An Explorative Evaluation on the Influence of Filler Content of Polyetheretherketone (PEEK) on Adhesive Bond to Different Luting Resin Cements
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zoidis, P.; Papathanasiou, I.; Polyzois, G. The use of a modified poly-ether-ether-ketone (PEEK) as an alternative framework material for removable dental prostheses. A clinical report. J. Prosthodont. 2016, 25, 580–584. [Google Scholar] [CrossRef]
- Pacurar, M.; Bechir, E.S.; Suciu, M.; Bechir, A.; Biris, C.I.; Mola, F.C.; Gioga, C.; Dascalu, I.T.; Ormenisan, A. The benefits of polyether-ether-ketone polymers in partial edentulous patients. Mater. Plast. 2016, 3, 657–660. [Google Scholar]
- Harb, I.E.; Abdel-Khalek, E.A.; Hegazy, S.A. CAD/CAM constructed poly (etheretherketone)(PEEK) framework of Kennedy class I removable partial denture: A clinical report. J. Prosthodont. 2019, 28, e595–e598. [Google Scholar] [CrossRef] [PubMed]
- Schubert, O.; Reitmaier, J.; Schweiger, J.; Erdelt, K.; Güth, J.-F. Retentive force of PEEK secondary crowns on zirconia primary crowns over time. Clin. Oral Investig. 2019, 23, 2331–2338. [Google Scholar] [CrossRef] [PubMed]
- Hahnel, S.; Scherl, C.; Rosentritt, M. Interim rehabilitation of occlusal vertical dimension using a double-crown-retained removable dental prosthesis with polyetheretherketone framework. J. Prosthet. Dent. 2018, 119, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Merk, S.; Wagner, C.; Stock, V.; Eichberger, M.; Schmidlin, P.R.; Roos, M.; Stawarczyk, B. Suitability of secondary PEEK telescopic crowns on zirconia primary crowns: The influence of fabrication method and taper. Materials 2016, 9, 908. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, M.; Zhao, R.; Liu, H.; Li, K.; Tian, M.; Niu, L.; Xie, R.; Bai, S. Clinical Applications of Polyetheretherketone in Removable Dental Prostheses: Accuracy, Characteristics, and Performance. Polymers 2022, 14, 4615. [Google Scholar] [CrossRef] [PubMed]
- Zoidis, P.; Papathanasiou, I. Modified PEEK resin-bonded fixed dental prosthesis as an interim restoration after implant placement. J. Prosthet. Dent. 2016, 116, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Eichberger, M.; Uhrenbacher, J.; Wimmer, T.; Edelhoff, D.; Schmidlin, P.R. Three-unit reinforced polyetheretherketone composite FDPs: Influence of fabrication method on load-bearing capacity and failure types. Dent. Mater. J. 2015, 34, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Gupta, N.; Reddy, K.M.; Shastry, Y. Versatility of PEEK as a fixed partial denture framework. J. Indian Prosthodont. Soc. 2017, 17, 80. [Google Scholar] [CrossRef]
- Nai, T.A.; Aydin, B.; Brand, H.S.; Jonkman, R.E. Present and Theoretical Applications of Poly-Ether-Ether-Ketone (PEEK) in Orthodontics: A Scoping Review. Materials 2022, 15, 7414. [Google Scholar] [CrossRef]
- Aboulazm, K.; von See, C.; Othman, A. Fixed lingual orthodontic retainer with bilateral missing lateral incisors produced in PEEK material using CAD/CAM technology. J. Clin. Exp. Dent. 2021, 13, e549. [Google Scholar] [CrossRef]
- Koutouzis, T.; Richardson, J.; Lundgren, T. Comparative soft and hard tissue responses to titanium and polymer healing abutments. J. Oral Implantol. 2011, 37 (Suppl. S1), 174–182. [Google Scholar] [CrossRef]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef]
- Chokaree, P.; Poovarodom, P.; Chaijareenont, P.; Yavirach, A.; Rungsiyakull, P. Biomaterials and Clinical Applications of Customized Healing Abutment—A Narrative Review. J. Funct. Biomater. 2022, 13, 291. [Google Scholar] [CrossRef] [PubMed]
- Santing, H.J.; Meijer, H.J.; Raghoebar, G.M.; Özcan, M. Fracture strength and failure mode of maxillary implant-supported provisional single crowns: A comparison of composite resin crowns fabricated directly over PEEK abutments and solid titanium abutments. Clin. Implant. Dent. Relat. Res. 2012, 14, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Hahnel, S.; Wieser, A.; Lang, R.; Rosentritt, M. Biofilm formation on the surface of modern implant abutment materials. Clin. Oral Implants Res. 2015, 26, 1297–1301. [Google Scholar] [CrossRef]
- Moby, V.; Dupagne, L.; Fouquet, V.; Attal, J.-P.; François, P.; Dursun, E. Mechanical Properties of Fused Deposition Modeling of Polyetheretherketone (PEEK) and Interest for Dental Restorations: A Systematic Review. Materials 2022, 15, 6801. [Google Scholar] [CrossRef] [PubMed]
- Punia, U.; Kaushik, A.; Garg, R.K.; Chhabra, D.; Sharma, A. 3D printable biomaterials for dental restoration: A systematic review. Mater. Today Proc. 2022, 63, 566–572. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Li, M.; Hui, H. Study on mechanical properties of PEEK composites. Adv. Mater. Res. 2012, 476, 519–525. [Google Scholar] [CrossRef]
- Luo, C.; Liu, Y.; Peng, B.; Chen, M.; Liu, Z.; Li, Z.; Kuang, H.; Gong, B.; Li, Z.; Sun, H. PEEK for Oral Applications: Recent Advances in Mechanical and Adhesive Properties. Polymers 2023, 15, 386. [Google Scholar] [CrossRef] [PubMed]
- Lümkemann, N.; Eichberger, M.; Stawarczyk, B. Different PEEK qualities irradiated with light of different wavelengths: Impact on Martens hardness. Dent. Mater. 2017, 33, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Soldatovic, D.M.; Liebermann, A.; Huth, K.C.; Stawarczyk, B. Fracture load of different veneered and implant-supported 4-UNIT cantilever PEEK fixed dental prostheses. J. Mech. Behav. Biomed. Mater. 2022, 129, 105173. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, A.; Khurshid, Z.; Khan, M.T.; Mansoor, E.; Butt, F.A.; Jamal, A.; Palma, P.J. Medical and Dental Applications of Titania Nanoparticles: An Overview. Nanomaterials 2022, 12, 3670. [Google Scholar] [CrossRef] [PubMed]
- Rauch, A.; Hahnel, S.; Günther, E.; Bidmon, W.; Schierz, O. Tooth-colored CAD/CAM materials for application in 3-unit fixed dental prostheses in the molar area: An illustrated clinical comparison. Materials 2020, 13, 5588. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.-y.; Teng, M.-h.; Wang, Z.-j.; Li, X.; Liang, J.-y.; Wang, W.-x.; Jiang, S.; Zhao, B.-d. Comparative evaluation of BioHPP and titanium as a framework veneered with composite resin for implant-supported fixed dental prostheses. J. Prosthet. Dent. 2019, 122, 383–388. [Google Scholar] [CrossRef]
- Rikitoku, S.; Otake, S.; Nozaki, K.; Yoshida, K.; Miura, H. Influence of SiO2 content of polyetheretherketone (PEEK) on flexural properties and tensile bond strength to resin cement. Dent. Mater. J. 2019, 38, 464–470. [Google Scholar] [CrossRef]
- Bötel, F.; Zimmermann, T.; Sütel, M.; Müller, W.-D.; Schwitalla, A.D. Influence of different low-pressure plasma process parameters on shear bond strength between veneering composites and PEEK materials. Dent. Mater. 2018, 34, e246–e254. [Google Scholar] [CrossRef]
- Lümkemann, N.; Eichberger, M.; Stawarczyk, B. Bonding to different PEEK compositions: The impact of dental light curing units. Materials 2017, 10, 67. [Google Scholar] [CrossRef]
- Mezarina-Kanashiro, F.N.; Bronze-Uhle, E.S.; Rizzante, F.A.P.; Lisboa-Filho, P.N.; Borges, A.F.S.; Furuse, A.Y. A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZP. Dent. Mater. 2022, 38, e220–e230. [Google Scholar] [CrossRef]
- Trino, L.D.; Bronze-Uhle, E.S.; George, A.; Mathew, M.T.; Lisboa-Filho, P.N. Surface physicochemical and structural analysis of functionalized titanium dioxide films. Colloids Surf. A Physicochem. Eng. Asp. 2018, 546, 168–178. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Beuer, F.; Wimmer, T.; Jahn, D.; Sener, B.; Roos, M.; Schmidlin, P.R. Polyetheretherketone—A suitable material for fixed dental prostheses? J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 1209–1216. [Google Scholar] [CrossRef]
- Lümkemann, N.; Strickstrock, M.; Eichberger, M.; Zylla, I.-M.; Stawarczyk, B. Impact of air-abrasion pressure and adhesive systems on bonding parameters for polyetheretherketone dental restorations. Int. J. Adhes. Adhes. 2018, 80, 30–38. [Google Scholar] [CrossRef]
- Silthampitag, P.; Chaijareenont, P.; Tattakorn, K.; Banjongprasert, C.; Takahashi, H.; Arksornnukit, M. Effect of surface pretreatments on resin composite bonding to PEEK. Dent. Mater. J. 2016, 35, 668–674. [Google Scholar] [CrossRef]
- Caglar, I.; Ates, S.M.; Yesil Duymus, Z. An in vitro evaluation of the effect of various adhesives and surface treatments on bond strength of resin cement to polyetheretherketone. J. Prosthodont. 2019, 28, e342–e349. [Google Scholar] [CrossRef]
- Sproesser, O.; Schmidlin, P.R.; Uhrenbacher, J.; Roos, M.; Gernet, W.; Stawarczyk, B. Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements. J. Adhes. Dent. 2014, 16, 465–472. [Google Scholar]
- Henriques, B.; Fabris, D.; Mesquita-Guimarães, J.; Sousa, A.C.; Hammes, N.; Souza, J.C.; Silva, F.S.; Fredel, M.C. Influence of laser structuring of PEEK, PEEK-GF30 and PEEK-CF30 surfaces on the shear bond strength to a resin cement. J. Mech. Behav. Biomed. Mater. 2018, 84, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huang, M.; Dang, P.; Xie, J.; Zhang, X.; Yan, X. PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers 2022, 14, 2323. [Google Scholar] [CrossRef]
- Schwitalla, A.D.; Bötel, F.; Zimmermann, T.; Sütel, M.; Müller, W.-D. The impact of argon/oxygen low-pressure plasma on shear bond strength between a veneering composite and different PEEK materials. Dent. Mater. 2017, 33, 990–994. [Google Scholar] [CrossRef]
- Adem, N.; Burcu, B.; Kazazoglu, E. Comparative Study of Chemical and Mechanical Surface Treatment Effects on The Shear Bond Strength of Polyether-Ether-Ketone to Veneering Resin. Int. J. Prosthodont. 2022, 35, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Behr, M.; Proff, P.; Kolbeck, C.; Langrieger, S.; Kunze, J.; Handel, G.; Rosentritt, M. The bond strength of the resin-to-zirconia interface using different bonding concepts. J. Mech. Behav. Biomed. Mater. 2011, 4, 2–8. [Google Scholar] [CrossRef]
- Behr, M.; Rosentritt, M.; Gröger, G.; Handel, G. Adhesive bond of veneering composites on various metal surfaces using silicoating, titanium-coating or functional monomers. J. Dent. 2003, 31, 33–42. [Google Scholar] [CrossRef]
- Çulhaoğlu, A.K.; Özkır, S.E.; Şahin, V.; Yılmaz, B.; Kılıçarslan, M.A. Effect of various treatment modalities on surface characteristics and shear bond strengths of polyetheretherketone-based core materials. J. Prosthodont. 2020, 29, 136–141. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Bähr, N.; Beuer, F.; Wimmer, T.; Eichberger, M.; Gernet, W.; Jahn, D.; Schmidlin, P. Influence of plasma pretreatment on shear bond strength of self-adhesive resin cements to polyetheretherketone. Clin. Oral Investig. 2014, 18, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Taufall, S.; Roos, M.; Schmidlin, P.R.; Lümkemann, N. Bonding of composite resins to PEEK: The influence of adhesive systems and air-abrasion parameters. Clin. Oral Investig. 2018, 22, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Gama, L.T.; Duque, T.M.; Özcan, M.; Philippi, A.G.; Mezzomo, L.A.M.; Gonçalves, T.M.S.V. Adhesion to high-performance polymers applied in dentistry: A systematic review. Dent. Mater. 2020, 36, e93–e108. [Google Scholar] [CrossRef] [PubMed]
- Machado, P.; Rodrigues, A.; Chaves, E.; Susin, A.; Valandro, L.; Pereira, G.; Rippe, M. Surface Treatments and Adhesives Used to Increase the Bond Strength Between Polyetheretherketone and Resin-based Dental Materials: A Scoping Review. J. Adhes. Dent. 2022, 24, 233–245. [Google Scholar]
- Schmidlin, P.R.; Stawarczyk, B.; Wieland, M.; Attin, T.; Hämmerle, C.H.; Fischer, J. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent. Mater. 2010, 26, 553–559. [Google Scholar] [CrossRef]
- Taha, D.; Safwat, F.; Wahsh, M. Effect of combining different surface treatments on the surface characteristics of polyetheretherketone-based core materials and shear bond strength to a veneering composite resin. J. Prosthet. Dent. 2022, 127, 599-e1. [Google Scholar] [CrossRef] [PubMed]
- Riveiro, A.; Soto, R.; Comesaña, R.; Boutinguiza, M.; Del Val, J.; Quintero, F.; Lusquiños, F.; Pou, J. Laser surface modification of PEEK. Appl. Surf. Sci. 2012, 258, 9437–9442. [Google Scholar] [CrossRef]
- Keul, C.; Liebermann, A.; Schmidlin, P.R.; Roos, M.; Sener, B.; Stawarczyk, B. Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites. J. Adhes. Dent. 2014, 16, 383–392. [Google Scholar]
- Stawarczyk, B.; Keul, C.; Beuer, F.; Roos, M.; Schmidlin, P.R. Tensile bond strength of veneering resins to PEEK: Impact of different adhesives. Dent. Mater. J. 2013, 32, 441–448. [Google Scholar] [CrossRef]
Polyetheretherketone | |||
---|---|---|---|
Material | BioSolution A2/B2 (High Filler Content) | BioSolution GUM (Low Filler Content) | BioSolution Nature (Without Filler Content) |
Manufacturer | Merz Dental | Merz Dental | Merz Dental |
Elastic modulus (MPa) accord. EN ISO 20795-1 | 5100 | 4500 | 4100 |
Flexural strength (MPa) accord. EN ISO 20795-1 | 170 | 170 | 164 |
Vickers hardness acc. EN ISO 6507-1 | 32 HV 0.2 | 27 HV 0.2 | 23 HV 0.2 |
Filler content | 20 wt% | 5 wt% | <1 wt% |
Filler material | TiO2, <1% TiO2 based pigments | TiO2, <1% iron oxide | – |
Batch No. | DC4450R | 58635979 | 44617 |
Primer | |||
Material | SunCera Metal Primer | ||
Manufacturer | Merz Dental | ||
Functional components | phosphonic acid monomer, thiocticacid monomer, acetone | ||
Polymerization | not required | ||
Batch No. | 041812 | ||
Veneering Composite | |||
Material | SunCera light curing crown and bridge composite (A1B) | ||
Manufacturer | Merz Dental | ||
Functional components | Urethane dimethacrylate (UDMA), 2-dimethylaminoethyl methacrylate, organic filler, silicate powder, pigments | ||
Polymerization | Final light curing 180 s | ||
Batch No. | 091604 |
Material | Organic Matrix | Filler | Application | Batch No. |
---|---|---|---|---|
Dual-curing conventional luting resin cements | ||||
ResiCem (Shofu, Kyoto, Japan) | UDMA, TEGDMA, carboxylic-acid monomer, initiators, acetone | Fluoro-alumino-silicateglass | etching, sand-blasting, 4 min autopolymerization | 101801 |
RelyX Ultimate (3M ESPE, Bavaria, Germany) | acrylates, methacrylates | 43% inorganic fillers (13 µm) | etching, sand-blasting, light curing (10 s), 6 min autopolymerization | 4369035 |
Variolink Esthetic DC (Ivoclar-Vivadent, Shain, Liechtenstein) | UDMA, methacrylate-monomeres | 38% ytterbium-trifluorides (0.1 µm) | etching, sand-blasting, light curing (20 s) | X32304 |
Dual-curing self-adhesive luting resin cements | ||||
RelyXUnicem 2 (3M ESPE) | acrylates, methacrylates | 43% inorganic fillers (12.5 µm) | sand-blasting, light curing (20 s), 6 min autopolymerization | 670864 |
Bifix SE (VOCO, Cuxhaven, Germany) | methacrylate-monomers | 70% inorganic fillers | sand-blasting, light curing (10 s), 4 min autopolymerization | 1831198 |
Panavia SA Cement Plus (Kuraray, Tokyo, Japan) | MDP, BisGMA, TEGDMA, hydrophobic aromatic dimethacrylates | 40% silanized bariumglass-fillers | sand-blasting, light curing (10 s), 5 min autopolymerization | 3UO265 |
SpeedCem (Ivoclar-Vivadent) | dimethacrylates, acid-monomers | 40% ytterbium-trifluorides, silicium-disilicate (0.1–7 µm) | sand-blasting, light curing (20 s), 6 min autopolymerization | X32046 |
BioSolution A2/B2 (High Filler Content) | ||||||
---|---|---|---|---|---|---|
Median | IQR | Mean (SD) | 95%CI | p-Value | ||
ResiCem | 24 h | 23.20 | 6.25 | 24.58 (3.27) | 20.52–28.64 | 0.548 |
thermocyc. | 21.50 | 14.00 | 22.90 (7.39) | 13.73–32.07 | ||
RelyX Ultimate | 24 h | 22.50 | 6.40 | 20.78 (3.64) | 16.26–25.30 | 0.548 |
thermocyc. | 26.20 | 20.70 | 20.56 (12.58) (#1) | 4.94–36.18 | ||
Variolink Esthetic DC | 24 h | 15.70 | 4.25 | 16.04 (2.61) | 12.79–19.29 | 0.548 |
thermocyc. | 14.60 | 7.35 | 14.66 (3.92) | 9.80–19.52 | ||
RelyXUnicem 2 | 24 h | 19.80 | 17.25 | 17.02 (10.32) (#1) | 4.20–29.84 | 0.690 |
thermocyc. | 21.10 | 4.24 | 21.94 (4.24) | 16.68–27.20 | ||
Bifix SE | 24 h | 20.80 | 3.70 | 20.44 (2.24) | 17.66–23.22 | 0.222 |
thermocyc. | 17.40 | 5.75 | 17.66 (2.91) | 14.05–21.27 | ||
Panavia SA Cement Plus | 24 h | 17.00 | 8.65 | 14.98 (4.55) | 9.34–20.62 | 0.421 |
thermocyc. | 12.20 | 10.90 | 11.12 (6.79) (#1) | 2.69–19.55 | ||
SpeedCem | 24 h | 22.20 | 3.20 | 22.48 (1.82) | 20.22–24.74 | 0.151 |
thermocyc. | 17.50 | 5.50 | 19.14 (2.95) | 15.48–22.80 |
BioSolution GUM (Low Filler Content) | ||||||
---|---|---|---|---|---|---|
Median | IQR | Mean (SD) | 95%CI | p-Value | ||
ResiCem | 24 h | 21.00 | 5.70 | 22.84 (3.14) | 18.94–26.74 | 0.548 |
thermocyc. | 20.50 | 19.35 | 16.04 (10.85) (#1) | 2.56–29.52 | ||
RelyX Ultimate | 24 h | 18.40 | 7.80 | 18.12 (3.99) | 13.17–23.07 | 0.222 |
thermocyc. | 19.20 | 7.00 | 21.76 (4.24) | 16.50–27.02 | ||
Variolink Esthetic DC | 24 h | 19.40 | 6.80 | 20.16 (3.92) | 15.29–25.03 | 0.841 |
thermocyc. | 18.50 | 6.85 | 19.64 (3.56) | 15.22–24.06 | ||
RelyXUnicem 2 | 24 h | 18.80 | 6.70 | 19.92 (4.34) | 14.54–25.30 | 1.000 |
thermocyc. | 21.90 | 8.94 | 20.32 (4.74) | 14.44–26.20 | ||
Bifix SE | 24 h | 20.50 | 3.00 | 20.14 (2.02) | 17.64–22.64 | 0.032 |
thermocyc. | 15.90 | 4.95 | 15.84 (2.59) | 12.63–19.05 | ||
Panavia SA Cement Plus | 24 h | 12.30 | 2.55 | 12.52 (1.31) | 10.90–14.14 | 0.310 |
thermocyc. | 10.80 | 5.65 | 11.30 (3.60) | 6.84–15.76 | ||
SpeedCem | 24 h | 21.50 | 8.05 | 21.36 (4.46) | 15.82–26.90 | 0.095 |
thermocyc. | 16.40 | 5.45 | 16.22 (3.28) | 12.14–20.30 |
BioSolution Nature (without Filler Content) | ||||||
---|---|---|---|---|---|---|
Median | IQR | Mean (SD) | 95%CI | p-Value | ||
ResiCem | 24 h | 22.90 | 4.15 | 23.64 (2.92) | 20.02–27.26 | 0.690 |
thermocyc. | 19.30 | 16.35 | 22.88 (8.67) | 12.12–33.64 | ||
RelyX Ultimate | 24 h | 23.20 | 16.05 | 23.02 (8.27) | 12.75–33.29 | 0.690 |
thermocyc. | 23.80 | 10.15 | 24.26 (5.75) | 17.12–31.40 | ||
Variolink Esthetic DC | 24 h | 18.80 | 16.85 | 13.98 (9.49) (#1) | 2.19–25.77 | 0.841 |
thermocyc. | 17.50 | 4.00 | 17.70 (2.07) | 15.13–20.27 | ||
RelyXUnicem 2 | 24 h | 21.40 | 5.60 | 20.80 (2.96) | 17.12–24.48 | 0.421 |
thermocyc. | 18.40 | 7.40 | 18.12 (4.28) | 12.80–23.44 | ||
Bifix SE | 24 h | 21.30 | 5.90 | 23.06 (3.46) | 18.76–27.36 | 0.056 |
thermocyc. | 15.80 | 12.80 | 14.44 (8.70) (#1) | 3.63–25.24 | ||
Panavia SA Cement Plus | 24 h | 13.40 | 4.45 | 12.98 (2.63) | 9.72–16.24 | 0.151 |
thermocyc. | 17.40 | 6.95 | 17.06 (4.46) | 11.52–22.60 | ||
SpeedCem | 24 h | 21.50 | 2.15 | 21.60 (1.12) | 20.21–22.99 | 0.548 |
thermocyc. | 22.80 | 6.05 | 21.86 (3.37) | 17.68–26.04 |
ResiCem | RelyX Ultimate | Variolink Esthetic DC | RelyXUnicem 2 | Bifix SE | Panavia SA Cement Plus | SpeedCem | |
---|---|---|---|---|---|---|---|
BS (HF) vs. BS (LF) | 0.080 | 0.893 | 0.080 | 0.686 | 0.225 | 0.715 | 0.104 |
BS (HF) vs. BS (NF) | 0.893 | 0.686 | 0.225 | 0.138 | 0.893 | 0.225 | 0.225 |
BS (LF) vs. BS (NF) | 0.138 | 0.686 | 0.225 | 0.500 | 0.893 | 0.080 | 0.043 |
BioSolution A2/B2 (High Filler Content) | BioSolution GUM (Low Filler Content) | BioSolution Nature (without Filler Content) | |
---|---|---|---|
ResiCem vs. RelyX Ultimate | 0.686 | 0.500 | 0.892 |
ResiCem vs. Variolink Esthetic DC | 0.080 | 0.345 | 0.225 |
ResiCem vs. RelyXUnicem 2 | 0.893 | 0.686 | 0.686 |
ResiCem vs. Bifix SE | 0.138 | 0.893 | 0.138 |
ResiCem vs. Panavia SA Cement Plus | 0.138 | 0.500 | 0.138 |
ResiCem vs. SpeedCem | 0.345 | 0.893 | 0.686 |
RelyX Ultimate vs. Variolink Esthetic DC | 0.500 | 0.223 | 0.138 |
RelyX Ultimate vs. RelyXUnicem 2 | 0.893 | 0.500 | 0.080 |
RelyX Ultimate vs. Bifix SE | 0.686 | 0.043 | 0.043 |
RelyX Ultimate vs. Panavia SA Cement Plus | 0.225 | 0.043 | 0.138 |
RelyX Ultimate vs. SpeedCem | 0.686 | 0.080 | 0.686 |
Variolink Esthetic DC vs. RelyXUnicem 2 | 0.080 | 0.686 | 0.893 |
Variolink Esthetic DC vs. Bifix SE | 0.138 | 0.080 | 0.500 |
Variolink Esthetic DC vs. Panavia SA Cement Plus | 0.225 | 0.080 | 0.345 |
Variolink Esthetic DC vs. SpeedCem | 0.043 | 0.043 | 0.042 |
RelyXUnicem 2 vs. Bifix SE | 0.043 | 0.080 | 0.500 |
RelyXUnicem 2 vs. Panavia SA Cement Plus | 0.043 | 0.043 | 0.500 |
RelyXUnicem 2 vs. SpeedCem | 0.345 | 0.225 | 0.225 |
Bifix SE vs. Panavia SA Cement Plus | 0.138 | 0.080 | 0.686 |
Bifix SE vs. SpeedCem | 0.345 | 0.893 | 0.080 |
Panavia SA Cement Plus vs. SpeedCem | 0.080 | 0.138 | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dederichs, M.; Lackner, O.; Kuepper, H.; Decker, M.; Viebranz, S.; Hennig, C.-L.; Guentsch, A.; Kuepper, C. An Explorative Evaluation on the Influence of Filler Content of Polyetheretherketone (PEEK) on Adhesive Bond to Different Luting Resin Cements. J. Compos. Sci. 2023, 7, 456. https://doi.org/10.3390/jcs7110456
Dederichs M, Lackner O, Kuepper H, Decker M, Viebranz S, Hennig C-L, Guentsch A, Kuepper C. An Explorative Evaluation on the Influence of Filler Content of Polyetheretherketone (PEEK) on Adhesive Bond to Different Luting Resin Cements. Journal of Composites Science. 2023; 7(11):456. https://doi.org/10.3390/jcs7110456
Chicago/Turabian StyleDederichs, Marco, Oliver Lackner, Harald Kuepper, Mike Decker, Stephanie Viebranz, Christoph-Ludwig Hennig, Arndt Guentsch, and Christine Kuepper. 2023. "An Explorative Evaluation on the Influence of Filler Content of Polyetheretherketone (PEEK) on Adhesive Bond to Different Luting Resin Cements" Journal of Composites Science 7, no. 11: 456. https://doi.org/10.3390/jcs7110456
APA StyleDederichs, M., Lackner, O., Kuepper, H., Decker, M., Viebranz, S., Hennig, C.-L., Guentsch, A., & Kuepper, C. (2023). An Explorative Evaluation on the Influence of Filler Content of Polyetheretherketone (PEEK) on Adhesive Bond to Different Luting Resin Cements. Journal of Composites Science, 7(11), 456. https://doi.org/10.3390/jcs7110456