Removal of Levofloxacin by Activation of Peroxomonosulfate Using T-POMs@ZIF-67
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization
2.2. Preparation of Catalysts
2.2.1. Preparation of POMs@ZIF-67
2.2.2. Preparation of T-POMs@ZIF-67
2.2.3. Synthesis of CoW Nanomaterials
2.3. Experimental Methods
2.3.1. LEV Degradation Test
2.3.2. Recyclability Test
3. Results and Discussion
3.1. Characterization of T-PW@ZIF-67
3.1.1. X-ray Diffraction Analysis
3.1.2. Scanning Electron Microscope Analysis
3.1.3. X-ray Photoelectron Spectroscopy Analysis
3.2. PMS Activation by T-POMs@ZIF-67 for LEV Degradation
3.2.1. Activity Comparison of Different T-POMs @ZIF-67
3.2.2. Effect of Doping Amount of Phosphotungstic Acid and Pyrolysis Temperature on the Performance of T-PW@ZIF-67
3.2.3. Effect of PMS Dosage on LEV Degradation Catalyzed by T-PW@ZIF-67
3.2.4. Effect of Initial LEV Concentration on the Performance of T-PW@ZIF-67
3.2.5. Effect of pH on the Catalytic Performance of T-PW@ZIF-67
3.2.6. Effect of Co-Existing Ions on the Catalytic Performance of T-PW@ZIF-67
3.2.7. Effect of Natural Organic Matter in Water on the Catalytic Performance of T-PW@ZIF-67
3.2.8. Stability Analysis of T-PW@ZIF-67
3.3. Discussion of Catalytic Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Acharya, R.; Lenka, A.; Parida, K. Magnetite modified amino group based polymer nanocomposites towards efficient adsorptive detoxification of aqueous Cr (VI): A review. J. Mol. Liq. 2021, 337, 116487. [Google Scholar] [CrossRef]
- Mansingh, S.; Acharya, R.; Martha, S.; Parida, K.M. Pyrochlore Ce2Zr2O7 decorated over rGO: A photocatalyst that proves to be efficient towards the reduction of 4-nitrophenol and degradation of ciprofloxacin under visible light. Phys. Chem. Chem. Phys. 2018, 20, 9872–9885. [Google Scholar] [CrossRef]
- Chi, Y.; Yuan, Q.; Li, Y.; Zhao, L.; Li, N.; Li, X.; Yan, W. Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. J. Hazard. Mater. 2013, 262, 404–411. [Google Scholar] [CrossRef]
- Taghavi, R.; Rostamnia, S.; Farajzadeh, M.; Karimi-Maleh, H.; Wang, J.; Kim, D.; Jang, H.W.; Luque, R.; Varma, R.S.; Shokouhimehr, M. Magnetite metal-organic frameworks: Applications in environmental remediation of heavy metals, organic contaminants, and other pollutants. Inorg. Chem. 2022, 61, 15747–15783. [Google Scholar] [CrossRef]
- Ma, Z.; Fang, L.; Liu, L.; Hu, B.; Wang, S.; Yu, S.; Wang, X. Efficient decontamination of organic pollutants from wastewater by covalent organic framework-based materials. Sci. Total Environ. 2023, 901, 166453. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Ghanam, A.M.; Mohamed, R.H.A.; Saad, S.R. Enhanced adsorption of Levofloxacin and Ceftriaxone antibiotics from water by assembled composite of nanotitanium oxide/chitosan/nano-bentonite. Mater. Sci. Eng. C 2020, 108, 110199. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, H.; Zhang, X.; Li, B.; Guo, R.; Cheng, Q.; Cheng, X. Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate. Chem. Eng. J. 2019, 360, 848–860. [Google Scholar] [CrossRef]
- Jacobs, R.; Patki, P.; Lynch, M.J.; Chen, S.; Morgan, D.; Field, K.G. Materials swelling revealed through automated semantic segmentation of cavities in electron microscopy images. Sci. Rep. 2023, 13, 5178. [Google Scholar] [CrossRef] [PubMed]
- Mehtab, T.; Yasin, G.; Arif, M.; Shakeel, M.; Korai, R.M.; Nadeem, M.; Muhammad, N.; Lu, X. Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. J. Energy Storage 2019, 21, 632–646. [Google Scholar] [CrossRef]
- Han, X.; Chen, W.M.; Han, X.; Tan, Y.Z.; Sun, D. Nitrogen-rich MOF derived porous Co3O4/N-C composites with superior performance in lithium-ion batteries. J. Mater. Chem. A 2016, 4, 13040–13045. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Zhao, W.; Zou, M.; Chen, Y.; Yang, L.; Xu, L.; Wu, H.; Cao, A. MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes. ACS Appl. Mater. Inter. 2017, 9, 37813–37822. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, X.; Liu, D.; Tang, H.; Luo, G.; Tu, K.; Xie, Z.; Lei, J.; Li, J.; Li, X.; et al. Synthesis of MOF-74-derived carbon/ZnCo2O4 nanoparticles@CNT-nest hybrid material and its application in lithium-ion batteries. J. Appl. Electrochem. 2019, 49, 1103–1112. [Google Scholar] [CrossRef]
- Bahiraee, Z.; Fathi, S.; Safari, M. Facile synthesis of Fe3O4@TMU-12 (Co-based magnetic MOF) for extraction of diazinon and chlorpyrifos from the environmental water samples. Environ. Prog. Sustain. 2023, 42, 1–9. [Google Scholar] [CrossRef]
- Gan, Q.; Zhao, K.; Liu, S.; He, Z. MOF-derived carbon coating on self-supported ZnCo2O4-ZnO nanorod arrays as high-performance anode for lithium-ion batteries. J. Mater. Sci. 2017, 52, 7768–7780. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, J.; Liu, S.; Ren, J.; Lou, Y. MOF-derived bimetal oxides NiO/NiCo2O4 with different morphologies as anodes for high-performance lithium-ion battery. Ionics 2019, 25, 5787–5797. [Google Scholar] [CrossRef]
- Cai, D.; Zhan, H.; Wang, T. MOF-derived porous ZnO/ZnFe2O4 hybrid nanostructures as advanced anode materials for lithiumion batteries. Mater. Lett. 2017, 197, 241–244. [Google Scholar] [CrossRef]
- Gao, X.; Du, Y.; Zhou, J.; Li, S.; Qi, P.; Han, Y.; Feng, X.; Jin, X.; Wang, B. Large-scale production of MOF-derived coatings for interlayers in high-performance Li-S batteries. ACS Appl. Energy Mater. 2018, 1, 6986–6991. [Google Scholar] [CrossRef]
- Li, S.; Yang, H.; Xu, R.; Jiang, Y.; Gong, Y.; Gu, L.; Yu, Y. Selenium embedded in MOF-derived N-doped microporous carbon polyhedrons as a high performance cathode for sodium-selenium batteries. Mater. Chem. Front. 2018, 2, 1574–1582. [Google Scholar] [CrossRef]
- Koo, W.T.; Jang, H.Y.; Kim, C.; Jung, J.W.; Cheong, J.Y.; Kim, I.D. MOF derived ZnCo2O4 porous hollow spheres functionalized with Ag nanoparticles for a long-ycle and high-capacity lithium ion battery anode. J. Mater. Chem. A 2017, 5, 22717–22725. [Google Scholar] [CrossRef]
- Suzuki, K.; Mizuno, N.; Yamaguchi, K. Polyoxometalate photocatalysis for liquid-phase selective organic functional group transformations. ACS Catal. 2018, 8, 10809–10825. [Google Scholar] [CrossRef]
- Gu, J.; Chen, W.; Shan, G.G.; Li, G.; Sun, C.; Wang, X.L.; Su, Z. The roles of polyoxometalates in photocatalytic reduction of carbon dioxide. Mater. Today Energy 2021, 21, 100760. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Fu, Z. Polyoxometalate cluster sensitized with copper-viologen framework for efficient degradation of organic dye in ultraviolet, visible, and near-infrared ligh. ACS Appl. Mater. Inter. 2018, 10, 35671–35675. [Google Scholar] [CrossRef]
- Zhao, X.; Hang, S.; Yan, J.; Li, L.; Wu, G.; Shi, W.; Yang, G.; Guan, N.; Cheng, P. Polyoxometalate-based metal-organic frameworks as visible-light-induced photocatalysts. Inorg. Chem. 2018, 57, 5030–5037. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Abazari, R.; Chen, J.; Hussain, C.M.; Zhou, Y.; Kirillov, A.M. Encapsulation of H4SiW12O40 into an Amide-Functionalized MOF: A Highly Efficient Nanocomposite Catalyst for Oxidative Desulfurization of Diesel Fuel. ACS Appl. Mater. Inter. 2023, 15, 52581–52592. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xie, X.; Li, S.; Zhang, W.; Zhang, X.; Chai, H.; Huang, Y. The POM@ MOF hybrid derived hierarchical hollow Mo/Co bimetal oxides nanocages for efficiently activating peroxymonosulfate to degrade levofloxacin. J. Hazard. Mater. 2021, 419, 126360. [Google Scholar]
- Mohamed, A.M.; Abbas, W.A.; Khedr, G.E.; Abass, W.; Allam, N.K. Computational and experimental elucidation of the boosted stability and antibacterial activity of ZIF-67 upon optimized encapsulation with polyoxometalates. Sci. Rep. 2022, 12, 15989. [Google Scholar] [CrossRef] [PubMed]
- Ammasi, A.; Munusamy, A.P.; Shkir, M.; Maiz, F.; Vellingiri, B.; Minnam Reddy, V.R.; Kim, W.K. Synthesis and electrochemical performance of CoWO4 and CoWO4/MWCNT nanocomposites for highly efficient supercapacitor applications. Diam. Relat. Mater. 2023, 139, 110352. [Google Scholar] [CrossRef]
- Zeng, T.; Zhang, X.; Wang, S.; Niu, H.; Cai, Y. Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants. Environ. Sci. Technol. 2015, 49, 2350–2357. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Song, W.; Wu, H.; Liu, Z.; Teng, Y.; Sun, Y.; Xu, Y.; Zheng, H. Degradation of norfloxacin with peroxymonosulfate activated by nanoconfinement Co3O4@ CNT nanocomposite. Chem. Eng. J. 2020, 398, 125498. [Google Scholar] [CrossRef]
- Ali, J.; Wenli, L.; Shahzad, A.; Ifthikar, J.; Aregay, G.G.; Shahib, I.I.; Elkhlifi, Z.; Chen, Z. Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency. Water Res. 2020, 181, 115862. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wan, Y.; Li, Y.; Yao, G.; Lai, B. Surface Fe (III)/Fe (II) cycle promoted the degradation of atrazine by peroxymonosulfate activation in the presence of hydroxylamine. Appl. Catal. B-Environ. 2019, 256, 117782. [Google Scholar] [CrossRef]
- Li, W.; Li, S.; Tang, Y.; Yang, X.; Zhang, W.; Zhang, X.; Chai, H.; Huang, Y. Highly efficient activation of peroxymonosulfate by cobalt sulfide hollow nanospheres for fast ciprofloxacin degradation. J. Hazard. Mater. 2020, 389, 121856. [Google Scholar] [CrossRef]
- Xue, Y.; Pham, N.N.; Nam, G.; Choi, J.; Ahn, Y.Y.; Lee, H.; Jung, J.; Lee, S.G.; Lee, J. Persulfate activation by ZIF-67-derived cobalt/nitrogen-doped carbon composites: Kinetics and mechanisms dependent on persulfate precursor. Chem. Eng. J. 2021, 408, 127305. [Google Scholar] [CrossRef]
- Lv, S.W.; Liu, J.M.; Zhao, N.; Li, C.Y.; Yang, F.E.; Wang, Z.H.; Wang, S. MOF-derived CoFe2O4/Fe2O3 embedded in g-C3N4 as high-efficient Z-scheme photocatalysts for enhanced degradation of emerging organic pollutants in the presence of persulfate. Sep. Purif. Technol. 2020, 253, 117413. [Google Scholar] [CrossRef]
- Ji, Y.; Dong, C.; Kong, D.; Lu, J. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms. J. Hazard. Mater. 2015, 285, 491–500. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Kang, N.; Jiao, S.; Li, Y.; Zhang, X.; Liu, X. Removal of Levofloxacin by Activation of Peroxomonosulfate Using T-POMs@ZIF-67. J. Compos. Sci. 2024, 8, 13. https://doi.org/10.3390/jcs8010013
Zhang Y, Kang N, Jiao S, Li Y, Zhang X, Liu X. Removal of Levofloxacin by Activation of Peroxomonosulfate Using T-POMs@ZIF-67. Journal of Composites Science. 2024; 8(1):13. https://doi.org/10.3390/jcs8010013
Chicago/Turabian StyleZhang, Yihao, Ning Kang, Shipu Jiao, Yang Li, Xu Zhang, and Xianhua Liu. 2024. "Removal of Levofloxacin by Activation of Peroxomonosulfate Using T-POMs@ZIF-67" Journal of Composites Science 8, no. 1: 13. https://doi.org/10.3390/jcs8010013
APA StyleZhang, Y., Kang, N., Jiao, S., Li, Y., Zhang, X., & Liu, X. (2024). Removal of Levofloxacin by Activation of Peroxomonosulfate Using T-POMs@ZIF-67. Journal of Composites Science, 8(1), 13. https://doi.org/10.3390/jcs8010013