Moisture Content and Mechanical Properties of Bio-Waste Pellets for Fuel and/or Water Remediation Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Composite Materials
2.3. Density
2.4. Moisture Content and Uptake
2.5. SEM Imaging
2.6. Mechanical Tests
2.6.1. Hardness
2.6.2. Young’s Modulus
3. Results
3.1. SEM Imaging
3.2. Hardness
3.3. Modulus of Elasticity in Tension (Young’s Modulus)
3.4. Density
3.5. Moisture Uptake
3.6. Proposed Structure and Cohesion within the Material
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Wali, M.; Golroudbary, S.R.; Kraslawski, A. Circular Economy for Phosphorus Supply Chain and Its Impact on Social Sustainable Development Goals. Sci. Total Environ. 2021, 777, 146060. [Google Scholar] [CrossRef] [PubMed]
- Karunarathna, M.S.; Smith, R.C. Valorization of Lignin as a Sustainable Component of Structural Materials and Composites: Advances from 2011 to 2019. Sustainability 2020, 12, 734. [Google Scholar] [CrossRef] [Green Version]
- Barros, M.V.; Salvador, R.; de Francisco, A.C.; Piekarski, C.M. Mapping of Research Lines on Circular Economy Practices in Agriculture: From Waste to Energy. Renew. Sustain. Energy Rev. 2020, 131, 109958. [Google Scholar] [CrossRef]
- Hamad, H.N.; Idrus, S. Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers 2022, 14, 783. [Google Scholar] [CrossRef]
- Steiger, B.G.K.; Zhou, Z.; Anisimov, Y.A.; Evitts, R.W.; Wilson, L.D. Valorization of Agro-Waste Biomass as Composite Adsorbents for Sustainable Wastewater Treatment. Ind. Crops Prod. 2023, 191, 115913. [Google Scholar] [CrossRef]
- Ganesh, S.; Keerthiveettil Ramakrishnan, S.; Palani, V.; Sundaram, M.; Sankaranarayanan, N.; Ganesan, S.P. Investigation on the Mechanical Properties of Ramie/Kenaf Fibers under Various Parameters Using GRA and TOPSIS Methods. Polym. Compos. 2022, 43, 130–143. [Google Scholar] [CrossRef]
- Sumesh, K.; Saikrishnan, G.; Pandiyan, P.; Prabhu, L.; Gokulkumar, S.; Priya, A.; Spatenka, P.; Krishna, S. The Influence of Different Parameters in Tribological Characteristics of Pineapple/Sisal/TiO2 Filler Incorporation. J. Ind. Text. 2022, 51 (Suppl. S5), 8626S–8644S. [Google Scholar] [CrossRef]
- Agu, O.S.; Tabil, L.G.; Mupondwa, E.; Emadi, B. Torrefaction and Pelleting of Wheat and Barley Straw for Biofuel and Energy Applications. Front. Energy Res. 2021, 9, 699657. [Google Scholar] [CrossRef]
- Bergman, P.C.A.; Boersman, A.R.; Zwart, R.W.R.; Kiel, J.H.A. Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations. BIOCOAL; Energy research Centre of the Netherlands ECN: Petten, The Netherlands, 2005. [Google Scholar]
- van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. Biomass Upgrading by Torrefaction for the Production of Biofuels: A Review. Biomass Bioenergy 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Clark, J.H. Green Chemistry: Challenges and Opportunities. Green Chem. 1999, 1, 1–8. [Google Scholar] [CrossRef]
- Bezerril, L.M.; de Vasconcelos, C.L.; Dantas, T.N.C.; Pereira, M.R.; Fonseca, J.L.C. Rheology of Chitosan-Kaolin Dispersions. Colloids Surf. A Physicochem. Eng. Asp. 2006, 287, 24–28. [Google Scholar] [CrossRef]
- Unuabonah, E.I.; Adebowale, K.O.; Olu-Owolabi, B.I.; Yang, L.Z.; Kong, L.X. Adsorption of Pb (II) and Cd (II) from Aqueous Solutions onto Sodium Tetraborate-Modified Kaolinite Clay: Equilibrium and Thermodynamic Studies. Hydrometallurgy 2008, 93, 1–9. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Solgi, M.; Tabil, L.G.; Wilson, L.D. Modified Biopolymer Adsorbents for Column Treatment of Sulfate Species in Saline Aquifers. Materials 2020, 13, 2408. [Google Scholar] [CrossRef] [PubMed]
- Zettl, S.; Cree, D.; Soleimani, M.; Tabil, L.G. Mechanical Properties of Aquaculture Feed Pellets Using Plant-Based Proteins. Cogent Food Agric. 2019, 5, 1656917. [Google Scholar] [CrossRef]
- Liu, H.; Yang, F.; Zheng, Y.; Kang, J.; Qu, J.; Chen, J.P. Improvement of Metal Adsorption onto Chitosan/Sargassum Sp. Composite Sorbent by an Innovative Ion-Imprint Technology. Water Res. 2011, 45, 145–154. [Google Scholar] [CrossRef]
- Mohamed, M.H.; Peru, K.M.; Headley, J.V.; Wilson, L.D. Chitosan Biopolymers for Analysis of Organic Acids in Aquatic Environments of Treatment Wetlands. J. Geosci. Environ. 2017, 5, 214–225. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.H.; Udoetok, I.A.; Wilson, L.D. Animal Biopolymer-Plant Biomass Composites: Synergism and Improved Sorption Efficiency. J. Compos. Sci. 2020, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M.; Mohamed, M.H.; Udoetok, I.A.; Steiger, B.G.K.; Wilson, L.D. Sequestration of Sulfate Anions from Groundwater by Biopolymer-Metal Composite Materials. Polymers 2020, 12, 1502. [Google Scholar] [CrossRef]
- Kim, S. Blending of Waste Biomass for Cost-Effective Chitosan-Based Biosorbents for Removal of Reactive Dye From Aqueous Solution. Environ. Eng. Res. 2022, 27, 210457. [Google Scholar] [CrossRef]
- Mohamed, M.H.; Udoetok, I.A.; Solgi, M.; Steiger, B.G.K.; Zhou, Z.; Wilson, L.D. Design of Sustainable Biomaterial Composite Adsorbents for Point-of-Use Removal of Lead Ions From Water. Front. Water 2022, 4, 739492. [Google Scholar] [CrossRef]
- Thongsamer, T.; Vinitnantharat, S.; Pinisakul, A.; Werner, D. Chitosan Impregnation of Coconut Husk Biochar Pellets Improves their Nutrient Removal from Eutrophic Surface Water. Sustain. Environ. Res. 2022, 32, 39. [Google Scholar] [CrossRef]
- Campbell, W.A. Adaptive Torrefaction of Stem Biomass in a Horizontal Moving Bed with Normalized Direct Measurement of Quality Characteristics; University of Saskatchewan: Saskatoon, Canada, 2018. [Google Scholar]
- Emami Meybodi, Z.; Imani, M.; Atai, M. Kinetics of Dextran Crosslinking by Epichlorohydrin: A Rheometry and Equilibrium Swelling Study. Carbohydr. Polym. 2013, 92, 1792–1798. [Google Scholar] [CrossRef]
- Xue, Y.; Xue, J.; Li, J.; Wen, D.; Du, Y.; Ma, X. Study on the Preparation of Crosslinked Chitosan-Based Resin. In Proceedings of the 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, 12–14 August 2011; pp. 2912–2915. [Google Scholar] [CrossRef]
- Mahaninia, M.H.; Wilson, L.D. Cross-Linked Chitosan Beads for Phosphate Removal from Aqueous Solution. J. Appl. Polym. Sci. 2016, 133, 42949. [Google Scholar] [CrossRef]
- Richards, S.R. Physical Testing of Fuel Briquettes. Fuel Process. Technol. 1990, 25, 89–100. [Google Scholar] [CrossRef]
- Tilay, A.; Azargohar, R.; Drisdelle, M.; Dalai, A.; Kozinski, J. Canola Meal Moisture-Resistant Fuel Pellets: Study on the Effects of Process Variables and Additives on the Pellet Quality and Compression Characteristics. Ind. Crops Prod. 2015, 63, 337–348. [Google Scholar] [CrossRef]
- Adapa, P.K.; Tabil, L.G.; Schoenau, G.J.; Sokhansanj, S. Pelleting Characteristics of Fractionated Sun-Cured and Dehydrated Alfalfa Grinds. Appl. Eng. Agric. 2004, 20, 813–820. [Google Scholar] [CrossRef]
- Chico-Santamarta, L.; Humphries, A.; White, D.R.; Chaney, K.; Godwin, R.J. The Effect of Storage on the Quality Properties of Oilseed Rape Straw Pellets. In European Pellet Conference; World Sustainable Energy Days: Linz, Austria, 2010. [Google Scholar]
- Mohamed, M.H.; Wang, C.; Peru, K.M.; Headley, J.V.; Wilson, L.D. Characterization of the Physicochemical Properties of β-Cyclodextrin–Divinyl Sulfone Polymer Carrier–Bile Acid Systems. Mol. Pharm. 2017, 14, 2616–2623. [Google Scholar] [CrossRef]
- Mohamed, M.H.; Udoetok, I.A.; Wilson, L.D.; Headley, J.V. Fractionation of Carboxylate Anions from Aqueous Solution Using Chitosan Cross-Linked Sorbent Materials. RSC Adv. 2015, 5, 82065–82077. [Google Scholar] [CrossRef]
- Udoetok, I.A.; Wilson, L.D.; Headley, J.V. “ Pillaring Effects ” in Cross-Linked Cellulose Biopolymers: A Study of Structure and Properties. Int. J. Polym. Sci. 2018, 2018, 6358254. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Yuan, X.; Xiao, Z.; Liang, J.; Li, H.; Cao, L.; Wang, H.; Chen, X.; Zeng, G. A Comparative Study of Biomass Pellet and Biomass-Sludge Mixed Pellet: Energy Input and Pellet Properties. Energy Convers. Manag. 2016, 126, 509–515. [Google Scholar] [CrossRef]
- Zhu, M.Z.; Chen, Y.F.; Zhu, W.B.; Du, X.M.; Zhou, J.B.; Gu, C.; Liao, R.J. Mechanical Property of Hydrous Amorphous Cellulose Studied by Molecular Dynamics. Russ. J. Phys. Chem. B 2016, 10, 524–530. [Google Scholar] [CrossRef]
- Anisimov, Y.A.; Cree, D.E.; Wilson, L.D. Preparation of Multicomponent Biocomposites and Characterization of Their Physicochemical and Mechanical Properties. J. Compos. Sci. 2020, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Shakeel, A.; Ali, W.; Chassagne, C.; Kirichek, A. Tuning the Rheological Properties of Kaolin Suspensions Using Biopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130120. [Google Scholar] [CrossRef]
- Mihai, M.; Dragan, E.S. Chitosan Based Nonstoichiometric Polyelectrolyte Complexes as Specialized Flocculants. Colloids Surf. A Physicochem. Eng. Asp. 2009, 346, 39–46. [Google Scholar] [CrossRef]
Adsorbent | Year | References |
---|---|---|
Chitosan/Sargassum sp. composite sorbent | 2011 | Liu et al. [17] |
Chitosan pellets | 2017 | Mohamed et al. [18] |
Chitosan/wheat straw pellet materials | 2020 | Mohamed et al. [19] |
Chitosan/alginate sorbent | 2020 | Hassan et al. [20] |
Chitosan/E. coli biomass sorbent | 2021 | Kim [21] |
Chitosan/oat hull or wheat straw/kaolinite | 2022 | Mohamed et al. [22] |
Chitosan/coconut husk pellet sorbent | 2022 | Thongsamer et al. [23] |
Chitosan/oat hull, wheat straw or coffee/kaolinite | 2023 | Steiger et al. [5] |
Agro-Waste 20 | Agro-Waste 40 | Agro-Waste 60 | Agro-Waste 80 | |
---|---|---|---|---|
Oh composites | 20 | 40 | 60 | 80 * |
S composites | 20 | 40 | 60 | 80 |
SCG composites | 20 | 40 | 60 | 80 |
Chitosan | 70 | 50 | 30 | 10 |
Kaolinite | 10 | 10 | 10 | 10 |
Biomass wt.% | Coffee Ground | Oat Hull | Wheat Straw | |||
---|---|---|---|---|---|---|
NCL | CL | NCL | CL | NCL | CL | |
E, MPa | E, MPa | E, MPa | ||||
0 | 816 ± 44 * | 629 ± 29 ** | ||||
20 | 662 ± 36 | 842 ± 49 | 791 ± 43 | 887 ± 50 | 1245 ± 75 | 1023 ± 55 |
40 | 779 ± 31 | 954 ± 47 | 597 ± 33 | 748 ± 46 | 1447 ± 52 | 939 ± 54 |
60 | 674 ± 39 | 348 ± 26 | 344 ± 30 | 519 ± 27 | 1447 ± 64 | 885 ± 44 |
80 | 506 ± 29 | 519 ± 38 | - | 401 ± 31 | 698 ± 42 | 939 ± 51 |
wt.% | Coffee Ground | Oat Hull | Wheat Straw | |||
---|---|---|---|---|---|---|
NCL | CL | NCL | CL | NCL | CL | |
E, MPa | E, MPa | E, MPa | ||||
0 | 95 ± 10 * | 86 ± 8 ** | ||||
20 | 37 ± 4 | 169 ± 12 | 202 ± 15 | 275 ± 19 | 161 ± 13 | 180 ± 17 |
40 | 26 ± 3 | 87 ± 9 | 67 ± 6 | 236 ± 16 | 127 ± 12 | 169 ± 13 |
60 | 25 ± 3 | 37 ± 3 | 11 ± 1 | 201 ± 11 | 102 ± 10 | 142 ± 14 |
80 | 13 ± 1 | 15 ± 1 | - | 149 ± 11 | 50 ± 4 | 122 ± 11 |
wt.% | Coffee Ground | Oat Hull | Wheat Straw | |||
---|---|---|---|---|---|---|
NCL | CL | NCL | CL | NCL | CL | |
ρ, g/cm3 | ρ, g/cm3 | ρ, g/cm3 | ||||
0 | 0.88 ± 0.03 * | 0.96 ± 0.03 ** | ||||
20 | 0.99 ± 0.02 | 1.13 ± 0.01 | 0.98 ± 0.03 | 1.02 ± 0.01 | 1.07 ± 0.06 | 1.05 ± 0.03 |
40 | 1.06 ± 0.04 | 1.16 ± 0.03 | 0.88 ± 0.03 | 1.00 ± 0.02 | 1.24 ± 0.05 | 1.08 ± 0.01 |
60 | 1.10 ± 0.03 | 1.20 ± 0.02 | 0.80 ± 0.05 | 0.98 ± 0.03 | 1.29 ± 0.03 | 1.13 ± 0.02 |
80 | 1.13 ± 0.01 | 1.22 ± 0.01 | - | 0.92 ± 0.05 | 0.86 ± 0.03 | 1.00 ± 0.02 |
Agro-Waste (20%) | Agro-Waste (40%) | Agro-Waste (60%) | Agro-Waste (80%) | |
---|---|---|---|---|
Oh composites | 6.5 ± 0.2 | 6.4 ± 0.2 | 6.1 ± 0.2 | N/A |
Oh composites (CL) | 6.5 ± 0.2 | 6.6 ± 0.2 | 3.1 ± 0.2 | 5.7 ± 0.2 |
S composites | 6.5 ± 0.2 | 6.9 ± 0.2 | 6.0 ± 0.2 | 5.3 ± 0.2 |
S composites (CL) | 6.5 ± 0.2 | 6.9 ± 0.2 | 4.8 ± 0.2 | 5.9 ± 0.2 |
SCG composites | 6.5 ± 0.2 | 6.9 ± 0.2 | 6.5 ± 0.2 | 6.2 ± 0.2 |
SCG composites (CL) | 6.5 ± 0.2 | 6.4 ± 0.2 | 6.3 ± 0.2 | 5.9 ± 0.2 |
wt.% | Spent Coffee Grounds | Oat Hulls | Wheat Straw | |||
---|---|---|---|---|---|---|
NCL | CL | NCL | CL | NCL | CL | |
Moisture Uptake, ‰ (w/w) | Moisture Uptake, ‰ (w/w) | Moisture Uptake, ‰ (w/w) | ||||
0 | 340 ± 9 * | 309 ± 7 ** | ||||
20 | 325 ± 4 | 252 ± 10 | 295 ± 13 | 266 ± 4 | 248 ± 7 | 265 ± 3 |
40 | 338 ± 7 | 324 ± 12 | 382 ± 17 | 270 ± 3 | 274 ± 10 | 276 ± 5 |
60 | 346 ± 5 | 362 ± 8 | 477 ± 11 | 275 ± 3 | 332 ± 9 | 286 ± 4 |
80 | 371 ± 10 | 387 ± 6 | - | 307 ± 5 | 400 ± 12 | 314 ± 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anisimov, Y.A.; Steiger, B.G.K.; Cree, D.E.; Wilson, L.D. Moisture Content and Mechanical Properties of Bio-Waste Pellets for Fuel and/or Water Remediation Applications. J. Compos. Sci. 2023, 7, 100. https://doi.org/10.3390/jcs7030100
Anisimov YA, Steiger BGK, Cree DE, Wilson LD. Moisture Content and Mechanical Properties of Bio-Waste Pellets for Fuel and/or Water Remediation Applications. Journal of Composites Science. 2023; 7(3):100. https://doi.org/10.3390/jcs7030100
Chicago/Turabian StyleAnisimov, Yuriy A., Bernd G. K. Steiger, Duncan E. Cree, and Lee D. Wilson. 2023. "Moisture Content and Mechanical Properties of Bio-Waste Pellets for Fuel and/or Water Remediation Applications" Journal of Composites Science 7, no. 3: 100. https://doi.org/10.3390/jcs7030100
APA StyleAnisimov, Y. A., Steiger, B. G. K., Cree, D. E., & Wilson, L. D. (2023). Moisture Content and Mechanical Properties of Bio-Waste Pellets for Fuel and/or Water Remediation Applications. Journal of Composites Science, 7(3), 100. https://doi.org/10.3390/jcs7030100