Development and Mechanical Characterisation of Al6061-Al2O3-Graphene Hybrid Metal Matrix Composites
Abstract
:1. Introduction
2. Fabrication Procedure
2.1. Matrix and Reinforcement Material
2.2. Composites Preparation
3. Results and Discussions
3.1. Microstructural Analysis
3.2. Mechanical Properties
3.2.1. Tensile Strength
3.2.2. Yield Strength (YS)
3.2.3. % of Elongation
3.2.4. Hardness
4. Fractography
5. Conclusions
- Composites were viably manufactured using Al2O3 and graphene particulates in the aluminium combination using fluid metallurgy route.
- Optical images show the significance of Al2O3 and graphene reinforcement, reliably dispersed through improved closed packing besides incredible holding bond amid particulates in the matrix alongside a few proportions of pores.
- Tensile strength and yield strength of the composite extended with the graphene support when compared to as-cast alloy. The increment in the mechanical strength is credited with the harder Al2O3 particles/graphene which delivers strength to the composites.
- % of elongation lessens with enhancement in weight % of reinforcement, however due to the hard particulate’s existence, brittleness occurs that diminishes the ductility of the composites. This may likewise be credited to the harder ceramic Al2O3p and graphene particles.
- Al6061 composites displayed higher hardness than unadulterated Al6061alloy. The hardness expanded by about 69.10% with the reinforcement of 1 wt. % graphene and 15 wt. % Al2O3p.
- The fracture was pliable with dimple surface showing particle debonding and particle breaking. With fractography, the failure of the composites appeared to comprise transgranular break of the graphene–Al2O3p reinforcement and ductile fracture of the AA6061 base matrix.
Author Contributions
Funding
Conflicts of Interest
References
- Dayanand, S.; Babu, S.; Auradi, V. Experimental Investigations on Microstructural and Dry Sliding Wear Behavior of Al-AlB2 Metal Matrix Composites. Mater. Today Proc. 2018, 5, 22536–22542. [Google Scholar] [CrossRef]
- Yang, J.-G.; Ou, B.-L. Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7050 Al-alloy. Scand. J. Met. 2001, 30, 158–167. [Google Scholar] [CrossRef]
- Dayanand, S.; Boppana, S.B.; Hemanth, J.; Telagu, A. Microstructure and Corrosion Characteristics of In Situ Aluminum Diboride Metal Matrix Composites. J. Bio Tribo-Corros. 2019, 5, 60. [Google Scholar] [CrossRef]
- Boppana, S.B.; Dayanand, S. Impact of Heat Treatment on Mechanical, Wear and Corrosion Behaviour of In Situ AlB2 Reinforced Metal Matrix Composites Produced by Liquid Metallurgy Route. J. Bio Tribo-Corros. 2020, 6, 33. [Google Scholar] [CrossRef]
- Boppana, S.B.; Dayanand, S. Development of AlB2 particles using inorganic halide salts and mechanical characterization of AlB2 reinforced AA6061 MMC’s. Mater. Today Proc. 2020, 27, 595–602. [Google Scholar] [CrossRef]
- Boppana, S.B.; Dayanand, S.; Ramesh, S.; Auradi, V. Effect of Reaction Holding Time on Synthesis and Characterization of AlB2 Reinforced Al6061 Metal Matrix Composites. J. Bio Tribo-Corros. 2020, 6, 88. [Google Scholar] [CrossRef]
- Dayanand, S.; Babu, B.S. A Review on synthesis of AlB2 reinforced aluminium matrix composites. IOP Conf. Ser. Mater. Sci. Eng. 2020, 810, 12038. [Google Scholar] [CrossRef]
- Dayanand, S.; Boppana, S.B.; Auradi, V.; Nagaral, M.; Ravi, M.U. Bharath Evaluation of Wear Properties of Heat-Treated Al-AlB2 in-situ Metal Matrix Composites. J. Bio Tribo-Corros. 2021, 7, 1–11. [Google Scholar] [CrossRef]
- Samuel, D.; Boppana, S.B.; Palanikumar, K.; Ramesh, S.; Auradi, V. Role of Heat Treatment on Hardness of Al 6061- AlB2 Metal Matrix Composites. Int. J. Surf. Eng. Interdiscip. Mater. Sci. 2021, 9, 26–39. [Google Scholar] [CrossRef]
- Kumar, V.; Nagegowda, K.U.; Boppana, S.B.; Sengottuvelu, R.; Kayaroganam, P. Wear behavior of Aluminium 6061 alloy reinforced with coated/uncoated multiwalled carbon nanotube and graphene. J. Met. Mater. Miner. 2021, 31, 17–24. [Google Scholar]
- Bharath, V.; Auradi, V.; Nagaral, M.; Dayanand, S.; Boppana, S.B. Impact of Alumina Particulates Addition on Hardness and Wear Behaviour of 2014 Al Metal Matrix Composites by Vortex Method. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1013, 012018. [Google Scholar] [CrossRef]
- Nagaral, M.; Deshapande, R.G.; Auradi, V.; Boppana, S.B.; Dayanand, S.; Anilkumar, M.R. Mechanical and Wear Characterization of Ceramic Boron Carbide-Reinforced Al2024 Alloy Metal Composites. J. Bio Tribo-Corros. 2021, 7, 19. [Google Scholar] [CrossRef]
- Boppana, S.B. In Situ Synthesis of Titanium Carbide in Pure Aluminium. J. Mater. Sci. Chem. Eng. 2020, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Boppana, S.B.; Chennakeshavalu, K. Preparation of Al-5Ti Master Alloys for the In-Situ Processing of Al-TiC Metal Matrix Composites. J. Miner. Mater. Charact. Eng. 2009, 8, 563–568. [Google Scholar] [CrossRef]
- Dayanand, S.; Satish, B.B. Effect of Cryolite on Microstructure of Insitu AlB2 Aluminium Metal Matrix Composites. Int. J. Recent Technol. Eng. (IJRTE) 2019, 8, 940–943. [Google Scholar]
- Yang, B.; Sun, M.; Gan, G.; Xu, C.; Huang, Z.; Zhang, H.; Fang, Z.Z. In situ Al2O3 particle-reinforced Al and Cu matrix composites synthesized by displacement reactions. J. Alloys Compd. 2010, 494, 261–265. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Z.; Zhang, X. Processing map of Al2O3 particulate reinforced Al alloy matrix composites. Mater. Sci. Eng. A 2012, 558, 112–118. [Google Scholar] [CrossRef]
- Jawalkar, C.S.; Verma, A.S.; Suri, N.M. Fabrication of Aluminium Metal Matrix Composites with Particulate Reinforcement: A Review. Mater. Today Proc. 2017, 4, 2927–2936. [Google Scholar] [CrossRef]
- Al-Salihi, H.A.; Judran, H.K. Effect of Al2O3 reinforcement nanoparticles on the tribological behaviour and mechanical properties of Al6061 alloy. AIMS Mater. Sci. 2020, 7, 486–498. [Google Scholar] [CrossRef]
- Bharath, V.; Nagaral, M.; Auradi, V.; Kori, S. Preparation of 6061Al-Al2O3 MMC’s by Stir Casting and Evaluation of Mechanical and Wear Properties. Procedia Mater. Sci. 2014, 6, 1658–1667. [Google Scholar] [CrossRef] [Green Version]
- Sivakaruna, G.; Babu, D.P.S. A survey on effects of reinforcement on aluminium metal matrix composites. Int. J. Mech. Eng. Technol. 2017, 8, 112–131. [Google Scholar]
- Rajesh, P.V.; Sriram, P.M. Optimization of process parameters of Aluminium Alloy (Al6061)-Alumina (Al2O3) composites fabricated by stir casting. Int. J. Eng. Res. Manag. Stud. 2018, 5, 2394–7659. [Google Scholar]
- Senthil, K.M.; Managalaraja, R.V.; Senthil Kumar, K.; Natrayan, L. Processing and characterization of AA2024/Al2O3/SiC reinforces hybrid composites using squeeze casting technique. Iran J. Mater. Sci. Eng. 2019, 16, 55–67. [Google Scholar]
- Li, F.; Long, L.; Weng, Y. A Review on the Contemporary Development of Composite Materials Comprising Graphene/Graphene Derivatives. Adv. Mater. Sci. Eng. 2020, 2020, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, S.; Xavior, M.A. Characterization on aluminum alloy 7050 metal matrix composite reinforced with graphene na-no particles. Procedia Manuf. 2019, 30, 120–127. [Google Scholar] [CrossRef]
- Wang, L.Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 2012, 66, 594–597. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Fan, G.; Tan, Z.; Guo, Q.; Xiong, D.; Su, Y.; Li, Z.; Zhang, D. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology 2014, 25, 325601. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.J.; Cheng, Y.; Hu, H.Q.; Zhou, C.J.; Bo, L.D.; Long, D.S. Research of Graphene-Reinforced Aluminum Matrix Nanocomposites. J. Mater. Eng. 2014, 4, 1–6. [Google Scholar]
- Siddhartha, J.; Prashantha, K.H.G.; Anthony, M.X. Synthesis and characterization of AA 6061-graphene-SiC hybrid nanocompo-sites processed through microwave sintering. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 12086. [Google Scholar]
- Şenel, M.C.; Gürbüz, M.; Koç, E. Mechanical and tribological behaviours of aluminium matrix composites reinforced by graphene nanoplatelets. Mater. Sci. Technol. 2018, 34, 1980–1989. [Google Scholar] [CrossRef]
- Tabandeh-Khorshid, M.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Eng. Sci. Technol. Int. J. 2016, 19, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Rashad, M.; Pan, F.; Tang, A.; Asif, M. Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci. 2014, 24, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Choi, H.; Shin, J.; Bae, D. Strengthening behavior of few-layered graphene/aluminum composites. Carbon 2015, 82, 143–151. [Google Scholar] [CrossRef]
- Sethuram, D.; Koppad, P.G.; Shetty, H.; Alipour, M.; Kord, S. Characterization of graphene reinforced Al-Sn nanocomposite produced by mechanical alloying and vacuum hot pressing. Mater. Today Proc. 2018, 5, 24505–245014. [Google Scholar] [CrossRef]
- Bastwros, M.; Kim, G.Y.; Zhu, C.; Zhang, K.; Wang, S.; Tang, X.; Wang, X. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. B Eng. 2014, 60, 111–118. [Google Scholar] [CrossRef]
- Hui-min, X.; Zhang, L.; Yong-chao, Z.; Na, L.; Yu-qi, S.; Ji-dong, Z.; Hui-zhong, M. Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering. Int. J. Miner. Metall. Mater. 2020, 27, 1295–1300. [Google Scholar]
- Şenel, M.C.; Gürbüz, M.; Koç, E. Fabrication and characterization of aluminum hybrid composites reinforced with silicon ni-tride/graphene nanoplatelet binary particles. J. Compos. Mater. 2019, 53, 4043–4054. [Google Scholar] [CrossRef]
- Boppana, S.B.; Dayanand, S.; Kumar, A.; Kumar, V.; Aravinda, T. Synthesis and characterization of nano graphene and ZrO2 reinforced Al 6061 metal matrix composites. J. Mater. Res. Technol. 2020, 9, 7354–7362. [Google Scholar] [CrossRef]
- Bartolucci, S.F.; Paras, J.; Rafiee, M.A.; Rafiee, J.; Lee, S.; Kapoor, D.; Koratkar, N. Graphene–aluminum nanocomposites. Mater. Sci. Eng. A 2011, 528, 793–7937. [Google Scholar] [CrossRef]
- Reddy, A.P.; Krishna, P.V.; Rao, R.N. Tribological Behaviour of Al6061–2SiC-xGr Hybrid Metal Matrix Nanocomposites Fabricated through Ultrasonically Assisted Stir Casting Technique. Silicon 2019, 11, 2853–2871. [Google Scholar] [CrossRef]
- Du, X.M.; Zheng, K.F.; Zhao, T.; Liu, F.G. Fabrication and characterization of Al 7075 hybrid composite reinforced with graphene and SiC nanoparticles by powder metallurgy. Dig. J. Nanomater. Biostruct. 2018, 13, 1133–1140. [Google Scholar]
- Natrayan, L.; Yogeshwaran, S.; Yuvaraj, L.; Kumar, M.S. Effect of Graphene Reinforcement on Mechanical and Microstructure Behavior of AA8030/Graphene Composites Fabricated by Stir Casting Technique. In Proceedings of the International Conference on Inventive Material Science Applications: ICIMA, Coimbatore, India, 25–26 July 2019; Volume 2166, p. 020012. [Google Scholar] [CrossRef]
- Nagaral, M.; Bharath, V.; Auradi, V. Effect of Al2O3 particles on mechanical and wear Properties of 6061Al alloy metal matrix composites. J. Mater. Sci. Eng. 2013, 2, 2169-0022. [Google Scholar] [CrossRef] [Green Version]
- Bódis, E.; Cora, I.; Balázsi, C.; Németh, P.; Károly, Z.; Klébert, S.; Fazekas, P.; Keszler, A.M.; Szépvölgyi, J. Spark plasma sintering of graphene reinforced silicon carbide ceramics. Ceram. Int. 2017, 43, 9005–9011. [Google Scholar] [CrossRef] [Green Version]
- Cygan, T.; Wozniak, J.; Petrus, M.; Adamczyk-Cieślak, B.; Kostecki, M.; Olszyna, A. The effect of microstructure evolution on mechanical properties in novel alumina-montmorillonite composites. Int. J. Refract. Met. Hard Mater. 2019, 80, 195–203. [Google Scholar] [CrossRef]
- Gutierrez-Gonzalez, C.; Smirnov, A.; Centeno, A.; Fernández, A.; Alonso, B.; Rocha, V.; Torrecillas, R.; Zurutuza, A.; Bartolome, J. Wear behavior of graphene/alumina composite. Ceram. Int. 2015, 41, 7434–7438. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Tian, W.-M.; Li, S.-M.; Wang, B.; Chen, X.; Liu, J.-H.; Yu, M. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int. J. Miner. Met. Mater. 2016, 23, 723–729. [Google Scholar] [CrossRef]
- Shen, M.-Y.; Chang, T.-Y.; Hsieh, T.-H.; Li, Y.-L.; Chiang, C.-L.; Yang, H.; Yip, M.-C. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites. J. Nanomater. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Li, G.; Xiong, B. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminium com-posites. J. Alloys Compd. 2017, 697, 31. [Google Scholar] [CrossRef]
- Khan, M.A.; Rohatgi, P.K. A numerical study of thermal interaction of solidification fronts with spherical particles during so-lidification of metal-matrix composite materials. Compos. Eng. 1993, 3, 995–1006. [Google Scholar] [CrossRef]
- Boostani, A.F.; Tahamtan, S.; Jiang, Z.; Wei, D.; Yazdani, S.; Khosroshahi, R.A.; Mousavian, R.T.; Xu, J.; Zhang, X.; Gong, D. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos. Part A Appl. Sci. Manuf. 2015, 68, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Saheb, N.; Qadir, N.U.; Siddiqui, M.U.; Arif, A.F.M.; Akhtar, S.S.; Al-Aqeeli, N. Characterization of nano reinforcement dispersion in inorganic nanocomposites: A review. Materials 2014, 7, 4148–4181. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Kim, G.Y.; Russell, A.M. Effects of mechanical alloying on an Al6061–CNT composite fabricated by semi-solid powder processing. Mater. Sci. Eng. A 2012, 538, 164–172. [Google Scholar] [CrossRef]
- Perez-Bustamante, R.; Bolanos-Morales, D.; Bonilla-Martinez, J.; Estrada-Guel, I.; Martinez-Sanchez, R. Microstructural and hard-ness behavior of graphene-nanoplatelets/aluminium composites synthesized by mechanical alloying. J. Alloys Compd. 2014, 615, S578–S582. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Lokesh, K.S.; Chetan, I.C.; Thomas, P.U. Influence of graphene on hardness number of Aluminium-7075 based metal matrix composites. Int. J. Innov. Sci. Res. Technol. 2017, 2. [Google Scholar]
- Bahrami, A.; Soltani, N.; I Pech-Canul, M.; Soltani, S.; A González, L.; A Gutiérrez, C.; Tapp, J.; Möller, A.; Gurlo, A. Bilayer graded Al/B4C/rice husk ash composite: Wettability behavior, thermo-mechanical, and electrical properties. J. Compos. Mater. 2018, 52, 3745–3758. [Google Scholar] [CrossRef]
- Bahrami, A.; Pech-Canul, M.I.; Soltani, N.; Gutiérrez, C.A.; Kamm, P.H.; Gurlo, A. Tailoring microstructure and properties of bi-layer-graded Al/B4C/MgAl2O4 composites by single-stage pressureless infiltration. J. Alloys Compd. 2017, 694, 408–418. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, J.; Wang, X.; Cui, E.; Yu, H. Reinforcing Mechanisms of Graphene and Nano-TiC in Al2O3-Based Ceramic-Tool Materials. Nanomaterials 2020, 10, 1815. [Google Scholar] [CrossRef]
- Evans, A.G. Structural Reliability: A Processing–Dependent Phenomenon. J. Am. Ceram. Soc. 1982, 65, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yan, H.; Jiang, K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 2013, 39, 6215–6221. [Google Scholar] [CrossRef]
- Kataiaha, G.S.; Girish, D.P. The mechanical properties & fractography of aluminium 6061-TiO2 Composites. Int. J. Pharm. Stud. Res. 2010, 1, 1–8. [Google Scholar]
- Karthikeyan, G.; Jinu, G. Tensile Behaviour and Fractography Analysis LM6/ZrO2 Composites. Mater. Technol. 2017, 51, 549–553. [Google Scholar]
- Yoganand, C.; Ramaswamy, P. Dispersion of Graphene in Aluminum Powder to Aid Synthesis of Homogenous Nano-Composites. Mater. Today Proc. 2018, 5, 27928–27935. [Google Scholar] [CrossRef]
- Esawi, A.M.; El Borady, M.A. Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 2008, 68, 486–492. [Google Scholar] [CrossRef]
- Saboori, A.; Moheimani, S.K.; Dadkhah, M.; Pavese, M.; Badini, C.; Fino, P. An Overview of Key Challenges in the Fabrication of Metal Matrix Nanocomposites Reinforced by Graphene Nanoplatelets. Metals 2018, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Dadkhah, M.; Saboori, A.; Fino, P. An overview of the recent developments in metal matrix nanocomposites reinforced by gra-phene. Materials 2019, 12, 2823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aybarc, U.; Dispinar, D.; Seydibeyoglu, M.O. Aluminum metal matrix composites with SiC, Al2O3 and graphene–review. Arch. Foundry Eng. 2018, 18, 5–10. [Google Scholar]
- Bellucci, S.; Kruchinin, S.; Repetsky, S.P.; Vyshyvana, I.G.; Melnyk, R. Behavior of the Energy Spectrum and Electric Conduction of Doped Graphene. Materials 2020, 13, 1718. [Google Scholar] [CrossRef] [Green Version]
- Repetsky, S.P.; Vyshyvana, I.G.; Kruchinin, S.P.; Bellucci, S. Influence of the ordering of impurities on the appearance of an energy gap and on the electrical conductance of graphene. Sci. Rep. 2018, 8, 9123. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, A.; Soltani, N.; Pech-Canul, M.; Gutiérrez, C.A. Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Crit. Rev. Environ. Sci. Technol. 2015, 46, 143–208. [Google Scholar] [CrossRef]
- Deaquino-Lara, R.; Soltani, N.; Bahrami, A.; Gutierrez, E.; García-Sánchez, E.; Hernandez-Rodríguez, M. Tribological characterization of Al7075–graphite composites fabricated by mechanical alloying and hot extrusion. Mater. Des. 2015, 67, 224–231. [Google Scholar] [CrossRef]
Sl. No | Base Matrix | Reinforcement | Specimen Code | Ultimate Tensile Strength | Yield Strength | % of Elongation | Hardness |
---|---|---|---|---|---|---|---|
1 | Al6061 | - | Al | 117.36 ± 3.23 | 82.88 ± 2.63 | 11.23 ± 1.96 | 51.4 ± 3.23 |
2 | Al6061 | 1 wt. % Graphene + 5 wt. % Al2O3 | Al-1G-5ALU | 128.36 ± 2.87 | 91.23 ± 2.12 | 5.18 ± 1.26 | 57.6 ± 2.23 |
3 | Al6061 | 1 wt. % Graphene + 10 wt. % Al2O3 | Al-1G-10ALU | 157.98 ± 4.23 | 108.23 ± 3.65 | 4.62 ± 1.29 | 69.56 ± 3.24 |
4 | Al6061 | 1 wt. % Graphene + 15 wt. % Al2O3 | Al-1G-15ALU | 190.23 ± 3.87 | 142.21 ± 2.98 | 4.12 ± 1.06 | 86.92 ± 3.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boppana, S.B.; Dayanand, S.; Murthy, B.V.; Nagaral, M.; Telagu, A.; Kumar, V.; Auradi, V. Development and Mechanical Characterisation of Al6061-Al2O3-Graphene Hybrid Metal Matrix Composites. J. Compos. Sci. 2021, 5, 155. https://doi.org/10.3390/jcs5060155
Boppana SB, Dayanand S, Murthy BV, Nagaral M, Telagu A, Kumar V, Auradi V. Development and Mechanical Characterisation of Al6061-Al2O3-Graphene Hybrid Metal Matrix Composites. Journal of Composites Science. 2021; 5(6):155. https://doi.org/10.3390/jcs5060155
Chicago/Turabian StyleBoppana, Satish Babu, Samuel Dayanand, Bharath Vedashantha Murthy, Madeva Nagaral, Aravinda Telagu, Vijee Kumar, and Virupaxi Auradi. 2021. "Development and Mechanical Characterisation of Al6061-Al2O3-Graphene Hybrid Metal Matrix Composites" Journal of Composites Science 5, no. 6: 155. https://doi.org/10.3390/jcs5060155
APA StyleBoppana, S. B., Dayanand, S., Murthy, B. V., Nagaral, M., Telagu, A., Kumar, V., & Auradi, V. (2021). Development and Mechanical Characterisation of Al6061-Al2O3-Graphene Hybrid Metal Matrix Composites. Journal of Composites Science, 5(6), 155. https://doi.org/10.3390/jcs5060155