [CrossRef] [PubMed]
- Bardakas, A.; Kaidatzis, A.; Tsamis, C. A Review of Magnetoelectric Composites Based on ZnO Nanostructures. Appl. Sci. 2023, 13, 8378. [Google Scholar] [CrossRef]
- Schlur, L.; Calado, J.R.; Spitzer, D. Synthesis of Zinc Oxide Nanorods or Nanotubes on One Side of a Microcantilever. R. Soc. Open Sci. 2018, 5, 180510. [Google Scholar] [CrossRef] [PubMed]
- Del Gobbo, S.; Poolwong, J.; D’Elia, V.; Ogawa, M. Simultaneous Controlled Seeded-Growth and Doping of ZnO Nanorods with Aluminum and Cerium: Feasibility Assessment and Effect on Photocatalytic Activity. Cryst. Growth Des. 2020, 20, 5508–5525. [Google Scholar] [CrossRef]
- Rezaie, M.N.; Mohammadnejad, S.; Ahadzadeh, S. The Impact of ZnO Nanotube on the Performance of Hybrid Inorganic/Organic Light-Emitting Diode as a Single-Mode Ring-Core UV Waveguide. Surf. Interfaces 2022, 28, 101666. [Google Scholar] [CrossRef]
- Real, S.; Espíndola, O.; Zelaya, M.P.; Marin, O.; Comedi, D.; Tirado, M. Single-Step Zno Nanorod Bunches Formation on p-Type Si-Conductive Substrates by Electrophoretic Deposition. Surf. Interfaces 2021, 23, 100930. [Google Scholar] [CrossRef]
- Alshgari, R.A.; Ujjan, Z.A.; Shah, A.A.; Bhatti, M.A.; Tahira, A.; Shaikh, N.M.; Kumar, S.; Ibupoto, M.H.; Elhawary, A.; Nafady, A.; et al. ZnO Nanostructures Doped with Various Chloride Ion Concentrations for Efficient Photocatalytic Degradation of Methylene Blue in Alkaline and Acidic Media. Molecules 2022, 27, 8726. [Google Scholar] [CrossRef] [PubMed]
- Lahmer, M.A. Effect of Doping with Sulfur Atoms on the Electronic and Photocatalytic Properties of the ZnO(100) Surface: A DFT+U Study. Comput. Condens. Matter 2022, 31, e00654. [Google Scholar] [CrossRef]
- Vaddadi, V.S.C.S.; Parne, S.R.; Pothukanuri, N.; Sriram, S.R.; Yelsani, V. Investigattions on ZnO Thin Films Modified with Urea: An Approach as Ammonia Sensor. ACS Omega 2023, 8, 17719–17730. [Google Scholar] [CrossRef] [PubMed]
- Zeljković, S.; Balaban, M.; Gajić, D.; Vračević, S.; Ivas, T.; Vranković, D.; Jelić, D. Mechanochemically Induced Synthesis of N-Ion Doped ZnO: Solar Photocatalytic Degradation of Methylene Blue. Green Chem. Lett. Rev. 2022, 15, 869–880. [Google Scholar] [CrossRef]
- Stoltz, K.R.; Echeverria, E.; Kaphle, A.; Austin, A.J.; Harikumar, P.; Yost, A.J.; McIlroy, D.N.; Borunda, M.F. Optimization of the U Parameter in CoO Groupings in ZnO(100). Comput. Mater. Sci. 2021, 198, 110700. [Google Scholar] [CrossRef]
- Garratt, E.; Prete, P.; Lovergine, N.; Nikoobakht, B. Observation and Impact of a “Surface Skin Effect” on Lateral Growth of Nanocrystals. J. Phys. Chem. C 2017, 121, 14845–14853. [Google Scholar] [CrossRef]
- Ahmad, S.; Usman, M.; Hashim, M.; Ali, A.; Shah, R.; Rahman, N.U. Investigation of Optical and Dielectric Properties of Nickel-Doped Zinc Oxide Nanostructures Prepared via Coprecipitation Method. Nanomater. Nanotechnol. 2024, 2024, 8330886. [Google Scholar] [CrossRef]
- McPeak, K.M.; Baxter, J.B. ZnO Nanowires Grown by Chemical Bath Deposition in a Continuous Flow Microreactor. Cryst. Growth Des. 2009, 9, 4538–4545. [Google Scholar] [CrossRef]
- Wang, L.-H.; Fu, S.-L.; Wang, C.-A.; Gan, G.-R.; Xie, Y.-P.; Gao, X.-L. The Electromagnetic Properties of ZnO Quantum Dot with Different Mn-Doping Sites. J. Supercond. Nov. Magn. 2023, 36, 637–646. [Google Scholar] [CrossRef]
- Luo, J.T.; Zhu, X.Y.; Chen, G.; Zeng, F.; Pan, F. The Electrical, Optical and Magnetic Properties of Si-Doped ZnO Films. Appl. Surf. Sci. 2012, 258, 2177–2181. [Google Scholar] [CrossRef]
- Said, K.; Baghdad, R. Carbon and Silicon Co-Doping Effect on Microstructural and Optoelectronic Properties of ZnO: An Ab Initio Study. Optik 2022, 260, 169138. [Google Scholar] [CrossRef]
- Mohammadigharehbagh, R.; Özen, S.; Yudar, H.H.; Pat, S.; Korkmaz, Ş. The Electrical, Elemental, Optical, and Surface Properties of Si-Doped ZnO Thin Films Prepared by Thermionic Vacuum Arc. Mater. Res. Express 2017, 4, 096404. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, S.; Xu, W.; Yuan, F. First-Principles Study of Si Atoms Adsorbed on ZnO (0001) Surface and the Effect on Electronic and Optical Properties. Surf. Sci. 2014, 625, 30–36. [Google Scholar] [CrossRef]
- Xu, H.-Y.; Zhang, S.-Q.; Wang, Y.-F.; Xu, Y.; Dong, L.-M.; Komarneni, S. New Insights into the Photocatalytic Mechanism of Pristine ZnO Nanocrystals: From Experiments to DFT Calculations. Appl. Surf. Sci. 2023, 614, 156225. [Google Scholar] [CrossRef]
- Rojas-Chávez, H.; Miralrio, A.; Hernández-Rodríguez, Y.M.; Cruz-Martínez, H.; Pérez-Pérez, R.; Cigarroa-Mayorga, O.E. Needle- and Cross-Linked ZnO Microstructures and Their Photocatalytic Activity Using Experimental and DFT Approach. Mater. Lett. 2021, 291, 129474. [Google Scholar] [CrossRef]
- van Mourik, T.; Bühl, M.; Gaigeot, M.-P. Density Functional Theory across Chemistry, Physics and Biology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120488. [Google Scholar] [CrossRef] [PubMed]
- Sibanda, D.; Oyinbo, S.T.; Jen, T.-C. A Review of Atomic Layer Deposition Modelling and Simulation Methodologies: Density Functional Theory and Molecular Dynamics. Nanotechnol. Rev. 2022, 11, 1332–1363. [Google Scholar] [CrossRef]
- Brahim, N.; Thotagamuge, R.; Kooh, M.; Lim, C.; Syaahiran, M.; Usman, A.; Shahri, N.; Chou Chau, Y.-F.; Chou Chao, C.-T.; Chiang, H.-P.; et al. Enhanced CO Gas Sensing with DFT Optimized PbS Loading on ZnO and CrZnO Nanocomposites. Sustainability 2022, 14, 13978. [Google Scholar] [CrossRef]
- Claeyssens, F.; Freeman, C.L.; Allan, N.L.; Sun, Y.; Ashfold, M.N.R.; Harding, J.H. Growth of ZnO Thin Films—Experiment and Theory. J. Mater. Chem. 2005, 15, 139–148. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Liechtenstein, A.I.; Anisimov, V.I.; Zaanen, J. Density-Functional Theory and Strong Interactions: Orbital Ordering in Mott-Hubbard Insulators. Phys. Rev. B 1995, 52, R5467–R5470. [Google Scholar] [CrossRef]
- Ramanarayanan, P.; Sabirianov, R.F.; Cho, K. Point Defect Energetics in Silicon Using the LDA+ U Method. arXiv 2003, arXiv:cond-mat/0310606. [Google Scholar]
- Lee, Y.-S.; Peng, Y.-C.; Lu, J.-H.; Zhu, Y.-R.; Wu, H.-C. Electronic and Optical Properties of Ga-Doped ZnO. Thin Solid Films 2014, 570, 464–470. [Google Scholar] [CrossRef]
- Ma, X.; Wu, Y.; Lv, Y.; Zhu, Y. Correlation Effects on Lattice Relaxation and Electronic Structure of ZnO within the GGA+U Formalism. J. Phys. Chem. C 2013, 117, 26029–26039. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, H.; Cheng, X. Electronic and Magnetic Properties of All 3d Transition-Metal-Doped ZnO Monolayers. Int. J. Quantum Chem. 2013, 113, 2243–2250. [Google Scholar] [CrossRef]
- Tau, O.; Lovergine, N.; Prete, P. Adsorption and Decomposition Steps on Cu(111) of Liquid Aromatic Hydrocarbon Precursors for Low-Temperature CVD of Graphene: A DFT Study. Carbon 2023, 206, 142–149. [Google Scholar] [CrossRef]
- Lu, G.-H.; Huang, M.; Cuma, M.; Liu, F. Relative Stability of Si Surfaces: A First-Principles Study. Surf. Sci. 2005, 588, 61–70. [Google Scholar] [CrossRef]
Potentials | Hubbard Correction | |||||
---|---|---|---|---|---|---|
Element | Free Electrons | Potential Cut-Off Energy, eV | Orbital | U, eV | J, eV | Source |
Si | 3s23p2 | 245.345 | p | 0 | 4 | [38] |
Zn | 3d104p2 | 276.723 | d | 10 | 0 | [39,40] |
O | 2s22p4 | 400 | p | 7 | 0 | [39,40] |
Si/g-ZnO | ZnO | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|---|
sphalerite | sphalerite | 0.12 | Figure 4a | 0.56 | Figure 4b | 0.53 | Figure 4c |
sphalerite | wurtzite | 0.49 | Figure 4d | −0.07 | Figure 4e | ||
wurtzite | wurtzite | 0.04 | Figure 4f | 0.44 | Figure 4g | −0.06 | Figure 4h |
wurtzite | sphalerite | 0.57 | Figure 4i | 0.52 | Figure 4j |
Number of ZnO Layers | ||||
---|---|---|---|---|
Si/ZnO Interface | ZnO Stacking | 1 | 2 | 3 |
sphalerite | wurtzite | vacuum | ||
0.29 | 0.16 | 0.15 | ||
1.71 | 1.86 | 1.89 | ||
Si | 0.62 | 0.49 | ||
1.69 | 1.81 | |||
Si | 0.61 | |||
1.69 | ||||
Si | ||||
sphalerite | vacuum | |||
0.07 | 0.04 | |||
1.86 | 1.91 | |||
0.38 | 0.10 | |||
1.72 | 1.85 | |||
Si | 0.05 | |||
1.73 | ||||
Si | ||||
wurtzite | wurtzite | vacuum | ||
0.24 | 0.04 | 0.03 | ||
1.71 | 1.85 | 1.85 | ||
Si | 0.24 | 0.11 | ||
1.71 | 1.83 | |||
Si | 0.10 | |||
1.73 | ||||
Si | ||||
sphalerite | vacuum | |||
0.17 | 0.12 | |||
1.86 | 1.88 | |||
0.49 | 0.46 | |||
1.68 | 1.81 | |||
Si | 0.49 | |||
1.68 | ||||
Si |
Si/ZnO Sphalerite | Number of ZnO Layers | ZnO Stacking | |
---|---|---|---|
Wurtzite | Sphalerite | ||
sphalerite | 1 | 0.12 | |
2 | 0.61 | ||
3 | 0.54 | ||
2 | 0.68 | ||
3 | 1.21 | ||
wurtzite | 1 | 0.04 | |
2 | 0.48 | ||
3 | 0.42 | ||
2 | 0.62 | ||
3 | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzhanova, A.; Mastrikov, Y.; Yerezhep, D. Ab Initio Modelling of g-ZnO Deposition on the Si (111) Surface. J. Compos. Sci. 2024, 8, 281. https://doi.org/10.3390/jcs8070281
Alzhanova A, Mastrikov Y, Yerezhep D. Ab Initio Modelling of g-ZnO Deposition on the Si (111) Surface. Journal of Composites Science. 2024; 8(7):281. https://doi.org/10.3390/jcs8070281
Chicago/Turabian StyleAlzhanova, Aliya, Yuri Mastrikov, and Darkhan Yerezhep. 2024. "Ab Initio Modelling of g-ZnO Deposition on the Si (111) Surface" Journal of Composites Science 8, no. 7: 281. https://doi.org/10.3390/jcs8070281
APA StyleAlzhanova, A., Mastrikov, Y., & Yerezhep, D. (2024). Ab Initio Modelling of g-ZnO Deposition on the Si (111) Surface. Journal of Composites Science, 8(7), 281. https://doi.org/10.3390/jcs8070281