Developing Wound Moisture Sensors: Opportunities and Challenges for Laser-Induced Graphene-Based Materials
Abstract
:1. Introduction
2. Wound Care Context
3. Design Requirements and Sensing Methodologies
4. Laser-Induced Graphene (LIG)
5. Radio Frequency Identification (RFID)
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baptista-Silva, S.; Alves, P.; Guimarães, I.; Borges, S.; Tavaria, F.; Granja, P.; Pintado, M.; Oliveira, A.L. A View on Polymer-Based Composite Materials for Smart Wound Dressingsin in Polymeric and Natural Composites; Hassain, M., Nayak, A.M., Alkahtani, S., Eds.; Springer: Cham, Switzerland, 2022; pp. 425–456. [Google Scholar]
- Joshi, M.; Purwar, R.; Purwar, R. Composite Dressings for Wound Care. In Advanced Textiles for Wound Care; Elsevier: Amsterdam, The Netherlands, 2019; pp. 313–327. [Google Scholar]
- Dhivya, S.; Padma, V.V.; Santhini, E. Wound Dressings—A Review. BioMedicine 2015, 5, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Rezvani Ghomi, E.; Khalili, S.; Nouri Khorasani, S.; Esmaeely Neisiany, R.; Ramakrishna, S. Wound Dressings: Current Advances and Future Directions. J. Appl. Polym. Sci. 2019, 136, 47738. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.; McLister, A.; Cundell, J.; Finlay, D. Smart Bandage Technologies; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128037621. [Google Scholar]
- Dargaville, T.R.; Farrugia, B.L.; Broadbent, J.A.; Pace, S.; Upton, Z.; Voelcker, N.H. Sensors and Imaging for Wound Healing: A Review. Biosens. Bioelectron. 2013, 41, 30–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLister, A.; McHugh, J.; Cundell, J.; Davis, J. New Developments in Smart Bandage Technologies for Wound Diagnostics. Adv. Mater. 2016, 28, 5732–5737. [Google Scholar] [CrossRef]
- Scott, C.; Cameron, S.; Cundell, J.; Mathur, A.; Davis, J. Adapting Resistive Sensors for Monitoring Moisture in Smart Wound Dressings. Curr. Opin. Electrochem. 2020, 23, 31–35. [Google Scholar] [CrossRef]
- Ochoa, M.; Rahimi, R.; Ziaie, B. Flexible Sensors for Chronic Wound Management. IEEE Rev. Biomed. Eng. 2014, 7, 73–86. [Google Scholar] [CrossRef]
- Mehmood, N.; Hariz, A.; Fitridge, R.; Voelcker, N.H. Applications of Modern Sensors and Wireless Technology in Effective Wound Management. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 885–895. [Google Scholar] [CrossRef]
- Ye, R.; James, D.K.; Tour, J.M. Laser-Induced Graphene. Acc. Chem. Res. 2018, 51, 1609–1620. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Z.; Liu, P.; Guo, X. Laser-Induced Graphene Based Flexible Electronic Devices. Biosensors 2022, 12, 55. [Google Scholar] [CrossRef]
- Xu, Y.; Fei, Q.; Page, M.; Zhao, G.; Ling, Y.; Chen, D.; Yan, Z. Laser-Induced Graphene for Bioelectronics and Soft Actuators. Nano Res. 2021, 14, 3033–3050. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-Induced Porous Graphene Films from Commercial Polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef] [PubMed]
- Winter, G.D. Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig. Nature 1962, 193, 293–294. [Google Scholar] [CrossRef] [PubMed]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krejner, A.; Grzela, T. Modulation of Matrix Metalloproteinases MMP-2 and MMP-9 Activity by Hydrofiber-Foam Hybrid Dressing—Relevant Support in the Treatment of Chronic Wounds. Cent. Eur. J. Immunol. 2015, 3, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Ousey, K.; Stephenson, J.; Barret, S.; King, B.; Morton, N.; Fenwick, K.; Carr, C. Wound Care in Five English NHS Trusts: Results of a Survey. Wounds UK 2013, 9, 20–28. [Google Scholar]
- Milne, S.D.; Seoudi, I.; al Hamad, H.; Talal, T.K.; Anoop, A.A.; Allahverdi, N.; Zakaria, Z.; Menzies, R.; Connolly, P. A Wearable Wound Moisture Sensor as an Indicator for Wound Dressing Change: An Observational Study of Wound Moisture and Status. Int. Wound J. 2016, 13, 1309–1314. [Google Scholar] [CrossRef] [Green Version]
- Guest, J.F.; Ayoub, N.; McIlwraith, T.; Uchegbu, I.; Gerrish, A.; Weidlich, D.; Vowden, K.; Vowden, P. Health Economic Burden That Wounds Impose on the National Health Service in the UK. BMJ Open 2015, 5, e009283. [Google Scholar] [CrossRef] [Green Version]
- Dowsett, C. Breaking the Cycle of Hard-to-Heal Wounds: Balancing Cost and Care. Wounds Int. 2015, 2, 17–21. [Google Scholar]
- Guest, J.F.; Ayoub, N.; McIlwraith, T.; Uchegbu, I.; Gerrish, A.; Weidlich, D.; Vowden, K.; Vowden, P. Health Economic Burden That Different Wound Types Impose on the UK’s National Health Service. Int. Wound J. 2017, 14, 322–330. [Google Scholar] [CrossRef]
- Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise. Sensors 2020, 20, 6396. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Gholamzadeh, M.; Saeedi, S.; Rezayi, S. The Application of Wearable Smart Sensors for Monitoring the Vital Signs of Patients in Epidemics: A Systematic Literature Review. J. Ambient. Intell. Humaniz. Comput. 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Statistica Research Department. EU27/EU28. Share of Households with Internet Access in the United Kingdom (UK) and the European Union (EU27/EU28) from 2009 to 2020. 2021. Available online: https://www.statista.com/statistics/275043/percentage-of-households-with-internet-access-in-the-uk-and-eu/ (accessed on 16 May 2022).
- Mehmood, N.; Hariz, A.; Templeton, S.; Voelcker, N.H. An Improved Flexible Telemetry System to Autonomously Monitor Sub-Bandage Pressure and Wound Moisture. Sensors 2014, 14, 21770–21790. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, N.; Hariz, A.; Templeton, S.; Voelcker, N.H. Calibration of Sensors for Reliable Radio Telemetry in a Prototype Flexible Wound Monitoring Device. Sens. Biosensing Res. 2014, 2, 23–30. [Google Scholar] [CrossRef]
- Zhou, G.; Byun, J.H.; Oh, Y.; Jung, B.M.; Cha, H.J.; Seong, D.G.; Um, M.K.; Hyun, S.; Chou, T.W. Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(Vinyl Alcohol) Filaments. ACS Appl. Mater. Interfaces 2017, 9, 4788–4797. [Google Scholar] [CrossRef]
- Tessarolo, M.; Possanzini, L.; Gualandi, I.; Mariani, F.; Torchia, L.D.; Arcangeli, D.; Melandri, F.; Scavetta, E.; Fraboni, B. Wireless Textile Moisture Sensor for Wound Care. Front. Phys. 2021, 9, 616. [Google Scholar] [CrossRef]
- Ma, L.; Wu, R.; Patil, A.; Zhu, S.; Meng, Z.; Meng, H.; Hou, C.; Zhang, Y.; Liu, Q.; Yu, R.; et al. Full-Textile Wireless Flexible Humidity Sensor for Human Physiological Monitoring. Adv. Funct. Mater. 2019, 29, 1904549. [Google Scholar] [CrossRef]
- Iversen, M.; Monisha, M.; Agarwala, S. Flexible, Wearable and Fully-Printed Smart Patch for PH and Hydration Sensing in Wounds. Int. J. Bioprinting 2022, 8, 41–49. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Wang, X.; Zhong, X.; Wang, J.; Zhang, Y. Realization of a Flexible Humidity Sensor Based on α-In2Se3 Nanosheets. ChemNanoMat 2022, 8, e202100394. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, X.; Li, S.; He, Y.; Xia, Z.; Cai, K. A Facile and Flexible Humidity Sensor Based on Porous PDMS/AgNWs and GO for Environmental Humidity and Respiratory Detection. Macromol. Mater. Eng. 2022, 307, 2100686. [Google Scholar] [CrossRef]
- Rahman, S.A.; Khan, S.A.; Rehman, M.M.; Kim, W.Y. Highly Sensitive and Stable Humidity Sensor Based on the Bi-Layered PVA/Graphene Flower Composite Film. Nanomaterials 2022, 12, 1026. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Yang, S.; Zhao, H.; Guo, Y.; Cong, T.; Huang, H.; Fan, Z.; Liang, H.; Pan, L. A Flexible Tissue–Carbon Nanocoil–Carbon Nanotube-Based Humidity Sensor with High Performance and Durability. Nanoscale 2022, 14, 7025–7038. [Google Scholar] [CrossRef] [PubMed]
- Tao, B.; Yin, J.; Miao, F.; Zang, Y. High-Performance Humidity Sensor Based on GO/ZnO/Plant Cellulose Film for Respiratory Monitoring. Ionics 2022, 28, 2413–2421. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, F.; Lin, Q. Flexible Relative Humidity Sensor Based on Reduced Graphene Oxide and Interdigital Electrode for Smart Home. Micro Nano Lett. 2022, 17, 134–138. [Google Scholar] [CrossRef]
- Zhang, X.; He, D.; Yang, Q.; Atashbar, M.Z. Rapid, Highly Sensitive, and Highly Repeatable Printed Porous Paper Humidity Sensor. Chem. Eng. J. 2022, 433, 133751. [Google Scholar] [CrossRef]
- Zhou, R.; Li, J.; Jiang, H.; Li, H.; Wang, Y.; Briand, D.; Camara, M.; Zhou, G.; de Rooij, N.F. Highly Transparent Humidity Sensor with Thin Cellulose Acetate Butyrate and Hydrophobic AF1600X Vapor Permeating Layers Fabricated by Screen Printing. Sens. Actuators B Chem. 2019, 281, 212–220. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Sedaghat, S.; Krishnakumar, A.; He, Z.; Wang, H.; Rahimi, R. Wireless Humidity Sensor for Smart Packaging via One-Step Laser-Induced Patterning and Nanoparticle Formation on Metallized Paper. Adv. Electron. Mater. 2022, 2101149. [Google Scholar] [CrossRef]
- Im, H.; Lee, S.; Naqi, M.; Lee, C.; Kim, S. Flexible PI-Based Plant Drought Stress Sensor for Real-Time Monitoring System in Smart Farm. Electronics 2018, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Nassar, J.M.; Khan, S.M.; Villalva, D.R.; Nour, M.M.; Almuslem, A.S.; Hussain, M.M. Compliant Plant Wearables for Localized Microclimate and Plant Growth Monitoring. NPJ Flex. Electron. 2018, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Kulyk, B.; Silva, B.F.R.; Carvalho, A.F.; Barbosa, P.; Girão, A.V.; Deuermeier, J.; Fernandes, A.J.S.; Figueiredo, F.M.L.; Fortunato, E.; Costa, F.M. Laser-Induced Graphene from Paper by Ultraviolet Irradiation: Humidity and Temperature Sensors. Adv. Mater. Technol. 2022, 2101311. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.; Kasuga, T.; Uetani, K.; Nogi, M.; Koga, H. All-Cellulose-Derived Humidity Sensor Prepared via Direct Laser Writing of Conductive and Moisture-Stable Electrodes on TEMPO-Oxidized Cellulose Paper. J. Mater. Chem. C 2022, 10, 3712–3719. [Google Scholar] [CrossRef]
- Lan, L.; Le, X.; Dong, H.; Xie, J.; Ying, Y.; Ping, J. One-Step and Large-Scale Fabrication of Flexible and Wearable Humidity Sensor Based on Laser-Induced Graphene for Real-Time Tracking of Plant Transpiration at Bio-Interface. Biosens. Bioelectron. 2020, 165, 112360. [Google Scholar] [CrossRef] [PubMed]
- Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farahani, M.; Shafiee, A. Wound Healing: From Passive to Smart Dressings. Adv. Healthc. Mater. 2021, 10, 2100477. [Google Scholar] [CrossRef]
- Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials 2019, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Zhang, P.; Liu, F.; Luo, S. Laser-Induced Freestanding Graphene Papers: A New Route of Scalable Fabrication with Tunable Morphologies and Properties for Multifunctional Devices and Structures. Small 2018, 14, e1802350. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Mun, J.; Kwon, S.Y.; Park, S.; Bao, Z.; Park, S. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Adv. Mater. 2019, 31, 1904765. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O.S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; et al. A Laser-Engraved Wearable Sensor for Sensitive Detection of Uric Acid and Tyrosine in Sweat. Nat. Biotechnol. 2020, 38, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Barber, R.; Cameron, S.; Devine, A.; McCombe, A.; Kirsty Pourshahidi, L.; Cundell, J.; Roy, S.; Mathur, A.; Casimero, C.; Papakonstantinou, P.; et al. Laser Induced Graphene Sensors for Assessing PH: Application to Wound Management. Electrochem. Commun. 2021, 123, 106914. [Google Scholar] [CrossRef]
- Romero, F.J.; Rivadeneyra, A.; Salinas-Castillo, A.; Ohata, A.; Morales, D.P.; Becherer, M.; Rodriguez, N. Design, Fabrication and Characterization of Capacitive Humidity Sensors Based on Emerging Flexible Technologies. Sens. Actuators B Chem. 2019, 287, 459–467. [Google Scholar] [CrossRef]
- Lee, J.U.; Ma, Y.W.; Jeong, S.Y.; Shin, B.S. Direct Fabrication of Ultra-Sensitive Humidity Sensor Based on Hair-like Laser-Induced Graphene Patterns. Micromachines 2020, 11, 476. [Google Scholar] [CrossRef]
- Zhu, C.; Tao, L.-Q.; Wang, Y.; Zheng, K.; Yu, J.; Li, X.; Chen, X.; Huang, Y. Graphene Oxide Humidity Sensor with Laser-Induced Graphene Porous Electrodes. Sens. Actuators B Chem. 2020, 325, 128790. [Google Scholar] [CrossRef]
- Strauss, V.; Delacroix, S.; Zieleniewska, A.; Ferguson, A.J.; Blackburn, J.L.; Ronneberger, S.; Loeffler, F.F. Using Carbon Laser Patterning to Produce Flexible, Metal-Free Humidity Sensors. ACS Appl. Electron. Mater. 2020, 2, 4146–4154. [Google Scholar] [CrossRef]
- Nie, J.; Wu, Y.; Huang, Q.; Joshi, N.; Li, N.; Meng, X.; Zheng, S.; Zhang, M.; Mi, B.; Lin, L. Dew Point Measurement Using a Carbon-Based Capacitive Sensor with Active Temperature Control. ACS Appl. Mater. Interfaces 2019, 11, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.; Grafinger, D.; Greco, F. Printed and Laser-Scribed Stretchable Conductors on Thin Elastomers for Soft and Wearable Electronics. Front. Mater. 2021, 8, 290. [Google Scholar] [CrossRef]
- Xu, K.; Fujita, Y.; Lu, Y.; Honda, S.; Shiomi, M.; Arie, T.; Akita, S.; Takei, K. A Wearable Body Condition Sensor System with Wireless Feedback Alarm Functions. Adv. Mater. 2021, 33, e2008701. [Google Scholar] [CrossRef]
- Rahimi, R.; Ochoa, M.; Yu, W.; Ziaie, B. Highly Stretchable and Sensitive Unidirectional Strain Sensor via Laser Carbonization. ACS Appl. Mater. Interfaces 2015, 7, 4463–4470. [Google Scholar] [CrossRef]
- Dallinger, A.; Keller, K.; Fitzek, H.; Greco, F. Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene. ACS Appl. Mater. Interfaces 2020, 12, 19855–19865. [Google Scholar] [CrossRef]
- Lü, X.; Yang, J.; Qi, L.; Bao, W.; Zhao, L.; Chen, R. High Sensitivity Flexible Electronic Skin Based on Graphene Film. Sensors 2019, 19, 794. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Bhattacharyya, R.; Sarma, S.E.; Karmakar, N.C. A Novel “Smart Skin” Sensor for Chipless RFID-Based Structural Health Monitoring Applications. IEEE Internet Things J. 2021, 8, 3955–3971. [Google Scholar] [CrossRef]
- Milici, S.; Amendola, S.; Bianco, A.; Marrocco, G. Epidermal RFID Passive Sensor for Body Temperature Measurements. In Proceedings of the 2014 IEEE RFID Technology and Applications Conference, Tampere, Finland, 8–9 September 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 140–144. [Google Scholar]
- Occhiuzzi, C.; Ajovalasit, A.; Sabatino, M.A.; Dispenza, C.; Marrocco, G. RFID Epidermal Sensor Including Hydrogel Membranes for Wound Monitoring and Healing. In Proceedings of the 2015 IEEE International Conference on RFID, San Diego, CA, USA, 15–17 April 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 182–188. [Google Scholar]
- Rayhana, R.; Xiao, G.; Liu, Z. RFID Sensing Technologies for Smart Agriculture; RFID Sensing Technologies for Smart Agriculture. IEEE Instrum. Meas. Mag. 2021, 24, 50–60. [Google Scholar] [CrossRef]
- Liao, Y.T.; Chen, T.L.; Chen, T.S.; Zhong, Z.H.; Hwang, J.H. The Application of RFID to Healthcare Management of Nursing House. Wirel. Pers. Commun. 2016, 91, 1237–1257. [Google Scholar] [CrossRef]
- Parlak, S.; Sarcevic, A.; Marsic, I.; Burd, R.S. Introducing RFID Technology in Dynamic and Time-Critical Medical Settings: Requirements and Challenges. J. Biomed. Inform. 2012, 45, 958–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigelsford, J.M.; Davenport, C.J. A Passive RFID Implant for Soft Tissue Trauma Monitoring. In Proceedings of the 2013 Loughborough Antennas and Propagation Conference, Loughborough, UK, 11–12 November 2013; pp. 127–130. [Google Scholar]
- Amendola, S.; Occhiuzzi, C.; Ajovalasit, A.; Sabatino, M.A.; Dispenza, C.; Marrocco, G. Dielectric Characterization of Biocompatible Hydrogels for Application to Epidermal RFID Devices. In Proceedings of the European Microwave Week 2015: “Freedom through Microwaves”, EuMW 2015, Paris, France, 6–11 September 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 379–382. [Google Scholar]
- Hasan, M.M.; Pala, N. Cross-Polarized RCS Based Chipless RFID Tag for Wound Monitoring through PH Sensing. In Proceedings of the Proceedings of the 2021 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems: Making Waves in Texas, WMCS 2021, Virtual Conference, 18–20 May 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021. [Google Scholar]
- Herrojo, C.; Paredes, F.; Mata-Contreras, J.; Martín, F. Chipless-RFID: A Review and Recent Developments. Sensors 2019, 19, 3385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behera, S.K. Chipless RFID Sensors for Wearable Applications: A Review. IEEE Sens. J. 2022, 22, 1105–1120. [Google Scholar] [CrossRef]
- Dey, S.; Bhattacharyya, R.; Karmakar, N.; Sarma, S. A Folded Monopole Shaped Novel Soil Moisture and Salinity Sensor for Precision Agriculture Based Chipless RFID Applications. In Proceedings of the 2019 IEEE MTT-S International Microwave and RF Conference, IMARC 2019, Mumbai, India, 13–15 December 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. [Google Scholar]
- Deng, F.; Zuo, P.; Wen, K.; Wu, X. Novel Soil Environment Monitoring System Based on RFID Sensor and LoRa. Comput. Electron. Agric. 2020, 169, 105169. [Google Scholar] [CrossRef]
Material | Method | Substrate | Ref |
---|---|---|---|
SWCNT/PVA | R | Fiber | [28] |
PEDOT:PSS | I | Rayon/PET | [29] |
Cu wire/PE/PI | C/LC | Fiber | [30] |
Ag | R | PDMS | [31] |
α-In2Se3 nanosheet | R/I | PET | [32] |
Ag nanowire/graphene oxide | R | PDMS | [33] |
PVA/graphene flowers | C/R/I | PET | [34] |
Carbon nanocoil/nanotube | R | Paper | [35] |
Graphene oxide/ZnO | R | Paper | [36] |
Reduced graphene oxide | R | PI | [37] |
MWCNT ink | C | Paper | [38] |
Cellulose acetate butyrate | C | PET | [39] |
Cellulose–Ag | LC | Paper | [40] |
Ti/Au | C | PI/PET | [41] |
Ti/Au | R | PI/PET | [42] |
LIG–cellulose | R | Paper | [43] |
LIG–cellulose | R | Paper | [44] |
LIG/graphene oxide | C | PI/PET | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crowe, E.; Scott, C.; Cameron, S.; Cundell, J.H.; Davis, J. Developing Wound Moisture Sensors: Opportunities and Challenges for Laser-Induced Graphene-Based Materials. J. Compos. Sci. 2022, 6, 176. https://doi.org/10.3390/jcs6060176
Crowe E, Scott C, Cameron S, Cundell JH, Davis J. Developing Wound Moisture Sensors: Opportunities and Challenges for Laser-Induced Graphene-Based Materials. Journal of Composites Science. 2022; 6(6):176. https://doi.org/10.3390/jcs6060176
Chicago/Turabian StyleCrowe, Emma, Cameron Scott, Sarah Cameron, Jill H. Cundell, and James Davis. 2022. "Developing Wound Moisture Sensors: Opportunities and Challenges for Laser-Induced Graphene-Based Materials" Journal of Composites Science 6, no. 6: 176. https://doi.org/10.3390/jcs6060176
APA StyleCrowe, E., Scott, C., Cameron, S., Cundell, J. H., & Davis, J. (2022). Developing Wound Moisture Sensors: Opportunities and Challenges for Laser-Induced Graphene-Based Materials. Journal of Composites Science, 6(6), 176. https://doi.org/10.3390/jcs6060176